Pneumologie 2019; 73(07): 407-429
DOI: 10.1055/a-0920-6423
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Atmen: Luftschadstoffe und Gesundheit – Teil III

Breathing: Ambient Air Pollution and Health – Part III
H. Schulz
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
,
S. Karrasch
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
2   Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, Klinikum der Ludwig-Maximilians-Universität, München; Comprehensive Pneumology Center Munich (CPC-M), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), München
,
G. Bölke
3   Charité – Universitätsmedizin Berlin, Arbeitsbereich ambulante Pneumologie der Medizinischen Klinik mit Schwerpunkt Infektiologie und Pneumologie, Berlin
,
J. Cyrys
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
,
C. Hornberg
4   Universität Bielefeld, Fakultät für Gesundheitswissenschaften, AG Umwelt und Gesundheit, Bielefeld
,
R. Pickford
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
,
A. Schneider
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
,
C. Witt
3   Charité – Universitätsmedizin Berlin, Arbeitsbereich ambulante Pneumologie der Medizinischen Klinik mit Schwerpunkt Infektiologie und Pneumologie, Berlin
,
B. Hoffmann
5   Heinrich-Heine-Universität Düsseldorf, Medizinische Fakultät, Institut für Arbeits-, Sozial- und Umweltmedizin, Düsseldorf
› Author Affiliations
Further Information

Publication History

Publication Date:
10 July 2019 (online)

Zusammenfassung

Der dritte Teil des DGP-Positionspapiers stellt den aktuellen Wissensstand zu bislang weniger untersuchten Gesundheitsgefährdungen durch Luftschadstoffe vor: gestörte Glukosetoleranz und Diabetes sowie neurodegenerative Erkrankungen und neurokognitive Entwicklung bei Kindern. Weiterhin wird die Bedeutung einer Exposition während der Schwangerschaft für Mutter und Kind beschrieben und abschließend in die derzeit diskutierten Mechanismen zur Erklärung der unterschiedlichen adversen Effekte von Luftschadstoffen eingeführt.

Verschiedene, sich oft ergänzende Pathomechanismen bilden die Grundlage für die unterschiedlichen, durch Luftschadstoffe bedingten Gesundheitseffekte. Oxidativer Stress und eine subklinische entzündliche Reaktion in der Lunge, aber auch auf systemischer Ebene („low-grade systemic inflammation“), stehen dabei im Mittelpunkt. Diese begünstigen sekundäre Veränderungen im Organismus wie vaskuläre oder metabolische Prozesse und können darüber hinaus zu epigenetischen Effekten oder zur „Neuroinflammation“ führen. Die Bedeutung von löslichen, systemisch verfügbaren Partikelbestandteilen aber auch die Translokation von ultrafeinen Partikeln aus der Lunge über die Blutbahn in sekundäre Zielorgane wie Leber, Gehirn oder den Fötus wird dabei intensiv diskutiert.

Diabetes mellitus ist eine der häufigsten chronischen Erkrankungen weltweit, mit einer Prävalenz von knapp 14 % in Deutschland. Bei dem mit großem Abstand häufigeren Typ 2-Diabetes mellitus spielen Lebensstilfaktoren bei der Genese eine wesentliche Rolle. Toxikologische und epidemiologische Studien legen darüber hinaus nahe, dass auch eine langfristige Luftschadstoffbelastung zu einem erhöhten Risiko v. a. für den Typ 2-Diabetes beitragen kann. Zusätzliche Hinweise für eine ursächliche Rolle liefern Studien zur Glukoseregulation, der Insulinsensitivität und dem Schwangerschaftsdiabetes. Ergebnisse experimenteller Studien unterstützen diese Zusammenhänge und zeigen plausible biologische Mechanismen auf. Jedoch sind zur Stärkung der gegenwärtigen Evidenz prospektive Studien mit Berücksichtigung multipler Lebensstil- und Umweltfaktoren wie Grünflächen oder Lärm und einer präziseren individuellen Abschätzung der Schadstoffbelastung notwendig.

Mit der Altersentwicklung in der Bevölkerung nimmt die Krankheitslast durch neurodegenerative Erkrankungen zu. Erste Studien weisen auf einen möglichen Beitrag durch Luftschadstoffe, v. a. durch Feinstaub, hin. So wird in einigen Studien bei einer erhöhten Schadstoffbelastung eine Abnahme der neurokognitiven Leistungsfähigkeit im Erwachsenenalter und ein erhöhtes Risiko für eine Demenz oder eine Alzheimer-Erkrankung beobachtet, jedoch sind die Studien in Bezug auf Design, Expositionsabschätzung und Gesundheitseffekt noch inhomogen und die Studienergebnisse insgesamt gesehen noch inkonsistent. In Bezug auf die neurokognitive Entwicklung im Kindesalter beschreiben erste Studien einen Zusammenhang zwischen dem Grad der Luftverschmutzung, z. B. an der Schule, und einer verzögerten kognitiven Entwicklung.

Auch wenn die Evidenz für die verschiedenen biologischen Endpunkte während der Schwangerschaft noch sehr heterogen ist, weisen die Studien insgesamt auf einen negativen Einfluss der Luftschadstoffe auf den mütterlichen und fetalen Organismus hin. Die stärkste Evidenz liegt für ein verringertes Geburtsgewicht im Zusammenhang mit erhöhten Luftschadstoffen vor, allerdings mit relativ niedriger Effektgröße von im Mittel nur wenigen Gramm. Darüber hinaus kommt es zu einer erhöhten Häufigkeit von zu geringem Geburtsgewicht (< 2500 g). Eine mögliche Beeinflussung des mütterlichen Organismus durch die Schadstoffbelastung wird durch ein erhöhtes Risiko für Schwangerschaftsbluthochdruck und Präeklampsie verdeutlicht. Der Einfluss einer intrauterinen Exposition auf die frühkindliche Lungenfunktion und die Entstehung allergischer Erkrankungen ist derzeit nicht eindeutig, für diese Endpunkte fällt auch die Differenzierung zwischen intrauterinen und postnatalen Effekten in epidemiologischen Studien schwer.

