Der Nuklearmediziner 2019; 42(04): 332-338
DOI: 10.1055/a-0959-0689
Nuklearmedizin 2020
© Georg Thieme Verlag KG Stuttgart · New York

Design und Optimierung von digitalen Gamma-Kameras – Herz und Ganzkörper

Design and Optimization of Digital Gamma Cameras – Cardiac, Total Body
Yechiel Lamash
Spectrum Dynamics Medical, Morges, Schweiz
,
Nathaniel Roth
Spectrum Dynamics Medical, Morges, Schweiz
› Author Affiliations
Further Information

Publication History

Publication Date:
29 November 2019 (online)

Zusammenfassung

Neueste Entwicklungen im Nachweisverfahren der direkten Konvertierung („direct conversion detection“) haben die Tür für eine neue Generation von SPECT- und SPECT/CT-Kameras mit erhöhter Bildqualität und verbesserten diagnostischen Möglichkeiten geöffnet. Diese Kameras, entwickelt von Spectrum Dynamics, sind mit Teleskoparmen bestückt, welche die Detektoren so nah wie möglich an den Körper des Patienten bringen, um die Erfassung von Photonen in einer gegebenen Scanzeit zu maximieren. Da die räumliche Nähe auch die statistische Unschärfe der Photonen-Herkunftsorte reduziert, wird die Bildqualität ebenfalls verbessert. Die direkte Konvertierung der Kamera zusammen mit ihren an die Körperoberfläche anpassbaren Detektoren ist weiterhin mit einer neuartigen Dreh-Scan-Strategie kombiniert, wodurch die räumliche Auflösung weiter verbessert wird. Zusammen mit fortschrittlichen und schnellen Algorithmen der iterativen Rekonstruktion, durchgeführt von schnellen Grafikkarten, wird so die nächste Generation von SPECT- und SPECT/CT-Bildern geschaffen.

Abstract

Recent advancements in direct conversion detection have opened the gate to a new generation of SPECT and SPECT/CT scanners with improved image quality and diagnostic capabilities. Such scanners, developed by Spectrum Dynamics, are equipped with telescopic arms that position the detectors as close as possible to the patientʼs body for maximizing the collection of photons per scan time. As proximity also reduces the statistical uncertainty of the photonsʼ origin location, the general image quality is improved as well. The scannerʼs direct conversion and body adapted detectors are also combined with a novel swivel scan strategy for further improving the spatial resolution and with advanced and rapid iterative reconstruction algorithms, implemented by graphics processing units, to produce the next generation of SPECT and SPECT/CT images.

 
  • Literatur

  • 1 Perrin M, Djaballah W, Moulin F. et al. Stress-first protocol for myocardial perfusion SPECT imaging with semiconductor cameras: high diagnostic performances with significant reduction in patient radiation doses. European journal of nuclear medicine and molecular imaging. 2015; 42: 1004-1011
  • 2 Imbert L, Marie P-Y. CZT cameras: a technological jump for myocardial perfusion. SPECT 2016; 23: 894-896
  • 3 Ben-Haim S, Kacperski K, Hain S. et al. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. European journal of nuclear medicine and molecular imaging 2010; 37: 1710-1721
  • 4 Gambhir SS, Berman DS, Ziffer J. et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. Journal of Nuclear Medicine 2009; 50: 635-643
  • 5 Mannarino T, Assante R, Ricciardi C. et al. Head-to-head comparison of diagnostic accuracy of stress-only myocardial perfusion imaging with conventional and cadmium-zinc telluride single-photon emission computed tomography in women with suspected coronary artery disease. Journal of Nuclear Cardiology 2019; DOI: 10.1007/s12350-019-01789-7.
  • 6 Cherry SR, Sorenson J, Phelps ME. et al. Physics in nuclear medicine. Medical Physics 2004; 31: 2370-2371
  • 7 Van Audenhaege K, Van Holen R, Vandenberghe S. et al. Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging. Medical physics 2015; 42: 4796-4813
  • 8 Ben-Haim S, Murthy VL, Breault C. et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study. Journal of Nuclear Medicine 2013; 54: 873-879
  • 9 Agostini D, Roule V, Nganoa C. et al. First validation of myocardial flow reserve assessed by dynamic 99m Tc-sestamibi CZT-SPECT camera: head to head comparison with 15 O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. European journal of nuclear medicine and molecular imaging 2018; 45: 1079-1090
  • 10 Fleischmann KE, Hunink MG, Kuntz KM. et al. Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. Jama 1998; 280: 913-920
  • 11 Miller TD, Hodge DO, Christian TF. et al. Effects of adjustment for referral bias on the sensitivity and specificity of single photon emission computed tomography for the diagnosis of coronary artery disease. The American journal of medicine 2002; 112: 290-297
  • 12 Stewart RE, Schwaiger M, Molina E. et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. The American journal of cardiology 1991; 67: 1303-1310
  • 13 Naya M, Murthy VL, Taqueti VR. et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. Journal of Nuclear Medicine 2014; 55: 248-255
  • 14 Majmudar MD, Murthy VL, Shah RV. et al. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. European Heart Journal–Cardiovascular Imaging 2015; 16: 900-909
  • 15 Patton JA, Turkington TG. SPECT/CT physical principles and attenuation correction. Journal of nuclear medicine technology 2008; 36: 1-10
  • 16 Pourmoghaddas A, Vanderwerf K, Ruddy TD. et al. Scatter correction improves concordance in SPECT MPI with a dedicated cardiac SPECT solid-state camera. Journal of Nuclear Cardiology 2015; 22: 334-343
  • 17 Hutton BF, Buvat I, Beekman FJ. Review and current status of SPECT scatter correction. Physics in Medicine & Biology 2011; 56: R85