Z Gastroenterol 2019; 57(08): 983-996
DOI: 10.1055/a-0958-2788
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Medikamentöse Langzeittherapien zur Prognoseverbesserung bei Leberzirrhose und zur Vermeidung von Komplikationen der portalen Hypertension

Long-term drug treatments to improve prognosis of patients with liver cirrhosis and to prevent complications due to portal hypertension
Axel Holstege
Medizinische Klinik 1, Lehrkrankenhaus der LMU München, Klinikum Landshut, Germany
› Author Affiliations
Further Information

Publication History

22 January 2019

07 June 2019

Publication Date:
09 August 2019 (online)

Zusammenfassung

Die portale Hypertension bei Patienten mit Leberzirrhose kann nicht nur durch interventionelle (TIPS: transjugulärer portosystemischer Stent-Shunt) oder operative Shuntanlagen, sondern auch medikamentös beeinflusst werden. Zahlreiche Studien beschäftigten sich mit der Frage, ob diese Substanzen bei dauerhafter Gabe zu einer Prognoseverbesserung bei Patienten mit Leberzirrhose führen können. Nicht selektive Betablocker (NSBB), Statine, Antibiotika, Enoxaparin und Albumin haben viele Angriffspunkte in der Pathogenese der portalen Hypertension oder bei Dekompensation der Leberzirrhose, sodass sie grundsätzlich als Kandidaten für eine Langzeittherapie infrage kommen. Während es für NSBB, Antibiotika und Albumin klare Indikationen in der Versorgung von Patienten mit dekompensierter Leberzirrhose gibt, ist dies weniger geklärt für den Einsatz von Statinen oder Antikoagulanzien. Neuere Untersuchungen ergaben widersprüchliche Ergebnisse, wenn der primäre Endpunkt einer Studie die Prognoseverbesserung oder die Vermeidung einer Dekompensation der Zirrhose durch eine dauerhafte medikamentöse Therapie war. Zum jetzigen Zeitpunkt ergibt sich aufgrund der aktuellen Studienlage keine Veranlassung, das bisherige, in Leitlinien abgesicherte Vorgehen im täglichen Alltag zu ändern. Diese Übersicht gibt einen Überblick zum Einsatz von NSBB, Antibiotika, Statinen, Antikoagulanzien und Albumin bei Komplikationen der portalen Hypertension insbesondere im Hinblick auf ihren dauerhaften Einsatz zur Verbesserung des Überlebens von Patienten mit Leberzirrhose.

Abstract

Portal hypertension in patients with liver cirrhosis can be improved, not only by surgical or interventional shunt placements, but also by drug-only treatment. Many recent studies addressed the question whether any of these substances can improve survival of patients with liver cirrhosis when administered continuously for months and years. Non-selective beta-blockers (NSBB), statins, antibiotics, enoxaparin and albumin have been shown to possess many beneficial effects in the pathophysiology of portal hypertension or on events leading to decompensation of liver cirrhosis. Accordingly, they represent candidate drugs for long-term treatment to improve patient survival. In contrast to NSBB, antibiotics and albumin, which have clearly defined indications in the treatment of complications related to portal hypertension, the role of statins and anticoagulants in the management of these patients remains to be further elucidated. Recent studies came to opposing results when a permanent treatment was tested to improve patient prognosis or to prevent liver decompensation. At present, there is no reason to change our everyday practice beyond established management proposals published in practice guidelines. This paper gives an overview of present and future indications for treatment with NSBB, antibiotics, statins, anticoagulants and albumin with special reference to studies aiming at improving prognosis of patients with liver cirrhosis.