Abstract

The third part of the DGP statement introduces the current body of knowledge on less studied health outcomes associated with exposure to ambient air pollution: the negative impact on metabolism leading to impaired glucose tolerance and diabetes as well as contribution to the development of neurodegenerative disorders and delayed cognitive function in children. Furthermore, prenatal exposure and adverse effects on mother and child are addressed. Finally, the currently discussed biological mechanisms underlying various health effects associated with exposure to air pollution are described.

Differing, but often complementary biological mechanisms create the basis for the diverse health outcomes caused by air pollution. Oxidative stress and a subclinical inflammatory response in the lungs and on a systemic level (“low-grade systemic inflammation”) are considered to be key mechanisms. They promote secondary alterations in the body, such as vascular or metabolic processes, and may also result in the currently studied epigenetic phenomena or neuroinflammation. In this context, the health significance of soluble particulate matter and the role of ultrafine particles translocated across biological membranes into blood vessel and transported via the circulation to secondary target organs, such as liver, brain or the fetus, are intensively discussed.

Diabetes is one of the leading chronic diseases worldwide, with a prevalence of almost 14 % in Germany. Although lifestyle factors are the main causes, current evidence suggests that long-term exposure to air pollution may additionally increase the risk for type 2 diabetes. Supporting evidence for a causal role of air pollution is provided by studies addressing the regulation of the blood glucose levels in metabolically healthy participants, insulin sensitivity, or pregnancy-related diabetes. Experimental studies provide further support for plausible biological mechanisms. However, prospective studies are needed to gain more evidence, taking multiple lifestyle and environmental factors, such as green space and noise, and an improved individual exposure assessment into account.

The aging population has an increased risk of neurodegenerative diseases. First studies point towards a contribution of chronic exposure to air pollution, specifically by particulate matter. Several studies report its association with decreased neurocognitive capacity or an increased prevalence of dementia or Alzheimer’s disease in adults. However, the studies are inhomogeneous regarding design, exposure and outcome, leading to inconsistent results. With respect to the influence on neurocognitive development of children, first studies suggest an association between the level of air pollution, e. g. at school, and delayed cognitive development.

Even though the evidence for the different biological endpoints during pregnancy is still heterogeneous, the studies generally point towards an adverse impact of air pollution on the maternal and fetal organisms. The strongest evidence exists for low birth weight, with small effect sizes of only some grams, and for a higher incidence of reduced birth weight (< 2500 g). An increased risk for gestational hypertension and preeclampsia underscores the possible impact of exposure to air pollution on the maternal organism. However, the current body of evidence does not yet allow a final conclusion on the influence of intrauterine exposure to air pollution regarding early childhood lung function and development of allergies, particularly in light of the fact that it is hard to distinguish in epidemiological studies between the effects of pre- and postnatal exposure.

