Neuroradiologie Scan 2019; 09(04): 295-321
DOI: 10.1055/a-0873-6879
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Inkomplette Querschnittsyndrome: Überblick über Klinik und Bildgebung

Incomplete cord syndromes: clinical and imaging review
Vamsi K. Kunam
,
Vinodkumar Velayudhan
,
Zeshan A. Chaudhry
,
Matthew Bobinski
,
Wendy R. K. Smoker
,
Deborah L. Reede

Verantwortlicher Herausgeber dieser Rubrik: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Prof. Dr. med. Michael Forsting, Essen.
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
14. November 2019 (online)

Die Kenntnis der Anatomie des Rückenmarks und der klinischen Merkmale von Rückenmarksyndromen vereinfacht die Bildgebung und Lokalisierung von spinalen Anomalien, die sich bei klassischen inkompletten Querschnittsyndromen darstellen. Der folgende Beitrag schildert die erforderlichen anatomischen Grundlagen und zeigt typische bildgebende Befunde.

Abstract

The ability to localize the three spinal tracts (corticospinal tract, spinothalamic tract, and dorsal [posterior] columns) involved in incomplete spinal cord syndromes at cross-sectional imaging and knowledge of the classic clinical manifestations of the various syndromes enable optimized imaging evaluation and provide clinicians with information that aids in diagnosis and treatment. The requisite knowledge for localizing these tracts is outlined. The authors review the spinal cord anatomy, blood supply, and course of these tracts and describe the various associated syndromes: specifically, dorsal cord, ventral cord, central cord, Brown-Séquard, conus medullaris, and cauda equina syndromes. In addition, they describe the anatomic basis for the clinical manifestation of each syndrome and the relevant imaging features of the classic causes of these entities. Knowledge of the anatomy and clinical findings of the spinal cord is essential for examining and treating patients with cord abnormalities.

Kernaussagen
  • Eine Schädigung der Neuronen im motorischen Kortex und im Tractus corticospinalis führt zu Defiziten der oberen Motoneuronen. Dagegen kommt es bei einer Schädigung der Neuronen in den Vorderhörnern und peripheren Nerven zu Defiziten der unteren Motoneuronen.

  • Die Axone im Bereich des Tractus corticospinalis und des Tractus spinothalamicus weisen eine ähnliche laminäre somatotopische Anordnung auf. Die Axone der Zervikal- und Thorakalsegmente, die die oberen Extremitäten und den Thorax innervieren, sind medial lokalisiert. Die Axone der Lumbal- und Sakralsegmente, die ihrerseits das Abdomen und die unteren Extremitäten innervieren, sind hingegen lateral positioniert.

  • Die Neuronen 2. Ordnung im Hinterhorn, die für die Übertragung der Schmerz- und Temperaturwahrnehmung zuständig sind, kreuzen durch die vordere spinale Kommissur und ziehen dort in der kontralateralen anterolateralen weißen Substanz als Tractus spinothalamicus aufwärts. Von den beschriebenen Trakten ist der Tractus spinothalamicus der einzige, der auf Höhe des Rückenmarks kreuzt.

  • Das zentrale Rückenmarksyndrom stellt die häufigste Form des inkompletten Querschnittsyndroms dar. Es entsteht infolge einer Verletzung oder Läsion im Bereich des Zentralkanals. Die häufigste Ursache eines zentralen Rückenmarksyndroms ist ein Trauma.

  • Der primäre Unterschied zwischen einem Konus- und einem Cauda-equina-Syndrom besteht in der Art des motorischen Defizits: Das Konussyndrom verursacht gemischte Defizite der oberen und unteren Motoneuronen, das Cauda-equina-Syndrom dagegen ein reines Defizit der unteren Motoneuronen.