 
  • Literatur

  • 1 DʼAmico G, Pasta L, Morabito A. et al. Competing risks and prognostic stages of cirrhosis: a 25‐year inception cohort study of 494 patients. Aliment Pharmacol Ther 2014; 39: 1180-1193
  • 2 Garcia-Tsao G, Abraldes JG, Berzigotti A. et al. Portal hypertensive bleeding in cirrhosis: Risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology 2017; 65: 310-335
  • 3 Farci P, Roskams T, Chessa L. et al. Long-term benefit of interferon alpha therapy of chronic hepatitis D: regression of advanced hepatic fibrosis. Gastroenterology 2004; 126: 1740-1749
  • 4 Czaja AJ, Carpenter HA. Decreased fibrosis during corticosteroid therapy of autoimmune hepatitis. J Hepatol 2004; 40: 646-652
  • 5 Hammel P, Couvelard A, OʼToole D. et al. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med 2001; 344: 418-423
  • 6 Everson GT. Management of cirrhosis due to chronic hepatitis C. J Hepatol 2005; 42 (Suppl. 01) S65-S74
  • 7 Tsochatzis EA, Bosch J, Burroughs AK. New therapeutic paradigm for patients with cirrhosis. Hepatology 2012; 56: 1983-1992
  • 8 Abraldes JG, Trebicka J, Chalasani N. et al. Prioritization of Therapeutic Targets and Trial Design in Cirrhotic Portal Hypertension. Hepatology 2018; DOI: 10.1002/hep.30314. [Epub ahead of print]
  • 9 Ripoll C, Groszmann R, Garcia-Tsao G. et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology 2007; 133: 481-488
  • 10 Villanueva C, Lopez-Balaguer JM, Aracil C. et al. Maintenance of hemodynamic response to treatment for portal hypertension and influence on complications of cirrhosis. J Hepatol 2004; 40: 757-765
  • 11 Holstege A. Ätiologie und Pathogenese der portalen Hypertension. In: Paquet KJ, Schölmerich J. (eds) Pfortaderhochdruck. Basel: Karger; 1994: 57-77
  • 12 Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology 2002; 35: 478-491
  • 13 Baiges A, Hernández-Gea V, Bosch J. Pharmacologic prevention of variceal bleeding and rebleeding. Hepatol Int 2018; 12 (Suppl. 01) 68-80
  • 14 Bañares R, Moitinho E, Piqueras B. et al. Carvedilol, a new nonselective beta-blocker with intrinsic anti- Alpha1-adrenergic activity, has a greater portal hypotensive effect than propranolol in patients with cirrhosis. Hepatology 1999; 30: 79-83
  • 15 Götz M, Anders M, Biecker E. et al. S2k-Leitlinie Gastrointestinale Blutung – Leitlinie der DGVS AWMF-Register Nr. 021–28. Z Gastroenterol 2017; 55: 883-936
  • 16 Lebrec D, Poynard T, Hillon P. et al. Propranolol for prevention of recurrent gastrointestinal bleeding in patients with cirrhosis. A controlled study. N Engl J Med 1981; 305: 1371-1374
  • 17 Gonzalez R, Zamora J, Gomez-Camarero J. et al. Meta-analysis: Combination endoscopic and drug therapy to prevent variceal rebleeding in cirrhosis. Ann Intern Med 2008; 149: 109-122
  • 18 Albillos A, Zamora J, Martínez J. Baveno Cooperation. et al. Stratifying risk in the prevention of recurrent variceal hemorrhage: Results of an individual patient meta-analysis. Hepatology 2017; 66: 1219-1231
  • 19 Groszmann RJ, Garcia-Tsao G, Bosch J. et al. Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis. N Engl J Med 2005; 353: 2254-2261
  • 20 Qi XS, Bao YX, Bai M. et al. Nonselective beta-blockers in cirrhotic patients with no or small varices: A meta-analysis. World J Gastroenterol 2015; 21: 3100-3108
  • 21 Mandorfer M, Peck-Radosavljevic M, Reiberger T. Prevention of progression from small to large varices: are we there yet? An updated meta-analysis. Gut 2017; 66: 1347-1349
  • 22 Bhardwaj A, Kedarisetty CK, Vashishtha C. et al. Carvedilol delays the progression of small oesophageal varices in patients with cirrhosis: a randomised placebo-controlled trial. Gut 2017; 66: 1838-1843
