Adipositas - Ursachen, Folgeerkrankungen, Therapie 2019; 13(04): 214-221
DOI: 10.1055/a-0966-9835
Review

Mikrobiom und metabolische/bariatrische Chirurgie

Microbiome and Metabolic/Bariatric Surgery
Florian Seyfried
1   Klinik und Poliklinik für Allgemein-, Viszeral-, Transplantations-, Gefäß- und Kinderchirurgie, Universitätsklinikum Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg
,
Ilona Hering
1   Klinik und Poliklinik für Allgemein-, Viszeral-, Transplantations-, Gefäß- und Kinderchirurgie, Universitätsklinikum Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg
,
Mohamed Hankir
2   Experimentelle Chirurgie Universitätsklinikum Würzburg, Oberdürrbacherstr. 6, 97080 Würzburg
› Author Affiliations

Zusammenfassung

Derzeit ist die metabolische/bariatrische Chirurgie die einzige evidenzbasierte Therapie, die bei einem Großteil der morbid adipösen Patienten zu einer relevanten und nachhaltigen Gewichtsabnahme und Verbesserung der Adipositas-assoziierten Morbidität führt. Das historische Konzept, dass die dominanten zugrundeliegenden Mechanismen der bariatrischen/metabolischen Chirurgie eine Nahrungsrestriktion (durch Verkleinerung des Magens) und eine Malabsorption von Makronährstoffen (durch einen intestinalen Bypass der oralen Dünndarmabschnitte) sind, ist mittlerweile widerlegt.

Grundlagenwissenschaftliche Studien konnten zeigen, dass der Darm als physiologische Schaltzentrale dient und nach anatomischer Umstellung, wie beispielsweise nach einer Magenbypass-Operation, veränderte neuronale und endokrine Signale an unterschiedliche Organsysteme aussendet.

Es existiert eine robuste, spezies-übergreifende Datenlage, dass es nach metabolischer/bariatrischer Chirurgie zu einer nachhaltigen Veränderung des Mikrobioms kommt. Insgesamt ist eine erhöhte Vielfältigkeit der Bakterienstämme mit einer häufigen Reduktion von Firmicutes und Bacteroidetes und eine Erhöhung von Proteobakterien beschrieben. Dabei scheint die Veränderung des Mikrobioms Chirurgie- und Prozeduren-spezifisch und nicht Folge der erreichten Gewichtsabnahme zu sein. Die biologische Relevanz konnte mehrfach experimentell in konzeptionellen Beweisstudien (Mikrobiomtransfer) gezeigt werden. Experimentelle Daten legen nahe, dass die Zusammensetzung des Mikrobioms nicht nur durch die Operation selbst verändert wird und damit unterschiedliche Systeme (entero-endokrin, Darmbarriere, Konjugation von Gallensäuren) maßgeblich beeinflusst, sondern auch einen Einfluss auf den Wirkungsgrad der Operation selbst zu haben scheint. Trotzdem sind die verfügbaren Daten meist nur beschreibend und zeigen Assoziationen auf. Den Einfluss des veränderten Mikrobioms auf das gesamte Metabolom und vice versa ist bisher nur unzureichend verstanden und muss in weiterführenden Studien weiter untersucht werden.

Abstract

Metabolic/bariatric surgery is presently the only evidence-based therapy that leads to clinically relevant and sustainable weight loss in individuals with morbid obesity coupled with superior improvements in metabolic health. Historically, this was largely attributed to food restriction (through shrinkage of the stomach) and malabsorption of macronutrients (through exclusion of the proximal small intestine from contact with ingested food). It is now clear however that consequential to anatomical conversion of the small intestine a myriad of neural and endocrine signals are sent out from this physiological control center to profoundly impact on the function of various different organ systems. There is also a robust and lasting cross-species change in the microbiome such as a decrease in Firmicutes and Bacteroidetes species as well as an increase in proteobacteria which appears to be procedure-specific and independent of weight loss. Such changes in the microbiome are considered to have a beneficial knock-on effect on host physiology including enhancement of entero-endocrine cell function, restoration of the gut barrier and formation of secondary bile acids although the supporting data obtained so far is mainly observational. Furthermore, the influence of the changed microbiome on the metabolome as a whole and vice-versa is poorly understood and warrants further investigation