 
  • Literatur

  • 1 Kirshblum SC, Burns SP, Biering-Sorensen F. et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 2011; 34: 535-546
  • 2 Waters RL, Adkins RH, Yakura JS. Definition of complete spinal cord injury. Paraplegia 1991; 29 (09) 573-581
  • 3 Blumenfeld H. Somatosensory pathways. In: Blumenfeld H. Neuroanatomy through clinical cases. 2nd ed. Sunderland, Mass: Sinauer Associates; 2010: 275-315
  • 4 Macdonald A, Chatrath P, Spector T. et al. Level of termination of the spinal cord and the dural sac: a magnetic resonance study. Clin Anat 1999; 12: 149-152
  • 5 Nadgir R, Yousem DM. Anatomy and degenerative diseases of the spine. In: Nadgir R. Neuroradiology: the requisites. 4th ed. Philadelphia, Pa: Elsevier; 2017: 559-604
  • 6 Mancall EL. Spinal cord and nerve roots. In: Mancall EL, Brock DG, Gray H. Grayʼs clinical neuroanatomy: the anatomic basis for clinical neuroscience. Philadelphia, Pa: Elsevier Saunders; 2011: 117-147
  • 7 Petit-Lacour MC, Lasjaunias P, Iffenecker C. et al. Visibility of the central canal on MRI. Neuroradiology 2000; 42: 756-761
  • 8 Naidich TP, Delman BN, Tang CY. et al. The normal spinal cord and meninges. In: Naidich TP, Castillo M, Cha S. et al. Imaging of the spine. Philadelphia, Pa: Saunders/Elsevier; 2011: 109-144
  • 9 Solsberg MD, Lemaire C, Resch L. et al. High-resolution MR imaging of the cadaveric human spinal cord: normal anatomy. AJNR Am J Neuroradiol 1990; 11: 3-7
  • 10 Blumenfeld H. Corticospinal tract and other motor pathways. In: Blumenfeld H. Neuroanatomy through clinical cases. 2nd ed. Sunderland, Mass: Sinauer Associates; 2010: 225-271
  • 11 Gailloud P, Ponti A, Gregg L. et al. Focal compression of the upper left thoracic intersegmental arteries as a potential cause of spinal cord ischemia. AJNR Am J Neuroradiol 2014; 35: 1226-1231
  • 12 Shamji MF, Maziak DE, Shamji FM. et al. Circulation of the spinal cord: an important consideration for thoracic surgeons. Ann Thorac Surg 2003; 76: 315-321
  • 13 Vargas MI, Gariani J, Sztajzel R. et al. Spinal cord ischemia: practical imaging tips, pearls, and pitfalls. AJNR Am J Neuroradiol 2015; 36: 825-830
  • 14 Timms SR, Curé JK, Kurent JE. Subacute combined degeneration of the spinal cord: MR findings. AJNR Am J Neuroradiol 1993; 14: 1224-1227
  • 15 Pou Serradell A, Roquer González J, Perich Alsina X. Acute posterior cord lesions in multiple sclerosis: an MRI study of the clinical course in 20 cases [in French]. Rev Neurol (Paris) 2000; 156: 1126-1135
  • 16 Lyerly MJ, Bag AK, Geldmacher DS. Spinal cord vascular disease. In: Daroff RB, Jankovic J, Mazziotta JC. et al. Bradleyʼs neurology in clinical practice. 7th ed. London, England: Elsevier; 2016: 1007-1014
  • 17 Lycklama G, Thompson A, Filippi M. et al. Spinal-cord MRI in multiple sclerosis. Lancet Neurol 2003; 2: 555-562
  • 18 Snyder LA, Tan L, Gerard C. et al. Spinal cord trauma. In: Daroff RB, Jankovic J, Mazziotta JC. et al. Bradleyʼs neurology in clinical practice. 7th ed. London, England: Elsevier; 2016: 881-902
  • 19 Dobkin BH. Paraplegia and spinal cord syndromes. In: Daroff RB, Jankovic J, Mazziotta JC. et al. Bradleyʼs neurology in clinical practice. 7th ed. London, England: Elsevier; 2016: 273-278
  • 20 Masson C, Pruvo JP, Meder JF. et al. Spinal cord infarction: clinical and magnetic resonance imaging findings and short term outcome. J Neurol Neurosurg Psychiatry 2004; 75: 1431-1435
  • 21 Weidauer S, Nichtweiss M, Lanfermann H. et al. Spinal cord infarction: MR imaging and clinical features in 16 cases. Neuroradiology 2002; 44: 851-857
  • 22 Malzberg MS, Rogg JM, Tate CA. et al. Poliomyelitis: hyperintensity of the anterior horn cells on MR images of the spinal cord. AJR Am J Roentgenol 1993; 161: 863-865
  • 23 Arita J, Nakae Y, Matsushima H. et al. Hopkins syndrome: T2-weighted high intensity of anterior horn on spinal MR imaging. Pediatr Neurol 1995; 13: 263-265
  • 24 Thomas T, Branson HM. Childhood transverse myelitis and its mimics. Neuroimaging Clin N Am 2013; 23: 267-278
  • 25 Chen CY, Chang YC, Huang CC. et al. Acute flaccid paralysis in infants and young children with enterovirus 71 infection: MR imaging findings and clinical correlates. AJNR Am J Neuroradiol 2001; 22: 200-205
  • 26 Brooks NP. Central cord syndrome. Neurosurg Clin N Am 2017; 28: 41-47
  • 27 Molliqaj G, Payer M, Schaller K. et al. Acute traumatic central cord syndrome: a comprehensive review. Neurochirurgie 2014; 60: 5-11
  • 28 Quencer RM, Bunge RP, Egnor M. et al. Acute traumatic central cord syndrome: MRI-pathological correlations. Neuroradiology 1992; 34: 85-94