  • 23 Hernandez-Gea V, Aracil C, Colomo A. et al. Development of ascites in compensated cirrhosis with severe portal hypertension treated with beta-blockers. Am J Gastroenterol 2012; 107: 418-427
  • 24 Senzolo M, Cholongitas E, Burra P. et al. beta-Blockers protect against spontaneous bacterial peritonitis in cirrhotic patients: a meta-analysis. Liver Int 2009; 29: 1189-1193
  • 25 Mookerjee RP, Pavesi M, Thomsen KL. et al. Treatment with non-selective beta blockers is associated with reduced severity of systemic inflammation and improved survival of patients with acute-on-chronic liver failure. J Hepatol 2016; 64: 574-582
  • 26 Reiberger T, Ferlitsch A, Payer BA. et al. Non-selective betablocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis. J Hepatol 2013; 58: 911-921
  • 27 Brito-Azevedo A, Perez Rde M, Coelho HS. et al. Propranolol improves endothelial dysfunction in advanced cirrhosis: the “endothelial exhaustion” hypothesis. Gut 2016; 65: 1391-1392
  • 28 Sauerbruch T, Mengel M, Dollinger M. et al. Prevention of Rebleeding From Esophageal Varices in Patients With Cirrhosis Receiving Small-Diameter Stents Versus Hemodynamically Controlled Medical Therapy. Gastroenterology 2015; 149: 660-668.e1
  • 29 Schepke M, Kleber G, Nürnberg D. et al. Ligation versus propranolol for the primary prophylaxis of variceal bleeding in cirrhosis. Hepatology 2004; 40: 65-72
  • 30 Serste T, Melot C, Francoz C. et al. Deleterious effects of beta-blockers on survival in patients with cirrhosis and refractory ascites. Hepatology 2010; 52: 1017-1022
  • 31 Leithead JA, Rajoriya N, Tehami N. et al. Non-selective β-blockers are associated with improved survival in patients with ascites listed for liver transplantation. Gut 2015; 64: 1111-1119
  • 32 Mookerjee RP, Pavesi M, Thomsen KL. et al. Treatment with non-selective beta blockers is associated with reduced severity of systemic inflammation and improved survival of patients with acute-on-chronic liver failure. J Hepatol 2016; 64: 574-582
  • 33 Bossen L, Krag A, Vilstrup H. et al. Nonselective β-blockers do not affect mortality in cirrhosis patients with ascites: Post Hoc analysis of three randomized controlled trials with 1198 patients. Hepatology 2016; 63: 1968-1976
  • 34 Albillos A, Martínez J, Téllez L. Continued controversy over the safety of beta-blockers in decompensated cirrhosis. Hepatology 2016; 63: 1726-1729
  • 35 Krag A, Wiest R, Albillos A. et al. The window hypothesis: haemodynamic and non‐haemodynamic effects of β‐blockers improve survival of patients with cirrhosis during a window in the disease. Gut 2012; 61: 967-969
  • 36 Tapper EB, Parikh ND, Sengupta N. et al. A risk score to predict the development of hepatic encephalopathy in a population‐based cohort of patients with cirrhosis. Hepatology 2018; 68: 1498-1507
  • 37 Villanueva C, Aracil C, Colomo A. et al. Acute hemodynamic response to beta-blockers and prediction of long-term outcome in primary prophylaxis of variceal bleeding. Gastroenterology 2009; 137: 119-128
  • 38 Albillos A, Banares R, Gonzalez M. et al. Value of the hepatic venous pressure gradient to monitor drug therapy for portal hypertension: a meta-analysis. Am J Gastroenterol 2007; 102: 1116-1126
  • 39 Samarasena JB, Chang KJ. Endoscopic Ultrasound-Guided Portal Pressure Measurement and Interventions. Clin Endosc 2018; 51: 222-228
  • 40 Reiberger T, Mandorfer M. Beta adrenergic blockade and decompensated cirrhosis. J Hepatol 2017; 66: 849-859
  • 41 Karkmann K, Piecha F, Rünzi AC. et al. Management of compensated liver cirrhosis 2018 – Evidence based prophylactic measures. Z Gastroenterol 2018; 56: 55-69