 
  • Literaturverzeichnis

  • 1 Schulz H, Karrasch S, Bölke G. et al. Atmen: Luftschadstoffe und Gesundheit. Berlin: Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e. V.; 2018 https://pneumologie.de/fileadmin/user_upload/DGP_Luftschadstoffe_Positionspapier_20181127.pdf
  • 2 Schulz H, Karrasch S, Bölke G. et al. Atmen: Luftschadstoffe und Gesundheit – Teil I. Pneumologie 2019; 73: 288-305
  • 3 Schulz H, Karrasch S, Bölke G. et al. Atmen: Luftschadstoffe und Gesundheit – Teil II. Pneumologie 2019; 73: 347-373
  • 4 Internatioanl Diabetes Federation. IDF Diabetes Atlas, 8th edn. 2017 https://www.idf.org/e-library/epidemiology-research/diabetes-atlas.html
  • 5 Zanobetti A, Schwartz J. Cardiovascular damage by airborne particles: are diabetics more susceptible?. Epidemiology (Cambridge, Mass) 2002; 13: 588-592
  • 6 Rao X, Patel P, Puett R. et al. Air pollution as a risk factor for type 2 diabetes. Toxicol Sci 2015; 143: 231-241
  • 7 Butalia S, Kaplan GG, Khokhar B. et al. Environmental Risk Factors and Type 1 Diabetes: Past, Present, and Future. Can J Diabetes 2016; 40: 586-593
  • 8 Munzel T, Sorensen M, Gori T. et al. Environmental stressors and cardio-metabolic disease: part I – epidemiologic evidence supporting a role for noise and air pollution and effects of mitigation strategies. Eur Heart J 2017; 38: 550-556
  • 9 Franklin BA, Brook R, Arden Pope C. et al. Air pollution and cardiovascular disease. Curr Probl Cardiol 2015; 40: 207-238
  • 10 Sade MY, Kloog I, Liberty IF. et al. Air Pollution and Serum Glucose Levels: A Population-Based Study. Medicine 2015; 94: e1093
  • 11 Peng C, Bind MC, Colicino E. et al. Particulate Air Pollution and Fasting Blood Glucose in Nondiabetic Individuals: Associations and Epigenetic Mediation in the Normative Aging Study, 2000 – 2011. Environ Health Perspect 2016; 124: 1715-1721
  • 12 Lucht SA, Hennig F, Matthiessen C. et al. Air Pollution and Glucose Metabolism: An Analysis in Non-Diabetic Participants of the Heinz Nixdorf Recall Study. Environ Health Perspect 2018; 126: 047001
  • 13 Cai Y, Hansell AL, Blangiardo M. et al. Long-term exposure to road traffic noise, ambient air pollution, and cardiovascular risk factors in the HUNT and lifelines cohorts. Eur Heart J 2017; 38: 2290-2296
  • 14 Wolf K, Popp A, Schneider A. et al. Association Between Long-term Exposure to Air Pollution and Biomarkers Related to Insulin Resistance, Subclinical Inflammation, and Adipokines. Diabetes 2016; 65: 3314-3326
  • 15 Wolf K, Popp A, Schneider A. et al. Erratum. Association Between Long-term Exposure to Air Pollution and Biomarkers Related to Insulin Resistance, Subclinical Inflammation, and Adipokines. Diabetes 2016; 65: 3314-3326 Diabetes 2017; 66: 2725
  • 16 Liu C, Yang C, Zhao Y. et al. Associations between long-term exposure to ambient particulate air pollution and type 2 diabetes prevalence, blood glucose and glycosylated hemoglobin levels in China. Environ Int 2016; 92-93: 416-421
  • 17 Honda T, Pun VC, Manjourides J. et al. Associations between long-term exposure to air pollution, glycosylated hemoglobin and diabetes. Int J Hyg Environ Health 2017; 220: 1124-1132
  • 18 Lanzinger S, Rosenbauer J, Sugiri D. et al. Impact of long-term air pollution exposure on metabolic control in children and adolescents with type 1 diabetes: results from the DPV registry. Diabetologia 2018; 61: 1354-1361
  • 19 Tamayo T, Rathmann W, Stahl-Pehe A. et al. No adverse effect of outdoor air pollution on HbA1c in children and young adults with type 1 diabetes. Int J Hyg Environ Health 2016; 219: 349-355
  • 20 Di Ciaula A. Type I diabetes in paediatric age in Apulia (Italy): Incidence and associations with outdoor air pollutants. Diabetes Res Clin Pract 2016; 111: 36-43
  • 21 Michalska M, Bartoszewicz M, Waz P. et al. PM10 concentration and microbiological assessment of air in relation to the number of acute cases of type 1 diabetes mellitus in the Lubelskie Voivodeship. Preliminary report. Pediatr Endocrinol Diabetes Metab 2017; 23: 70-76
  • 22 Beyerlein A, Krasmann M, Thiering E. et al. Ambient air pollution and early manifestation of type 1 diabetes. Epidemiology (Cambridge, Mass) 2015; 26: e31-e32
  • 23 Hathout EH, Beeson WL, Nahab F. et al. Role of exposure to air pollutants in the development of type 1 diabetes before and after 5 yr of age. Pediatr Diabetes 2002; 3: 184-188
  • 24 Eze IC, Hemkens LG, Bucher HC. et al. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environ Health Perspect 2015; 123: 381-389
  • 25 Thiering E, Heinrich J. Epidemiology of air pollution and diabetes. Trends Endocrinol Metab 2015; 26: 384-394
  • 26 Dendup T, Feng X, Clingan S. et al. Environmental Risk Factors for Developing Type 2 Diabetes Mellitus: A Systematic Review. Int J Environ Res Public Health 2018; 15 DOI: 10.3390/ijerph15010078.
  • 27 Bai L, Chen H, Hatzopoulou M. et al. Exposure to Ambient Ultrafine Particles and Nitrogen Dioxide and Incident Hypertension and Diabetes. Epidemiology (Cambridge, Mass) 2018; 29: 323-332
  • 28 Renzi M, Cerza F, Gariazzo C. et al. Air pollution and occurrence of type 2 diabetes in a large cohort study. Environ Int 2018; 112: 68-76
  • 29 Jerrett M, Brook R, White LF. et al. Ambient ozone and incident diabetes: A prospective analysis in a large cohort of African American women. Environ Int 2017; 102: 42-47
