Rofo 2020; 192(04): 327-334
DOI: 10.1055/a-1005-7424
Chest
© Georg Thieme Verlag KG Stuttgart · New York

Diagnostic Performance and Reliability of Non-Enhanced Imaging Characterization Quotients for the Differentiation of Infectious and Malignant Pulmonary Nodules in Hematological Patients Using 3T MRI

Diagnostische Genauigkeit und Zuverlässigkeit nativer Bildgebungscharakterisierungsquotienten zur Differenzierung infektiöser und maligner pulmonaler Herdbefunde in hämatologischen Patienten im 3T-MRT
Sebastian Niko Nagel
1   Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
,
Damon Kim
1   Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
,
Tatjana Wylutzki
1   Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
,
Ingo G. Steffen
1   Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
,
Stefan Schwartz
2   Department of Hematology and Oncology, Charité – Universitätsmedizin Berlin, Germany
,
Tobias Penzkofer
1   Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
,
Bernd Hamm
1   Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
,
Thomas Elgeti
1   Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
3   Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Germany
› Author Affiliations
Further Information

Publication History

28 March 2019

19 August 2019

Publication Date:
24 October 2019 (online)

Abstract

Purpose To evaluate the diagnostic performance and reliability of non-enhanced imaging characterization quotients (NICQs) derived from magnetic resonance imaging (MRI) in the differential diagnosis of pulmonary nodules in hematological patients.

Materials and Methods A total of 83 lesions in 45 consecutive hematological patients were analyzed (10 bacterial pneumonias, 16 fungal pneumonias, 19 pulmonary lymphoma manifestations). The MRI protocol included T2-weighted single-shot fast spin echo (FSE) and T1-weighted gradient echo (GRE) sequences. T2-based T2-NICQmean and T2-NICQ90th were calculated from signal intensities measured in the lesion, muscle, and fat ((SILesion – SIMuscle)/(SIFat – SIMuscle) * 100), and simple T1-based T1-Qmean from signal intensities of the lesion and muscle (SILesion/SIMuscle). Images were read by one radiologist with > 7 years and one with 1 year of experience. For statistical evaluation the Kruskal-Wallis or Mann-Whitney U-test, receiver operating characteristic (ROC) analysis with calculation of areas under the curve (AUC), and intraclass correlation coefficients (ICCs) were used.

Results Medians of T2-NICQs differed significantly when comparing infectious lesions and lymphoma manifestations in general (T2-NICQmean 20.33 vs. 10.14; T2-NICQ90th 34.96 vs. 25.52) or fungal lesions and lymphoma manifestations in particular (T2-NICQmean 19.00 vs. 10.14; T2-NICQ90th 34.49 vs. 25.25). The AUCs for T2-NICQs on the per-patient level ranged from 0.73 to 0.79. ICCs were at least > 0.85, except for intrarater testing of T2-NICQ90th (0.79).

Conclusion The overall diagnostic performance of T2-NICQs is adequate for differentiating infectious and fungal lesions from lymphoma manifestations. The results show good to excellent intra- and interrater agreement. We therefore consider NICQs helpful in the diagnostic workup of pulmonary nodules in hematological patients.

Key points:

  • Non-enhanced Imaging Characterization Quotients provide a fast and pragmatic approach for assessing pulmonary lesions in hematological patients.

  • The diagnostic performance of Non-enhanced Imaging Characterization Quotients is adequate for differentiating infectious and fungal infiltrates from lymphoma manifestations.

  • Non-enhanced Imaging Characterization Quotients show good to excellent intra- and interrater agreement.

Citation Format

  • Nagel SN, Kim D, Wylutzki T et al. Diagnostic Performance and Reliability of Non-Enhanced Imaging Characterization Quotients for the Differentiation of Infectious and Malignant Pulmonary Nodules in Hematological Patients Using 3T MRI. Fortschr Röntgenstr 2020; 192: 327 – 334

Zusammenfassung

Ziel Beurteilung der diagnostischen Genauigkeit und Reliabilität nichtkontrastmittelverstärkter Charakterisierungsquotienten (engl. „non-enhanced imaging characterization quotients“, kurz NICQs) in der Magnetresonanztomografie (MRT) zur differenzialdiagnostischen Einordnung pulmonaler Herdbefunde in hämatologischen Patientinnen und Patienten.

Material und Methoden Es wurden insgesamt 83 Läsionen in 45 konsekutiven hämatologischen Patienten analysiert (10 bakterielle Pneumonien, 16 Pilzpneumonien, 19 pulmonale Lymphom-Manifestationen). Das MRT-Protokoll bestand aus T2-gewichteten Single-Shot Fast-Spin-Echo-(FSE) und T1-gewichteten Gradientenecho (GRE)-Sequenzen. Der jeweils T2-basierte T2-NICQmean und T2-NICQ90th wurde aus der Signalintensität der Läsion, der Muskulatur und des Fettgewebes errechnet ((SILäsion-SIMuskulatur)/(SIFettgewebe-SIMuskulatur) *100), der simple T1-basierte Quotient T1-Qmean aus der Signalintensität der Läsion und der Muskulatur (SILäsion/SIMuskulatur). Die Bildauswertung erfolgte durch einen Radiologen mit > 7 Jahren und eine Radiologin mit 1 Jahr Erfahrung. Für die statistische Auswertung kamen der Kruskal-Wallis- oder Mann-Whitney-U-Test, die Receiver-Operating-Characteristic (ROC)-Analyse mit Berechnung der Area Under the Curve (AUC) sowie die Berechnung von Intraclass-Korrelationskoeffizienten (ICCs) zum Einsatz.