  • 42 Villanueva C, Albillos A, Genescà J. et al. β blockers to prevent decompensation of cirrhosis in patients with clinically significant portal hypertension (PREDESCI): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2019; 393: 1597-1608
  • 43 Zafra C, Abraldes JG, Turnes J. et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology 2004; 126: 749-755
  • 44 Pose E, Trebicka J, Mookerjee RP. et al. Statins: Old drugs as new therapy for liver diseases?. J Hepatol 2019; 70: 194-202
  • 45 Schierwagen R, Uschner FE, Magdaleno F. et al. Rationale for the use of statins in liver disease. Am J Physiol Gastrointest Liver Physiol 2017; 312: G407-G412
  • 46 Abraldes JG, Albillos A, Bañares R. et al. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial. Gastroenterology 2009; 136: 1651-1658
  • 47 Kim RG, Loomba R, Prokop LJ. et al. Statin Use and Risk of Cirrhosis and Related Complications in Patients With Chronic Liver Diseases: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2017; 15: 1521-1530.e8
  • 48 Abraldes JG, Villanueva C, Aracil C. et al. Addition of Simvastatin to Standard Therapy for the Prevention of Variceal Rebleeding Does Not Reduce Rebleeding but Increases Survival in Patients With Cirrhosis. Gastroenterology 2016; 150: 1160-1170.e3
  • 49 Kamal S, Khan MA, Seth A. et al. Beneficial Effects of Statins on the Rates of Hepatic Fibrosis, Hepatic Decompensation, and Mortality in Chronic Liver Disease: A Systematic Review and Meta-Analysis. Am J Gastroenterol 2017; 112: 1495-1505
  • 50 Stokkeland K, Höijer J, Bottai M. et al. Statin Use Is Associated With Improved Outcomes of Patients With Primary Sclerosing Cholangitis. Clin Gastroenterol Hepatol 2018; DOI: S1542-3565(18)31245-X. . [EPub Ahead of Print]
  • 51 Kaplan DE, Serper MA, Mehta R. et al. Effects of Hypercholesterolemia and Statin Exposure on Survival in a Large National Cohort of Patients With Cirrhosis. Gastroenterology 2019; 156: 1693-1706.e12
  • 52 Björnsson E, Jacobsen EI, Kalaitzakis E. Hepatotoxicity associated with statins: reports of idiosyncratic liver injury post-marketing. J Hepatol 2012; 56: 374-380
  • 53 Charles EC, Olson KL, Sandhoff BG. et al. Evaluation of cases of severe statin‐related transaminitis within a large health maintenance organization. Am J Med 2005; 118: 618-624
  • 54 Albarmawi A, Czock D, Gauss A. et al. CYP3A activity in severe liver cirrhosis correlates with Child-Pugh and model for end-stage liver disease (MELD) scores. Br J Clin Pharmacol 2014; 77: 160-169
  • 55 Jiang F, Choi JY, Lee JH. et al. The influences of SLCO1B1 and ABCB1 genotypes on the pharmacokinetics of simvastatin, in relation to CYP3A4 inhibition. Pharmacogenomics 2017; 18: 459-469
  • 56 Price JC, Tien PC. Editorial: Statins and Liver Disease: Is it Time to Recommend Statins to Prevent Liver Disease Progression?. Am J Gastroenterol 2017; 112: 1506-1507
  • 57 Bernardi M, Moreau R, Angeli P. et al. Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis. J Hepatol 2015; 63: 1272-1284
  • 58 Safi W, Elnegouly M, Schellnegger R. et al. Infection and Predictors of Outcome of Cirrhotic Patients after Emergency Care Hospital Admission. Ann Hepatol 2018; 17: 948-958
  • 59 Righi E. Management of bacterial and fungal infections in end stage liver disease and liver transplantation: Current options and future directions. World J Gastroenterol 2018; 24: 4311-4329
  • 60 Arvaniti V, DʼAmico G, Fede G. et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 2010; 139: 1246-1256
  • 61 Wiest R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology 2005; 41: 422-433