  • 30 Eze IC, Foraster M, Schaffner E. et al. Long-term exposure to transportation noise and air pollution in relation to incident diabetes in the SAPALDIA study. Int J Epidemiol 2017; 46: 1115-1125
  • 31 Orioli R, Cremona G, Ciancarella L. et al. Association between PM10, PM2.5, NO2, O3 and self-reported diabetes in Italy: A cross-sectional, ecological study. PloS one 2018; 13: e0191112
  • 32 Eze IC, Schaffner E, Fischer E. et al. Long-term air pollution exposure and diabetes in a population-based Swiss cohort. Environ Int 2014; 70: 95-105
  • 33 Strak M, Janssen N, Beelen R. et al. Long-term exposure to particulate matter, NO2 and the oxidative potential of particulates and diabetes prevalence in a large national health survey. Environ Int 2017; 108: 228-236
  • 34 Li Y, Lane KJ, Corlin L. et al. Association of Long-Term Near-Highway Exposure to Ultrafine Particles with Cardiovascular Diseases, Diabetes and Hypertension. Int J Environ Res Public Health 2017; 14 DOI: 10.3390/ijerph14050461.
  • 35 O’Donovan G, Chudasama Y, Grocock S. et al. The association between air pollution and type 2 diabetes in a large cross-sectional study in Leicester: The CHAMPIONS Study. Environ Int 2017; 104: 41-47
  • 36 Brook RD, Xu X, Bard RL. et al. Reduced metabolic insulin sensitivity following sub-acute exposures to low levels of ambient fine particulate matter air pollution. Sci Total Environ 2013; 448: 66-71
  • 37 Thiering E, Cyrys J, Kratzsch J. et al. Long-term exposure to traffic-related air pollution and insulin resistance in children: results from the GINIplus and LISAplus birth cohorts. Diabetologia 2013; 56: 1696-1704
  • 38 Toledo-Corral CM, Alderete TL, Habre R. et al. Effects of air pollution exposure on glucose metabolism in Los Angeles minority children. Pediatr Obes 2018; 13: 54-62
  • 39 Kim JH, Hong YC. GSTM1, GSTT1, and GSTP1 polymorphisms and associations between air pollutants and markers of insulin resistance in elderly Koreans. Environ Health Perspect 2012; 120: 1378-1384
  • 40 Chen Z, Salam MT, Toledo-Corral C. et al. Ambient Air Pollutants Have Adverse Effects on Insulin and Glucose Homeostasis in Mexican Americans. Diabetes Care 2016; 39: 547-554
  • 41 Brook RD, Sun Z, Brook JR. et al. Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance: The Air Pollution and Cardiometabolic Disease Study. Hypertension (Dallas, Tex: 1979) 2016; 67: 77-85
  • 42 Fleisch AF, Gold DR, Rifas-Shiman SL. et al. Air pollution exposure and abnormal glucose tolerance during pregnancy: the project Viva cohort. Environ Health Perspect 2014; 122: 378-383
  • 43 Fleisch AF, Kloog I, Luttmann-Gibson H. et al. Air pollution exposure and gestational diabetes mellitus among pregnant women in Massachusetts: a cohort study. Environ Health 2016; 15: 40
  • 44 Hu H, Ha S, Henderson BH. et al. Association of Atmospheric Particulate Matter and Ozone with Gestational Diabetes Mellitus. Environ Health Perspect 2015; 123: 853-859
  • 45 Lu MC, Wang P, Cheng TJ. et al. Association of temporal distribution of fine particulate matter with glucose homeostasis during pregnancy in women of Chiayi City, Taiwan. Environ Res 2017; 152: 81-87
  • 46 Malmqvist E, Jakobsson K, Tinnerberg H. et al. Gestational diabetes and preeclampsia in association with air pollution at levels below current air quality guidelines. Environ Health Perspect 2013; 121: 488-493
  • 47 Robledo CA, Mendola P, Yeung E. et al. Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus. Environ Res 2015; 137: 316-322
  • 48 WHO. The World Health Oganisation Report 2001: Mental Health: New Understanding, New Hope. 2001 https://www.who.int/whr/2001/en/whr01_en.pdf?ua=1
  • 49 WHO. World Health Organization and Alzheimer’s Disease International. Dementia: a public health priority. 2012 https://apps.who.int/iris/bitstream/handle/10665/75263/9789241564458_eng.pdf;jsessionid=F16182A9EF1FF5F7C9CE614220AC3836?sequence=1
  • 50 Bruvik FK, Ulstein ID, Ranhoff AH. et al. The quality of life of people with dementia and their family carers. Dement Geriatr Cogn Disord 2012; 34: 7-14
  • 51 Rothgang H, Iwansky S, Müller R. et al. Schwerpunktthema: Demenz und Pflege. In: BARMER GEK Pflegereport. 2010
  • 52 Wu YT, Fratiglioni L, Matthews FE. et al. Dementia in western Europe: epidemiological evidence and implications for policy making. Lancet Neurol 2016; 15: 116-124
  • 53 Norton S, Matthews FE, Barnes DE. et al. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 2014; 13: 788-794
  • 54 Heusinkveld HJ, Wahle T, Campbell A. et al. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology 2016; 56: 94-106
  • 55 Costa LG, Cole TB, Coburn J. et al. Neurotoxicants are in the air: convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. BioMed Research International 2014; 2014: 736385
  • 56 Block ML, Elder A, Auten RL. et al. The outdoor air pollution and brain health workshop. Neurotoxicology 2012; 33: 972-984
  • 57 Calderon-Garciduenas L, Reynoso-Robles R, Vargas-Martinez J. et al. Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer’s disease. Environ Res 2016; 146: 404-417
  • 58 WHO. Ambient air pollution: A global assessment of exposure and burden of disease. 2017 https://apps.who.int/iris/bitstream/handle/10665/250141/9789241511353-eng.pdf?sequence=1
  • 59 Calderon-Garciduenas L, Azzarelli B, Acuna H. et al. Air pollution and brain damage. Toxicol Pathol 2002; 30: 373-389
  • 60 Calderon-Garciduenas L, Maronpot RR, Torres-Jardon R. et al. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxicol Pathol 2003; 31: 524-538