Publication History

Article published online:
02 December 2019

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Prospective Studies C, Whitlock G, Lewington S, Sherliker P. et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009; 373: 1083-1096
  • 2 Acosta A, Abu Dayyeh BK, Port JD. et al. Recent advances in clinical practice challenges and opportunities in the management of obesity. Gut 2014; 63: 687-695
  • 3 Seganfredo FB, Blume CA, Moehlecke M. et al. Weight-loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obes Rev 2017; 18: 832-851
  • 4 Winer DA, Luck H, Tsai S. et al. The Intestinal Immune System in Obesity and Insulin Resistance. Cell Metab 2016; 23: 413-426
  • 5 Mingrone G, Panunzi S, De Gaetano A. et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 2015; 386: 964-973
  • 6 Peterli R, Wolnerhanssen BK, Peters T. et al. Effect of Laparoscopic Sleeve Gastrectomy vs Laparoscopic Roux-en-Y Gastric Bypass on Weight Loss in Patients With Morbid Obesity: The SM-BOSS Randomized Clinical Trial. JAMA 2018; 319: 255-265
  • 7 Schauer PR, Bhatt DL, Kirwan JP. et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes – 5-Year Outcomes. N Engl J Med 2017; 376: 641-651
  • 8 American Diabetes A. 7. Obesity Management for the Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018; 41: S65-S72
  • 9 Rubino F, Nathan DM, Eckel RH. et al. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. Diabetes Care 2016; 39: 861-877
  • 10 Kim YJ, Kim BH, Choi BM. et al. Bariatric surgery is associated with less progression of diabetic retinopathy: A systematic review and meta-analysis. Surg Obes Relat Dis 2017; 13: 352-360
  • 11 Miras AD, Kamocka A, Patel D. et al. Obesity surgery makes patients healthier and more functional: real world results from the United Kingdom National Bariatric Surgery Registry. Surg Obes Relat Dis 2018; 14: 1033-1040
  • 12 Flanagan E, Ghaderi I, Overby DW. et al. Reduced Survival in Bariatric Surgery Candidates Delayed or Denied by Lack of Insurance Approval. Am Surg 2016; 82: 166-170
  • 13 Jakobsen GS, Smastuen MC, Sandbu R. et al. Association of Bariatric Surgery vs Medical Obesity Treatment With Long-term Medical Complications and Obesity-Related Comorbidities. JAMA 2018; 319: 291-301
  • 14 Seyfried F, Buhr HJ, Klinger C. et al. Quality indicators for metabolic and bariatric surgery in Germany: Evidence-based development of an indicator panel for the quality of results, indications and structure. Chirurg 2018; 89: 4-16
  • 15 Angrisani L, Santonicola A, Iovino P. et al. Bariatric Surgery and Endoluminal Procedures: IFSO Worldwide Survey 2014. Obes Surg 2017; 27: 2279-2289
  • 16 Hering I, Stier C, Seyfried F. Bariatric surgery: Expectations and therapeutic goals-a contradiction?. Chirurg 2018; 89: 597-604
  • 17 O‘Kane M, Parretti HM, Hughes CA. et al. Guidelines for the follow-up of patients undergoing bariatric surgery. Clin Obes 2016; 6: 210-224
  • 18 Garruti G, Di Ciaula A, Wang HH. et al. Cross-Talk Between Bile Acids and Gastro-Intestinal and Thermogenic Hormones: Clues from Bariatric Surgery. Ann Hepatol 2017; 16: s68-s82
  • 19 Seeley RJ, Chambers AP, Sandoval DA. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab 2015; 21: 369-378
  • 20 Hankir MK, Seyfried F, Miras AD. et al. Brain Feeding Circuits after Roux-en-Y Gastric Bypass. Trends Endocrinol Metab 2018; 29: 218-237
  • 21 Mirahmadian M, Hasani M, Taheri E. et al. Influence of gastric bypass surgery on resting energy expenditure, body composition, physical activity, and thyroid hormones in morbidly obese patients. Diabetes Metab Syndr Obes 2018; 11: 667-672
  • 22 Wilms B, Ernst B, Thurnheer M. et al. Resting energy expenditure after Roux-en Y gastric bypass surgery. Surg Obes Relat Dis 2018; 14: 191-199
  • 23 Miras AD, le Roux CW. Metabolic Surgery in a Pill. Cell Metab 2017; 25: 985-987