  • 62 Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14: 397-411
  • 63 Hernaez R, Solà E, Moreau R. et al. Acute-on-chronic liver failure: an update. Gut 2017; 66: 541-553
  • 64 Fukui H. How leaky gut and endotoxemia induce bacterial infection in cirrhosis and gastrointestinal hemorrhage?. J Gastroenterol Hepatol 2011; 26: 423-425
  • 65 Hung TH, Lay CJ, Chang CM. et al. The effect of infections on the mortality of cirrhotic patients with hepatic encephalopathy. Epidemiol Infect 2013; 141: 2671-2678
  • 66 Pantham G, Post A, Venkat D. et al. A New Look at Precipitants of Overt Hepatic Encephalopathy in Cirrhosis. Dig Dis Sci 2017; 62: 2166-2173
  • 67 Mindikoglu AL, Pappas SC. New Developments in Hepatorenal Syndrome. Clin Gastroenterol Hepatol 2018; 16: 162-177.e1
  • 68 Barreto R, Fagundes C, Guevara M. et al. Type-1 hepatorenal syndrome associated with infections in cirrhosis: natural history, outcome of kidney function, and survival. Hepatology 2014; 59: 1505-1513
  • 69 Thabut D, Massard J, Gangloff A. et al. Model for end-stage liver disease score and systemic inflammatory response are major prognostic factors in patients with cirrhosis and acute functional renal failure. Hepatology 2007; 46: 1872-1882
  • 70 Garcia-Tsao G. Bacterial infections in cirrhosis. Can J Gastroenterol 2004; 18: 405-406
  • 71 Ichikawa T, Machida N, Kaneko H. et al. C-Reactive Protein can Predict Patients with Cirrhosis at a High Risk of Early Mortality after Acute Esophageal Variceal Bleeding. Intern Med 2018; DOI: 10.2169/internalmedicine.1447-18. . [Epub ahead of print]
  • 72 Fernández J, Tandon P, Mensa J. et al. Antibiotic prophylaxis in cirrhosis: Good and bad. Hepatology 2016; 63: 2019-2031
  • 73 Gerbes AL, Labenz J, Appenrodt B. et al. Aktualisierung der S2k-Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) „Komplikationen der Leberzirrhose“: AWMF-Nr.: 021-017. Z Gastroenterol 2019; 57: 611-680
  • 74 Moon AM, Dominitz JA, Ioannou GN. et al. Use of Antibiotics Among Patients With Cirrhosis and Upper Gastrointestinal Bleeding Is Associated With Reduced Mortality. Clin Gastroenterol Hepatol 2016; 14: 1629-1637.e1
  • 75 Chavez-Tapia NC, Barrientos-Gutierrez T, Tellez-Avila F. et al. Meta-analysis: antibiotic prophylaxis for cirrhotic patients with upper gastrointestinal bleeding – an updated Cochrane review. Aliment Pharmacol Ther 2011; 34: 509-518
  • 76 Fernandez J, Gustot T. Management of bacterial infections in cirrhosis. J Hepatol 2012; 56: S1-S12
  • 77 Jepsen P, Vilstrup H, Møller JK. et al. Prognosis of patients with liver cirrhosis and spontaneous bacterial peritonitis. Hepatogastroenterology 2003; 50: 2133-2136
  • 78 Yim HJ, Suh SJ, Jung YK. et al. Daily Norfloxacin vs. Weekly Ciprofloxacin to Prevent Spontaneous Bacterial Peritonitis: A Randomized Controlled Trial. Am J Gastroenterol 2018; 113: 1167-1176
  • 79 Goel A, Rahim U, Nguyen LH. et al. Systematic review with meta-analysis: rifaximin for the prophylaxis of spontaneous bacterial peritonitis. Aliment Pharmacol Ther 2017; 46: 1029-1036
  • 80 Sidhu GS, Go A, Attar BM. et al. Rifaximin versus norfloxacin for prevention of spontaneous bacterial peritonitis: a systematic review. BMJ Open Gastroenterol 2017; 4: e000154 . doi: 10.1136/bmjgast-2017-000154. eCollection 2017
  • 81 Jiang Q, Jiang XH, Zheng MH. et al. Rifaximin versus nonabsorbable disaccharides in the management of hepatic encephalopathy: a meta-analysis. Eur J Gastroenterol Hepatol 2008; 20: 1064-1070
  • 82 Wu D, Wu SM, Lu J. et al. Rifaximin versus Nonabsorbable Disaccharides for the Treatment of Hepatic Encephalopathy: A Meta-Analysis. Gastroenterol Res Pract 2013; 2013: 236963