  • 61 Calderon-Garciduenas L, Mora-Tiscareno A, Melo-Sanchez G. et al. A Critical Proton MR Spectroscopy Marker of Alzheimers Disease Early Neurodegenerative Change: Low Hippocampal NAA/Cr Ratio Impacts APOE ε4 Mexico City Children and Their Parents. JAD 2015; 48: 1065-1075
  • 62 Maher BA, Ahmed IA, Karloukovski V. et al. Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci U S A 2016; 113: 10797-10801
  • 63 Calderon-Garciduenas L, Mora-Tiscareno A, Styner M. et al. White matter hyperintensities, systemic inflammation, brain growth, and cognitive functions in children exposed to air pollution. JAD 2012; 31: 183-191
  • 64 Allen JL, Oberdorster G, Morris-Schaffer K. et al. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 2017; 59: 140-154
  • 65 Hoffmann B, Weinmayr G, Hennig F. et al. Air quality, stroke, and coronary events: results of the Heinz Nixdorf Recall Study from the Ruhr Region. Dtsch Arztebl Int 2015; 112: 195-201
  • 66 Fuks KB, Weinmayr G, Basagana X. et al. Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). Eur Heart J 2017; 38: 983-990
  • 67 Sunyer J, Esnaola M, Alvarez-Pedrerol M. et al. Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. PLoS Med 2015; 12: e1001792
  • 68 Gatto NM, Henderson VW, Hodis HN. et al. Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles. Neurotoxicology 2014; 40: 1-7
  • 69 Ranft U, Schikowski T, Sugiri D. et al. Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environ Res 2009; 109: 1004-1011
  • 70 Power MC, Weisskopf MG, Alexeeff SE. et al. Traffic-related air pollution and cognitive function in a cohort of older men. Environ Health Perspect 2011; 119: 682-687
  • 71 Wellenius GA, Boyle LD, Coull BA. et al. Residential proximity to nearest major roadway and cognitive function in community-dwelling seniors: results from the MOBILIZE Boston Study. J Am Geriatr Soc 2012; 60: 2075-2080
  • 72 Tzivian L, Dlugaj M, Winkler A. et al. Long-Term Air Pollution and Traffic Noise Exposures and Mild Cognitive Impairment in Older Adults: A Cross-Sectional Analysis of the Heinz Nixdorf Recall Study. Environ Health Perspect 2016; 124: 1361-1368
  • 73 Clifford A, Lang L, Chen R. et al. Exposure to air pollution and cognitive functioning across the life course – A systematic literature review. Environ Res 2016; 147: 383-398
  • 74 Chen CY, Hung HJ, Chang KH. et al. Long-term exposure to air pollution and the incidence of Parkinson’s disease: A nested case-control study. PloS one 2017; 12: e0182834
  • 75 Chen H, Kwong JC, Copes R. et al. Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study. Environ Int 2017; 108: 271-277
  • 76 Kioumourtzoglou MA, Schwartz JD, Weisskopf MG. et al. Long-term PM2.5 Exposure and Neurological Hospital Admissions in the Northeastern United States. Environ Health Perspect 2016; 124: 23-29
  • 77 Oudin A, Forsberg B, Adolfsson AN. et al. Traffic-Related Air Pollution and Dementia Incidence in Northern Sweden: A Longitudinal Study. Environ Health Perspect 2016; 124: 306-312
  • 78 Wu YC, Lin YC, Yu HL. et al. Association between air pollutants and dementia risk in the elderly. Alzheimers Dement (Amst) 2015; 1: 220-228
  • 79 Chang KH, Chang MY, Muo CH. et al. Increased risk of dementia in patients exposed to nitrogen dioxide and carbon monoxide: a population-based retrospective cohort study. PloS one 2014; 9: e103078
  • 80 Jung CR, Lin YT, Hwang BF. Ozone, particulate matter, and newly diagnosed Alzheimer’s disease: a population-based cohort study in Taiwan. JAD 2015; 44: 573-584
  • 81 Pedersen M, Stayner L, Slama R. et al. Ambient air pollution and pregnancy-induced hypertensive disorders: a systematic review and meta-analysis. Hypertension (Dallas, Tex: 1979) 2014; 64: 494-500
  • 82 Pedersen M, Giorgis-Allemand L, Bernard C. et al. Ambient air pollution and low birthweight: a European cohort study (ESCAPE). Lancet Respir Med 2013; 1: 695-704
  • 83 Giorgini P, Di Giosia P, Grassi D. et al. Air pollution exposure and blood pressure: an updated review of the literature. Curr Pharm Des 2016; 22: 28-51
  • 84 Jedrychowski WA, Perera FP, Maugeri U. et al. Prohypertensive effect of gestational personal exposure to fine particulate matter. Prospective cohort study in non-smoking and non-obese pregnant women. Cardiovasc Toxicol 2012; 12: 216-225
  • 85 Hampel R, Lepeule J, Schneider A. et al. Short-term impact of ambient air pollution and air temperature on blood pressure among pregnant women. Epidemiology (Cambridge, Mass) 2011; 22: 671-679
  • 86 Lee PC, Talbott EO, Roberts JM. et al. Ambient air pollution exposure and blood pressure changes during pregnancy. Environ Res 2012; 117: 46-53
  • 87 van den Hooven EH, de Kluizenaar Y, Pierik FH. et al. Air pollution, blood pressure, and the risk of hypertensive complications during pregnancy: the generation R study. Hypertension (Dallas, Tex: 1979) 2011; 57: 406-412
  • 88 van den Hooven EH, Pierik FH, de Kluizenaar Y. et al. Air pollution exposure and markers of placental growth and function: the generation R study. Environ Health Perspect 2012; 120: 1753-1759
  • 89 Wesselink AK, Carwile JL, Fabian MP. et al. Residential Proximity to Roadways and Ischemic Placental Disease in a Cape Cod Family Health Study. Int J Environ Res Public Health 2017; 14 DOI: 10.3390/ijerph14070682.
  • 90 Yorifuji T, Naruse H, Kashima S. et al. Residential proximity to major roads and obstetrical complications. Sci Total Environ 2015; 508: 188-192