  • 24 Arora T, Seyfried F, Docherty NG. et al. Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass. ISME J 2017; 11: 2035-2046
  • 25 Liou AP, Paziuk M, Luevano JM. et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 2013; 5: 178ra141
  • 26 Seyfried F, Li JV, Miras AD. et al. Urinary phenotyping indicates weight loss-independent metabolic effects of Roux-en-Y gastric bypass in mice. J Proteome Res 2013; 12: 1245-1253
  • 27 Steensels S, Lannoo M, Avau B. et al. The role of nutrient sensing in the metabolic changes after gastric bypass surgery. J Endocrinol 2017; 232: 363-376
  • 28 Shao Y, Shen Q, Hua R. et al. Effects of sleeve gastrectomy on the composition and diurnal oscillation of gut microbiota related to the metabolic improvements. Surg Obes Relat Dis 2018; 14: 731-739
  • 29 Sweeney TE, Morton JM. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA Surg 2013; 148: 563-569
  • 30 Tremaroli V, Karlsson F, Werling M. et al. Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metab 2015; 22: 228-238
  • 31 Zhang H, DiBaise JK, Zuccolo A. et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 2009; 106: 2365-2370
  • 32 Jahansouz C, Staley C, Kizy S. et al. Antibiotic-induced Disruption of Intestinal Microbiota Contributes to Failure of Vertical Sleeve Gastrectomy. Ann Surg; 2018
  • 33 Del Chierico F, Abbatini F, Russo A. et al. Gut Microbiota Markers in Obese Adolescent and Adult Patients: Age-Dependent Differential Patterns. Front Microbiol 2018; 9: 1210
  • 34 Duncan SH, Lobley GE, Holtrop G. et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 2008; 32: 1720-1724
  • 35 Ley RE, Turnbaugh PJ, Klein S. et al. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444: 1022-1023
  • 36 Magouliotis DE, Tasiopoulou VS, Sioka E. et al. Impact of Bariatric Surgery on Metabolic and Gut Microbiota Profile: a Systematic Review and Meta-analysis. Obes Surg 2017; 27: 1345-1357
  • 37 Murphy R, Tsai P, Jullig M. et al. Differential Changes in Gut Microbiota After Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission. Obes Surg 2017; 27: 917-925
  • 38 Ilhan ZE, DiBaise JK, Isern NG. et al. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J 2017; 11: 2047-2058
  • 39 Beasley DE, Koltz AM, Lambert JE. et al. The Evolution of Stomach Acidity and Its Relevance to the Human Microbiome. PLoS One 2015; 10: e0134116
  • 40 Liu R, Hong J, Xu X. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 2017; 23: 859-868
  • 41 Li JV, Ashrafian H, Bueter M. et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut 2011; 60: 1214-1223
  • 42 Islam KB, Fukiya S, Hagio M. et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 2011; 141: 1773-1781
  • 43 Sayin SI, Wahlstrom A, Felin J. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17: 225-235
  • 44 Wahlstrom A, Sayin SI, Marschall HU. et al. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab 2016; 24: 41-50
  • 45 Sarafian MH, Lewis MR, Pechlivanis A. et al. Bile acid profiling and quantification in biofluids using ultra-performance liquid chromatography tandem mass spectrometry. Anal Chem 2015; 87: 9662-9670
  • 46 Liu H, Hu C, Zhang X. et al. Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes. J Diabetes Investig 2018; 9: 13-20
  • 47 Penney NC, Kinross J, Newton RC. et al. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. Int J Obes (Lond) 2015; 39: 1565-1574
  • 48 Pournaras DJ, Glicksman C, Vincent RP. et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 2012; 153: 3613-3619
  • 49 Spinelli V, Lalloyer F, Baud G. et al. Influence of Roux-en-Y gastric bypass on plasma bile acid profiles: a comparative study between rats, pigs and humans. Int J Obes (Lond) 2016; 40: 1260-1267
  • 50 Ryan KK, Tremaroli V, Clemmensen C. et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 2014; 509: 183-188
  • 51 McGavigan AK, Garibay D, Henseler ZM. et al. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut 2017; 66: 226-234