  • 83 Holstege A. Hepatische Enzephalopathie. Gastroenterologie up2date 2017; 13: 43-60
  • 84 Maharshi S, Sharma BC, Srivastava S. et al. Randomised controlled trial of lactulose versus rifaximin for prophylaxis of hepatic encephalopathy in patients with acute variceal bleed. Gut 2015; 64: 1341-1342
  • 85 Bass NM, Mullen KD, Sanyal A. et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med 2010; 362: 1071-1081
  • 86 AASLD, EASL. Hepatic Encephalopathy in Chronic Liver Disease: 2014 Practice Guideline by the European Association for the Study of the Liver and the American Association for the Study of Liver Diseases. J Hepatol 2014; 61: 642-659
  • 87 Moreau R, Elkrief L, Bureau C. et al. Effects of Long-term Norfloxacin Therapy in Patients With Advanced Cirrhosis. Gastroenterology 2018; 155: 1816-1827.e9
  • 88 Bajaj JS. Review article: potential mechanisms of action of rifaximin in the management of hepatic encephalopathy and other complications of cirrhosis. Aliment Pharmacol Ther 2016; 43 (Suppl. 01) 11-26
  • 89 Kimer N, Gudmann NS, Pedersen JS. et al. No effect of rifaximin on soluble CD163, mannose receptor or type III and IV neoepitope collagen markers in decompensated cirrhosis: Results from a randomized, placebo controlled trial. PLoS One 2018; 13: e0203200
  • 90 Kimer N, Pedersen JS, Tavenier J. et al. Rifaximin has minor effects on bacterial composition, inflammation, and bacterial translocation in cirrhosis: A randomized trial. J Gastroenterol Hepatol 2018; 33: 307-314
  • 91 Kimer N, Pedersen JS, Busk TM. et al. Rifaximin has no effect on hemodynamics in decompensated cirrhosis: A randomized, double-blind, placebo-controlled trial. Hepatology 2017; 65: 592-603
  • 92 Vlachogiannakos J, Viazis N, Vasianopoulou P. et al. Long-term administration of rifaximin improves the prognosis of patients with decompensated alcoholic cirrhosis. J Gastroenterol Hepatol 2013; 28: 450-455
  • 93 Kang SH, Lee YB, Lee JH. et al. Rifaximin treatment is associated with reduced risk of cirrhotic complications and prolonged overall survival in patients experiencing hepatic encephalopathy. Aliment Pharmacol Ther 2017; 46: 845-855
  • 94 Campillo B, Dupeyron C, Richardet JP. et al. Epidemiology of severe hospital-acquired infections in patients with liver cirrhosis: effect of long-term administration of norfloxacin. Clin Infect Dis 1998; 26: 1066-1070
  • 95 Salerno F, Borzio M, Pedicino C. et al. The impact of infection by multidrug resistant agents in patients with cirrhosis. A multicenter prospective study. Liver Int 2017; 37: 71-79
  • 96 Piano S, Singh V, Caraceni P. et al. Epidemiology and Effects of Bacterial Infections in Patients With Cirrhosis Worldwide. Gastroenterology 2019; 156: 1368-1380.e10
  • 97 Tandon P, Delisle A, Topal JE. et al. High prevalence of antibiotic-resistant bacterial infections among patients with cirrhosis at a US liver center. Clin Gastroenterol Hepatol 2012; 10: 1291-1298
  • 98 Fernandez J, Navasa M, Gomez J. et al. Bacterial infections in cirrhosis: epidemiological changes with invasive procedures and norfloxacin prophylaxis. Hepatology 2002; 35: 140-148
  • 99 Fernández J, Prado V, Trebicka J. et al. Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe. J Hepatol 2019; 70: 398-411
  • 100 DuPont HL, Jiang ZD. Influence of rifaximin treatment on the susceptibility of intestinal Gram-negative flora and enterococci. Clin Microbiol Infect 2004; 10: 1009-1011