  • 91 van den Hooven EH, Pierik FH, de Kluizenaar Y. et al. Air pollution exposure during pregnancy, ultrasound measures of fetal growth, and adverse birth outcomes: a prospective cohort study. Environ Health Perspect 2012; 120: 150-156
  • 92 Smarr MM, Vadillo-Ortega F, Castillo-Castrejon M. et al. The use of ultrasound measurements in environmental epidemiological studies of air pollution and fetal growth. Curr Opin Pediatr 2013; 25: 240-246
  • 93 Ritz B, Qiu J, Lee PC. et al. Prenatal air pollution exposure and ultrasound measures of fetal growth in Los Angeles, California. Environ Res 2014; 130: 7-13
  • 94 Hansen C, Neller A, Williams G. et al. Low levels of ambient air pollution during pregnancy and fetal growth among term neonates in Brisbane, Australia. Environ Res 2007; 103: 383-389
  • 95 Hansen CA, Barnett AG, Pritchard G. The effect of ambient air pollution during early pregnancy on fetal ultrasonic measurements during mid-pregnancy. Environ Health Perspect 2008; 116: 362-369
  • 96 Vieira SE. The health burden of pollution: the impact of prenatal exposure to air pollutants. Int J Chron Obstruct Pulmon Dis 2015; 10: 1111-1121
  • 97 Stapleton PA. Gestational nanomaterial exposures: microvascular implications during pregnancy, fetal development and adulthood. Journal Physiol 2016; 594: 2161-2173
  • 98 Hougaard KS, Campagnolo L, Chavatte-Palmer P. et al. A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol (Elmsford, NY) 2015; 56: 118-140
  • 99 Semmler-Behnke M, Lipka J, Wenk A. et al. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Part Fibre Toxicol 2014; 11: 33
  • 100 Laurent O, Hu J, Li L. et al. Low birth weight and air pollution in California: Which sources and components drive the risk?. Environ Int 2016; 92-93: 471-477
  • 101 Stieb DM, Chen L, Eshoul M. et al. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ Res 2012; 117: 100-111
  • 102 Zheng T, Zhang J, Sommer K. et al. Effects of Environmental Exposures on Fetal and Childhood Growth Trajectories. Ann Glob Health 2016; 82: 41-99
  • 103 Rich DQ, Liu K, Zhang J. et al. Differences in Birth Weight Associated with the 2008 Beijing Olympics Air Pollution Reduction: Results from a Natural Experiment. Environ Health Perspect 2015; 123: 880-887
  • 104 Parker JD, Mendola P, Woodruff TJ. Preterm birth after the Utah Valley Steel Mill closure: a natural experiment. Epidemiology (Cambridge, Mass) 2008; 19: 820-823
  • 105 Siddika N, Balogun HA, Amegah AK. et al. Prenatal ambient air pollution exposure and the risk of stillbirth: systematic review and meta-analysis of the empirical evidence. Occup Environ Med 2016; 73: 573-581
  • 106 Mendola P, Ha S, Pollack AZ. et al. Chronic and Acute Ozone Exposure in the Week Prior to Delivery Is Associated with the Risk of Stillbirth. Int J Environ Res Public Health 2017; 14 DOI: 10.3390/ijerph14070731.
  • 107 Agency USEP. Table of Historical Ozone National Ambient Air Quality Standards (NAAQS). 2017 https://wwwepagov/ozone-pollution/table-historical-ozone-national-ambient-air-quality-standards-naaqs
  • 108 Pedersen M. Is it still important to study if ambient air pollution triggers stillbirth?. Occup Environ Med 2016; 73: 571-572
  • 109 Veras MM, de Oliveira Alves N, Fajersztajn L. et al. Before the first breath: prenatal exposures to air pollution and lung development. Cell Tissue Res 2017; 367: 445-455
  • 110 Korten I, Ramsey K, Latzin P. Air pollution during pregnancy and lung development in the child. Paediatr Respir Rev 2017; 21: 38-46
  • 111 Latzin P, Roosli M, Huss A. et al. Air pollution during pregnancy and lung function in newborns: a birth cohort study. Eur Respir J 2009; 33: 594-603
  • 112 Jedrychowski WA, Majewska R, Spengler JD. et al. Prenatal exposure to fine particles and polycyclic aromatic hydrocarbons and birth outcomes: a two-pollutant approach. Int Arch Occup Environ Health 2017; 90: 255-264
  • 113 Jedrychowski WA, Maugeri U, Spengler J. et al. Dose-dependent relationship between prenatal exposure to fine particulates and exhaled carbon monoxide in non-asthmatic children. A population-based birth cohort study. Int J Occup Med Environ Health 2013; 26: 73-82
  • 114 Jedrychowski WA, Perera FP, Maugeri U. et al. Long term effects of prenatal and postnatal airborne PAH exposures on ventilatory lung function of non-asthmatic preadolescent children. Prospective birth cohort study in Krakow. Sci Total Environ 2015; 502: 502-509
  • 115 Jedrychowski WA, Perera FP, Maugeri U. et al. Effect of prenatal exposure to fine particulate matter on ventilatory lung function of preschool children of non-smoking mothers. Paediatr Perinat Epidemiol 2010; 24: 492-501
  • 116 Jedrychowski WA, Perera FP, Maugeri U. et al. Intrauterine exposure to polycyclic aromatic hydrocarbons, fine particulate matter and early wheeze. Prospective birth cohort study in 4-year olds. Pediatr Allergy Immunol 2010; 21: e723-732
  • 117 Jedrychowski WA, Perera FP, Spengler JD. et al. Intrauterine exposure to fine particulate matter as a risk factor for increased susceptibility to acute broncho-pulmonary infections in early childhood. Int J Hyg Environ Health 2013; 216: 395-401
  • 118 Jedrychowski WA, Perera FP, Majewska R. et al. Separate and joint effects of tranplacental and postnatal inhalatory exposure to polycyclic aromatic hydrocarbons: prospective birth cohort study on wheezing events. Pediatr Pulmonol 2014; 49: 162-172