  • 52 Svane MS, Jorgensen NB, Bojsen-Moller KN. et al. Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery. Int J Obes (Lond) 2016; 40: 1699-1706
  • 53 Tan T, Behary P, Tharakan G. et al. The Effect of a Subcutaneous Infusion of GLP-1, OXM, and PYY on Energy Intake and Expenditure in Obese Volunteers. J Clin Endocrinol Metab 2017; 102: 2364-2372
  • 54 Tolhurst G, Heffron H, Lam YS. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61: 364-371
  • 55 Panaro BL, Tough IR, Engelstoft MS. et al. The melanocortin-4 receptor is expressed in enteroendocrine L cells and regulates the release of peptide YY and glucagon-like peptide 1 in vivo. Cell Metab 2014; 20: 1018-1029
  • 56 Breton J, Tennoune N, Lucas N. et al. Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth. Cell Metab 2016; 23: 324-334
  • 57 Brighton CA, Rievaj J, Kuhre RE. et al. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors. Endocrinology 2015; 156: 3961-3970
  • 58 Flynn CR, Albaugh VL, Cai S. et al. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat Commun 2015; 6: 7715
  • 59 Kohli R, Bradley D, Setchell KD. et al. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab 2013; 98: E708-712
  • 60 Zhai H, Li Z, Peng M. et al. Takeda G Protein-Coupled Receptor 5-Mechanistic Target of Rapamycin Complex 1 Signaling Contributes to the Increment of Glucagon-Like Peptide-1 Production after Roux-en-Y Gastric Bypass. EBioMedicine 2018; 32: 201-214
  • 61 Hao Z, Leigh Townsend R, Mumphrey MB. et al. Roux-en-Y Gastric Bypass Surgery-Induced Weight Loss and Metabolic Improvements Are Similar in TGR5-Deficient and Wildtype Mice. Obes Surg 2018; 28: 3227-3236
  • 62 Abbott CR, Monteiro M, Small CJ. et al. The inhibitory effects of peripheral administration of peptide YY3–36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Research 2005; 1044: 127-131
  • 63 Berthoud HR. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society 2008; 20 Suppl 1 64-72
  • 64 Bueter M, Löwenstein C, Ashrafian H. et al. Vagal Sparing Surgical Technique but Not Stoma Size Affects Body Weight Loss in Rodent Model of Gastric Bypass. Obesity Surgery 2010; 20: 616-622
  • 65 Gautron L, Zechner JF, Aguirre V. Vagal innervation patterns following Roux-en-Y gastric bypass in the mouse. International Journal Of Obesity 2013; 37: 1603
  • 66 Shin AC, Zheng H, Berthoud H-R. Vagal Innervation of the Hepatic Portal Vein and Liver Is Not Necessary for Roux-En-Y Gastric Bypass Surgery-Induced Hypophagia, Weight Loss. and Hypermetabolism 2012; 255: 294-301
  • 67 Hao Z, Townsend RL, Mumphrey MB. et al. Vagal Innervation of Intestine Contributes to Weight Loss After Roux-en-Y Gastric Bypass Surgery in Rats. Obesity Surgery 2014; 24: 2145-2151
  • 68 Luck H, Tsai S, Chung J. et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab 2015; 21: 527-542
  • 69 Cani PD, Amar J, Iglesias MA. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761-1772
  • 70 Shi H, Kokoeva MV, Inouye K. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006; 116: 3015-3025
  • 71 Kim KA, Gu W, Lee IA. et al. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 2012; 7: e47713
  • 72 Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444: 860-867
  • 73 Safari Z, Gerard P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol Life Sci; 2019
  • 74 Natividad JM, Agus A, Planchais J. et al. Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome. Cell Metab 2018; 28: 737-749 e734
  • 75 Jennis M, Cavanaugh CR, Leo GC. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol Motil; 2018 30.
  • 76 Savassi-Rocha AL, Diniz MT, Vilela EG. et al. Changes in intestinal permeability after Roux-en-Y gastric bypass. Obes Surg 2014; 24: 184-190
  • 77 Casselbrant A, Elias E, Fandriks L. et al. Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis 2015; 11: 45-53
  • 78 le Roux CW, Borg C, Wallis K. et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg 2010; 252: 50-56