  • 101 Kothary V, Scherl EJ, Bosworth B. et al. Rifaximin resistance in Escherichia coli associated with inflammatory bowel disease correlates with prior rifaximin use, mutations in rpoB, and activity of Phe-Arg-β-naphthylamide-inhibitable efflux pumps. Antimicrob Agents Chemother 2013; 57: 811-817
  • 102 Tandon P, Delisle A, Topal JE. et al. High prevalence of antibiotic-resistant bacterial infections among patients with cirrhosis at a US liver center. Clin Gastroenterol Hepatol 2012; 10: 1291-1298
  • 103 De Leo C, Eftimiadi C, Schito GC. Rapid disappearance from the intestinal tract of bacteria resistant to rifaximin. Drugs Exp Clin Res 1986; 12: 979-981
  • 104 Mancuso A. The ischemic liver cirrhosis theory and its clinical implications. Medical Hypotheses 2016; 94: 4-6
  • 105 Le Couteur DG, Fraser R, Hilmer S. et al. The hepatic sinusoid in aging and cirrhosis: effects on hepatic substrate disposition and drug clearance. Clin Pharmacokinet 2005; 44: 187-200
  • 106 Tripodi A, Mannucci PM. Mechanisms of disease. The coagulopathy of chronic liver disease. New Engl J Med 2011; 365: 147-156
  • 107 Tripodi A, Primignani M, Mannucci PM. et al. Changing Concepts of Cirrhotic Coagulopathy. Am J Gastroenterol 2017; 112: 274-281
  • 108 OʼLeary JG, Greenberg CS, Patton HM. et al. Coagulation in Cirrhosis. Gastroenterology. 2019; DOI: 10.1053/j.gastro.2019.03.070. . [Epub ahead of print]
  • 109 Tripodi A, Primignani M, Chantarangkul V. et al. An Imbalance of pro- vs anti-coagulation factors in plasma from patients with cirrhosis. Gastroenterology 2009; 137: 2105-2111
  • 110 Wanless IR, Wong F, Blendis LM. et al. Hepatic and portal vein thrombosis in cirrhosis: possible role in development of parenchymal extinction and portal hypertension. Hepatology 1995; 21: 1238-1247
  • 111 Cerini F, Vilaseca M, Lafoz E. et al. Enoxaparin reduces hepatic vascular resistance and portal pressure in cirrhotic rats. J Hepatol 2016; 64: 834-842
  • 112 Villa E, Cammà C, Marietta M. et al. Enoxaparin prevents portal vein thrombosis and liver decompensation in patients with advanced cirrhosis. Gastroenterology 2012; 143: 1253-1260.e4
  • 113 Fontana RJ. Prophylactic anticoagulation in cirrhotics: a paradox for prime time?. Gastroenterology 2012; 143: 1138-1141
  • 114 Jairath V, Burroughs AK. Anticoagulation in patients with liver cirrhosis: complication or therapeutic opportunity?. Gut 2013; 62: 479-482
  • 115 Nery F, Chevret S, Condat B. et al. Causes and consequences of portal vein thrombosis in 1243 patients with cirrhosis: results of a longitudinal study. Hepatology 2015; 61: 660-667
  • 116 Garcia-Martinez R, Caraceni P, Bernardi M. et al. Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology 2013; 58: 1836-1846
  • 117 Chen TA, Tsao YC, Chen A. et al. Effect of intravenous albumin on endotoxin removal, cytokines, and nitric oxide production in patients with cirrhosis and spontaneous bacterial peritonitis. Scand J Gastroenterol 2009; 44: 619-625
  • 118 Fernández J, Clària J, Amorós A. et al. Effects of Albumin Treatment on Systemic and Portal Hemodynamics and Systemic Inflammation in Patients With Decompensated Cirrhosis. Gastroenterology 2019; DOI: 10.1053/j.gastro.2019.03.021. . [Epub ahead of print]
  • 119 Patel A, Laffan MA, Waheed U. et al. Randomised trials of human albumin for adults with sepsis: systematic review and meta-analysis with trial sequential analysis of all-cause mortality. BMJ 2014; 349: g4561
  • 120 Cingolani F, Czaja MJ. Oxidized Albumin – A Trojan Horse for p38 MAPK‐Mediated Inflammation in Decompensated Cirrhosis. Hepatology 2018; 86: 1678-1680
  • 121 Alcaraz-Quiles J, Casulleras M, Oettl K. et al. Oxidized Albumin Triggers a Cytokine Storm in Leukocytes Through P38 Mitogen-Activated Protein Kinase: Role in Systemic Inflammation in Decompensated Cirrhosis. Hepatology 2018; 68: 1937-1952