  • 119 Mortimer K, Neugebauer R, Lurmann F. et al. Air pollution and pulmonary function in asthmatic children: effects of prenatal and lifetime exposures. Epidemiology (Cambridge, Mass) 2008; 19: 550-557 discussion 561-552
  • 120 Morales E, Garcia-Esteban R, de la Cruz OA. et al. Intrauterine and early postnatal exposure to outdoor air pollution and lung function at preschool age. Thorax 2015; 70: 64-73
  • 121 Deng Q, Lu C, Ou C. et al. Preconceptional, prenatal and postnatal exposure to outdoor and indoor environmental factors on allergic diseases/symptoms in preschool children. Chemosphere 2016; 152: 459-467
  • 122 Sbihi H, Tamburic L, Koehoorn M. et al. Perinatal air pollution exposure and development of asthma from birth to age 10 years. Eur Respir J 2016; 47: 1062-1071
  • 123 Esplugues A, Ballester F, Estarlich M. et al. Outdoor, but not indoor, nitrogen dioxide exposure is associated with persistent cough during the first year of life. Sci Total Environ 2011; 409: 4667-4673
  • 124 Liu W, Huang C, Hu Y. et al. Associations of gestational and early life exposures to ambient air pollution with childhood respiratory diseases in Shanghai, China: A retrospective cohort study. Environ Int 2016; 92-93: 284-293
  • 125 Hehua Z, Qing C, Shanyan G. et al. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. Environ Res 2017; 159: 519-530
  • 126 Heinrich J, Thiering E. Ambient air pollution: How much of estimated “prenatal exposure” is truly attributable to pre-birth exposures?. Environ Res 2018; 165: 442-443
  • 127 Brook RD, Rajagopalan S, Pope CA. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010; 121: 2331-2378
  • 128 Jerrett M, Burnett RT, Pope CA. et al. Long-term ozone exposure and mortality. N Engl J of Med 2009; 360: 1085-1095
  • 129 Schindler C, Kunzli N, Bongard JP. et al. Short-term variation in air pollution and in average lung function among never-smokers. The Swiss Study on Air Pollution and Lung Diseases in Adults (SAPALDIA). Am J Respir Crit Care Med 2001; 163: 356-361
  • 130 Kreyling W, Semmler-Behnke M, Seitz J. et al. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 2009; 21 (Suppl. 01) 55-60
  • 131 Schultz ES, Litonjua AA, Melen E. Effects of Long-Term Exposure to Traffic-Related Air Pollution on Lung Function in Children. Curr Allergy Asthma Rep 2017; 17: 41
  • 132 Yang L, Hou XY, Wei Y. et al. Biomarkers of the health outcomes associated with ambient particulate matter exposure. Sci Total Environ 2017; 579: 1446-1459
  • 133 Cavalcante de Sá M, Nakagawa NK, Saldiva de Andre CD. et al. Aerobic exercise in polluted urban environments: effects on airway defense mechanisms in young healthy amateur runners. J Breath Res 2016; 10: 046018
  • 134 Brant TC, Yoshida CT, Carvalho Tde S. et al. Mucociliary clearance, airway inflammation and nasal symptoms in urban motorcyclists. Clinics (Sao Paulo, Brazil) 2014; 69: 867-870
  • 135 Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet 2014; 383: 1581-1592
  • 136 Robinson RK, Birrell MA, Adcock JJ. et al. Mechanistic link between diesel exhaust particles and respiratory reflexes. J Allergy Clin Immunol 2018; 141: 1074-1084 e1079
  • 137 Alexis NE, Carlsten C. Interplay of air pollution and asthma immunopathogenesis: a focused review of diesel exhaust and ozone. Int Immunopharmacol 2014; 23: 347-355
  • 138 Sedghy F, Varasteh A-R, Sankian M. et al. Interaction Between Air Pollutants and Pollen Grains: The Role on the Rising Trend in Allergy. Rep Biochem Mol Biol 2018; 6: 219-224
  • 139 Johannson KA, Balmes JR, Collard HR. Air pollution exposure: a novel environmental risk factor for interstitial lung disease?. Chest 2015; 147: 1161-1167
  • 140 Øvrevik J, Refsnes M, Lag M. et al. Triggering Mechanisms and Inflammatory Effects of Combustion Exhaust Particles with Implication for Carcinogenesis. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3: 55-62
  • 141 Saber AT, Jacobsen NR, Jackson P. et al. Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014; 6: 517-531
  • 142 Ganguly K, Ettehadieh D, Upadhyay S. et al. Early pulmonary response is critical for extra-pulmonary carbon nanoparticle mediated effects: comparison of inhalation versus intra-arterial infusion exposures in mice. Part Fibre Toxicol 2017; 14: 19
  • 143 Mills NL, Amin N, Robinson SD. et al. Do inhaled carbon nanoparticles translocate directly into the circulation in humans?. Am J Respir Crit Care Med 2006; 173: 426-431
  • 144 Li W, Dorans KS, Wilker EH. et al. Short-Term Exposure to Ambient Air Pollution and Biomarkers of Systemic Inflammation: The Framingham Heart Study. Arterioscler Thromb Vasc Biol 2017; 37: 1793-1800
  • 145 Pilz V, Wolf K, Breitner S. et al. C-reactive protein (CRP) and long-term air pollution with a focus on ultrafine particles. Int J Hyg Environ Health 2018; 221: 8
  • 146 Ruckerl R, Hampel R, Breitner S. et al. Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environ Int 2014; 70: 32-49
  • 147 Ruckerl R, Schneider A, Breitner S. et al. Health effects of particulate air pollution: A review of epidemiological evidence. Inhal Toxicol 2011; 23: 555-592
  • 148 Schneider A, Neas LM, Graff DW. et al. Association of cardiac and vascular changes with ambient PM2.5 in diabetic individuals. Particle and fibre toxicology 2010; 7: 14