  • 29 Finnoff JT, Mildenberger D, Cassidy CD. Central cord syndrome in a football player with congenital spinal stenosis: a case report. Am J Sports Med 2004; 32: 516-521
  • 30 Rich V, McCaslin E. Central cord syndrome in a high school wrestler: a case report. J Athl Train 2006; 41: 341-344
  • 31 Harrop JS, Sharan A, Ratliff J. Central cord injury: pathophysiology, management, and outcomes. Spine J 2006; 6: 198S-206S
  • 32 Shanmuganathan K, Gullapalli RP, Zhuo J. et al. Diffusion tensor MR imaging in cervical spine trauma. AJNR Am J Neuroradiol 2008; 29: 655-659
  • 33 Samartzis D, Gillis CC, Shih P. et al. Intramedullary spinal cord tumors. I: Epidemiology, pathophysiology, and diagnosis. Global Spine J 2015; 5: 425-435
  • 34 Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. RadioGraphics 2000; 20: 1721-1749
  • 35 Batnitzky S, Price HI, Gaughan MJ. et al. The radiology of syringohydromyelia. RadioGraphics 1983; 3: 585-611
  • 36 Smoker WR, Keyes WD, Dunn VD. et al. MRI versus conventional radiologic examinations in the evaluation of the craniovertebral and cervicomedullary junction. RadioGraphics 1986; 6: 953-994
  • 37 Jacobsohn M, Semple P, Dunn R. et al. Stab injuries to the spinal cord: a retrospective study on clinical findings and magnetic resonance imaging changes. Neurosurgery 2007; 61: 1262-1266 ; discussion 1266-1267
  • 38 Miranda P, Gomez P, Alday R. et al. Brown-Sequard syndrome after blunt cervical spine trauma: clinical and radiological correlations. Eur Spine J 2007; 16: 1165-1170
  • 39 Barnwell SL, Dowd CF, Davis RL. et al. Cryptic vascular malformations of the spinal cord: diagnosis by magnetic resonance imaging and outcome of surgery. J Neurosurg 1990; 72: 403-407
  • 40 Choi KB, Lee CD, Chung DJ. et al. Cervical disc herniation as a cause of Brown-Séquard syndrome. J Korean Neurosurg Soc 2009; 46: 505-510
  • 41 Mathews MS, Peck WW, Brant-Zawadzki M. Brown-Séquard syndrome secondary to spontaneous bleed from postradiation cavernous angiomas. AJNR Am J Neuroradiol 2008; 29: 1989-1990
  • 42 Lipper MH, Goldstein JH, Do HM. Brown-Séquard syndrome of the cervical spinal cord after chiropractic manipulation. AJNR Am J Neuroradiol 1998; 19: 1349-1352
  • 43 Kamaoui I, Maaroufi M, Benzagmout M. et al. MRI findings in spinal cord penetrating injury: three case reports. J Neuroradiol 2007; 34: 276-279
  • 44 Moyed S, Shanmuganathan K, Mirvis SE. et al. MR imaging of penetrating spinal trauma. AJR Am J Roentgenol 1999; 173: 1387-1391
  • 45 Parmar H, Park P, Brahma B. et al. Imaging of idiopathic spinal cord herniation. RadioGraphics 2008; 28: 511-518
  • 46 Khurana B, Sheehan SE, Sodickson A. et al. Traumatic thoracolumbar spine injuries: what the spine surgeon wants to know. RadioGraphics 2013; 33: 2031-2046
  • 47 Jellema K, Tijssen CC, van Gijn J. Spinal dural arteriovenous fistulas: a congestive myelopathy that initially mimics a peripheral nerve disorder. Brain 2006; 129: 3150-3164
  • 48 Ajiboye RM, Nelson SD, Shamie AN. Rare case of conus medullaris syndrome from a metastatic yolk sac tumor originating from the mediastinum of an adult male: a case report and review of the literature. Int J Spine Surg 2015; 9: 59
  • 49 Harrop JS, Hunt Jr. GE, Vaccaro AR. Conus medullaris and cauda equina syndrome as a result of traumatic injuries: management principles. Neurosurg Focus 2004; 16: e4
  • 50 Krings T, Geibprasert S. Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 2009; 30: 639-648
  • 51 McNamee J, Flynn P, OʼLeary S. et al. Imaging in cauda equina syndrome: a pictorial review. Ulster Med J 2013; 82: 100-108
  • 52 Gitelman A, Hishmeh S, Morelli BN. et al. Cauda equina syndrome: a comprehensive review. Am J Orthop 2008; 37: 556-562
  • 53 Sharma A, Goyal M, Mishra NK. et al. MR imaging of tubercular spinal arachnoiditis. AJR Am J Roentgenol 1997; 168: 807-812
  • 54 Cohen DB. Infectious origins of cauda equina syndrome. Neurosurg Focus 2004; 16: e2
  • 55 Bagley CA, Gokaslan ZL. Cauda equina syndrome caused by primary and metastatic neoplasms. Neurosurg Focus 2004; 16: e3
  • 56 Gupta RK, Gupta S, Kumar S. et al. MRI in intraspinal tuberculosis. Neuroradiology 1994; 36: 39-43
  • 57 Georgy BA, Snow RD, Hesselink JR. MR imaging of spinal nerve roots: techniques, enhancement patterns, and imaging findings. AJR Am J Roentgenol 1996; 166: 173-179
  • 58 Ross JS, Masaryk TJ, Modic MT. et al. MR imaging of lumbar arachnoiditis. AJR Am J Roentgenol 1987; 149: 1025-1032
  • 59 Maulucci CM, Ghobrial GM, Oppenlander ME. et al. Arachnoiditis ossificans: clinical series and review of the literature. Clin Neurol Neurosurg 2014; 124: 16-20