  • 122 Jalan R, Schnurr K, Mookerjee RP. et al. Alterations in the functional capacity of albumin in patients with decompensated cirrhosis is associated with increased mortality. Hepatology 2009; 50: 555-564
  • 123 Salerno F, Navickis RJ, Wilkes MM. Albumin Infusion improves outcomes of patients with spontaneous bacterial peritonitis: a meta-analysis of randomized trials. Clin Gastroenterol Hepatol 2013; 11: 123-130
  • 124 Sort P, Navasa M, Arroyo V. et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med 1999; 341: 403-409
  • 125 Roux D, Moreau R, Dreyfuss D. Albumin infusion in spontaneous bacterial peritonitis: another brick off the wall?. Ann Intensive Care 2018; 8: 99
  • 126 Ginès P, Titó L, Arroyo V. et al. Randomized comparative study of therapeutic paracentesis with and without intravenous albumin in cirrhosis. Gastroenterology 1988; 94: 1493-502
  • 127 Bernardi M, Caraceni P, Navickis RJ. Does the evidence support a survival benefit of albumin infusion in patients with cirrhosis undergoing large-volume paracentesis?. Expert Rev Gastroenterol Hepatol 2017; 11: 191-192
  • 128 Gines A, Fernandez-Esparrach G, Monescillo A. et al. Randomized trial comparing albumin, dextran 70, and polygeline in cirrhotic patients with ascites treated by paracentesis. Gastroenterology 1996; 111: 1002-1010
  • 129 Sola-Vera J, Minana J, Ricart E. et al. Randomized trial comparing albumin and saline in the prevention of paracentesis-induced circulatory dysfunction in cirrhotic patients with ascites. Hepatology 2003; 37: 1147-1153
  • 130 Appenrodt B, Lammert F. Renal Failure in Patients with Liver Cirrhosis: Novel Classifications, Biomarkers, Treatment. Visc Med 2018; 34: 246-252
  • 131 Mindikoglu AL, Pappas SC. New Developments in Hepatorenal Syndrome. Clin Gastroenterol Hepatol 2018; 16: 162-177.e1
  • 132 Sanyal AJ, Boyer TD, Frederick RT. et al. Reversal of hepatorenal syndrome type 1 with terlipressin plus albumin vs. placebo plus albumin in a pooled analysis of the OT-0401 and REVERSE randomised clinical studies. Aliment Pharmacol Ther 2017; 45: 1390-1402
  • 133 Thévenot T, Bureau C, Oberti F. et al. Effect of albumin in cirrhotic patients with infection other than spontaneous bacterial peritonitis. A randomized trial. J Hepatol 2015; 62: 822-830
  • 134 Bajaj JS, Tandon P, OʼLeary JG. et al. The Impact of Albumin Use on Resolution of Hyponatremia in Hospitalized Patients With Cirrhosis. Am J Gastroenterol 2018; 113: 1339-1344
  • 135 Romanelli RG, La Villa G, Barletta G. et al. Long-term albumin infusion improves survival in patients with cirrhosis and ascites: an unblinded randomized trial. World J Gastroenterol 2006; 12: 1403-1407
  • 136 Solà E, Solé C, Simón-Talero M. et al. Midodrine and albumin for prevention of complications in patients with cirrhosis awaiting liver transplantation. A randomized placebo-controlled trial. J Hepatol 2018; 69: 1250-1259
  • 137 Di Pascoli M, Fasolato S, Piano S. et al. Long-term administration of human albumin improves survival in patients with cirrhosis and refractory ascites. Liver Int 2019; 39: 98-105
  • 138 Caraceni P, Riggio O, Angeli P. et al. Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial. Lancet 2018; 391: 2417-2429
  • 139 Garcia-Tsao G. Long-term albumin in cirrhosis: is it the ANSWER?. Lancet 2018; 391: 2391-2392
  • 140 Vilaseca M, Guixé-Muntet S, Fernández-Iglesias A. et al. Advances in therapeutic options for portal hypertension. Therap Adv Gastroenterol 2018; 11: 1756284818811294 . doi: 10.1177/1756284818811294. eCollection 2018