  • 149 Dubowsky SD, Suh H, Schwartz J. et al. Diabetes, obesity, and hypertension may enhance associations between air pollution and markers of systemic inflammation. Environ Health Perspect 2006; 114: 992-998
  • 150 Ruckerl R, Phipps RP, Schneider A. et al. Ultrafine particles and platelet activation in patients with coronary heart disease--results from a prospective panel study. Part Fibre Toxicol 2007; 4: 1
  • 151 Schneider A, Neas L, Herbst MC. et al. Endothelial dysfunction: associations with exposure to ambient fine particles in diabetic individuals. Environ Health Perspect 2008; 116: 1666
  • 152 Zareba W, Nomura A, Couderc JP. Cardiovascular effects of air pollution: what to measure in ECG?. Environ Health Perspect 2001; 109 (Suppl. 04) 533-538
  • 153 Lee KK, Miller MR, Shah ASV. Air Pollution and Stroke. J Stroke 2018; 20: 2-11
  • 154 Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996; 93: 1043-1065
  • 155 Baja ES, Schwartz JD, Wellenius GA. et al. Traffic-related air pollution and QT interval: modification by diabetes, obesity, and oxidative stress gene polymorphisms in the normative aging study. Environ Health Perspect 2010; 118: 840-846
  • 156 Henneberger A, Zareba W, Ibald-Mulli A. et al. Repolarization changes induced by air pollution in ischemic heart disease patients. Environ Health Perspect 2005; 113: 440-446
  • 157 Rich DQ, Mittleman MA, Link MS. et al. Increased risk of paroxysmal atrial fibrillation episodes associated with acute increases in ambient air pollution. Environ Health Perspect 2006; 114: 120
  • 158 Anderson HR, Armstrong B, Hajat S. et al. Air pollution and activation of implantable cardioverter defibrillators in London. Epidemiology (Cambridge, Mass) 2010; 21: 405-413
  • 159 Berger A, Zareba W, Schneider A. et al. Runs of ventricular and supraventricular tachycardia triggered by air pollution in patients with coronary heart disease. J Occup Environ Med 2006; 48: 1149-1158
  • 160 Link MS, Dockery DW. Air pollution and the triggering of cardiac arrhythmias. Curr Opin Cardiol 2010; 25: 16
  • 161 Link MS, Luttmann-Gibson H, Schwartz J. et al. Acute exposure to air pollution triggers atrial fibrillation. J Am Coll Cardiol 2013; 62: 816-825
  • 162 Peters A, Liu E, Verrier RL. et al. Air pollution and incidence of cardiac arrhythmia. Epidemiology (Cambridge, Mass) 2000; 11: 11-17
  • 163 Zanobetti A, Coull BA, Gryparis A. et al. Associations between arrhythmia episodes and temporally and spatially resolved black carbon and particulate matter in elderly patients. Occup Environ Med 2014; 71: 201-207
  • 164 Finch J, Conklin DJ. Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System. Cardiovasc Toxicol 2016; 16: 260-275
  • 165 Kelly FJ, Fussell JC. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic Biol Med 2017; 110: 345-367
  • 166 Hoffmann B, Moebus S, Kröger K. et al. Residential exposure to urban air pollution, ankle-brachial index, and peripheral arterial disease. Epidemiology (Cambridge, Mass) 2009; 20: 280-288
  • 167 Rivera M, Basagaña X, Aguilera I. et al. Association between long-term exposure to traffic-related air pollution and subclinical atherosclerosis: the REGICOR study. Environ Health Perspect 2013; 121: 223
  • 168 Zhang S, Wolf K, Breitner S. et al. Long-term effects of air pollution on ankle-brachial index. Environ Int 2018; 118: 17-25
  • 169 Künzli N, Jerrett M, Mack WJ. et al. Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 2005; 113: 201
  • 170 Perez L, Wolf K, Hennig F. et al. Air pollution and atherosclerosis: a cross-sectional analysis of four European cohort studies in the ESCAPE study. Environ Health Perspect 2015; 123: 597
  • 171 Provost EB, Madhloum N, Panis LI. et al. Carotid intima-media thickness, a marker of subclinical atherosclerosis, and particulate air pollution exposure: the meta-analytical evidence. PloS One 2015; 10: e0127014
  • 172 Adar SD, Sheppard L, Vedal S. et al. Fine particulate air pollution and the progression of carotid intima-medial thickness: a prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med 2013; 10: e1001430
  • 173 Kaufman JD, Adar SD, Barr RG. et al. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study. Lancet 2016; 388: 696-704
  • 174 Newman JD, Thurston GD, Cromar K. et al. Particulate air pollution and carotid artery stenosis. J Am Coll Cardiol 2015; 65: 1150-1151
  • 175 Langrish JP, Bosson J, Unosson J. et al. Cardiovascular effects of particulate air pollution exposure: time course and underlying mechanisms. J Intern Med 2012; 272: 224-239
  • 176 Münzel T, Sørensen M, Gori T. et al. Environmental stressors and cardio-metabolic disease: part I-epidemiologic evidence supporting a role for noise and air pollution and effects of mitigation strategies. Eur Heart J 2017; 38: 550-556
  • 177 Jayaraj RL, Rodriguez EA, Wang Y. et al. Outdoor Ambient Air Pollution and Neurodegenerative Diseases: the Neuroinflammation Hypothesis. Curr Environ Health Rep 2017; 4: 166-179
  • 178 Babadjouni RM, Hodis DM, Radwanski R. et al. Clinical effects of air pollution on the central nervous system; a review. J Clin Neurosci 2017; 43: 16-24
  • 179 Shah AS, Langrish JP, Nair H. et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet (London, England) 2013; 382: 1039-1048
  • 180 Atkinson RW, Carey IM, Kent AJ. et al. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology (Cambridge, Mass) 2013; 24: 44-53
  • 181 Mustafic H, Jabre P, Caussin C. et al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA 2012; 307: 713-721