Ergebnisse Die Medianwerte beider T2-NICQs unterschieden sich signifikant zwischen infektiösen Veränderungen und Lymphom-Manifestationen im Allgemeinen (T2-NICQmean 20,33 vs. 10,14; T2-NICQ90th 34,96 vs. 25,52) sowie Pilzinfiltrationen und Lymphom-Manifestationen im Besonderen (T2-NICQmean 19,00 vs. 10,14; T2-NICQ90th 34,49 vs. 25,25). Die AUCs auf Patientenebene für die T2-NICQs lagen dabei zwischen 0,73 und 0,79. Die ICCs betrugen mindestens > 0,85, mit Ausnahme der Bewertung der Intrarater-Reliabilität des T2-NICQ90th (0,79).

Schlussfolgerung Die diagnostische Leistung der T2-NICQs hinsichtlich der Differenzierbarkeit allgemeiner bzw. fungaler Infiltrate von pulmonalen Lymphom-Manifestationen ist angemessen. Die Intra- und Interrater-Übereinstimmung ist gut bis exzellent. Von daher erachten wir NICQs als hilfreich bei der differenzialdiagnostischen Aufarbeitung unklarer pulmonaler Herdbefunde in hämatologischen Patientinnen und Patienten.

Kernaussagen:

  • Nichtkontrastmittelverstärkte Charakterisierungsquotienten bieten einen schnellen und pragmatischen Ansatz für die Beurteilung pulmonaler Herde in hämatologischen Patientinnen und Patienten.

  • Die diagnostische Leistung von nichtkontrastmittelverstärkten Charakterisierungsquotienten ist angemessen, um infektiöse und pilzpneumonische Infiltrate von Lymphom-Manifestationen zu unterscheiden.

  • Nichtkontrastmittelverstärkte Charakterisierungsquotienten zeigen eine gute bis exzellente Intra- und Interrater-Reliabilität.

 
  • References

  • 1 Ahuja J, Kanne JP. Thoracic infections in immunocompromised patients. Radiol Clin North Am 2014; 52: 121-136 . doi:10.1016/j.rcl.2013.08.010
  • 2 Lee YR, Choi YW, Lee KJ. et al. CT halo sign: the spectrum of pulmonary diseases. The British journal of radiology 2005; 78: 862-865 . doi:10.1259/bjr/77712845
  • 3 Tanaka N, Kunihiro Y, Yanagawa N. Infection in Immunocompromised Hosts: Imaging. J Thorac Imaging 2018; 33: 306-321 . doi:10.1097/RTI.0000000000000342
  • 4 Cao Y, Shao C, Song Y. Analysis of the clinical features of invasive bronchopulmonary aspergillosis. Clin Respir J 2018; 12: 1635-1643 . doi:10.1111/crj.12722
  • 5 Maschmeyer G, Haas A, Cornely OA. Invasive aspergillosis: epidemiology, diagnosis and management in immunocompromised patients. Drugs 2007; 67: 1567-1601
  • 6 Ruhnke M, Bohme A, Buchheidt D. et al. Diagnosis of invasive fungal infections in hematology and oncology--guidelines from the Infectious Diseases Working Party in Haematology and Oncology of the German Society for Haematology and Oncology (AGIHO). Annals of oncology: official journal of the European Society for Medical Oncology / ESMO 2012; 23: 823-833 . doi:10.1093/annonc/mdr407
  • 7 Seneviratna A, O'Carroll M, Lewis CA. et al. Diagnostic yield of bronchoscopic sampling in febrile neutropenic patients with pulmonary infiltrate and haematological disorders. Intern Med J 2012; 42: 536-541 . doi:10.1111/j.1445-5994.2011.02643.x
  • 8 Koyama H, Ohno Y, Seki S. et al. Value of diffusion-weighted MR imaging using various parameters for assessment and characterization of solitary pulmonary nodules. European journal of radiology 2015; 84: 509-515 . doi:10.1016/j.ejrad.2014.11.024
  • 9 Cakmak V, Ufuk F, Karabulut N. Diffusion-weighted MRI of pulmonary lesions: Comparison of apparent diffusion coefficient and lesion-to-spinal cord signal intensity ratio in lesion characterization. Journal of magnetic resonance imaging: JMRI 2017; 45: 845-854 . doi:10.1002/jmri.25426
  • 10 Inan N, Arslan A, Donmez M. et al. Diagnostic Accuracy of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Characterizing Lung Masses. Iran J Radiol 2016; 13: e23026 . doi:10.5812/iranjradiol.23026
  • 11 Chen L, Liu D, Zhang J. et al. Free-breathing dynamic contrast-enhanced MRI for assessment of pulmonary lesions using golden-angle radial sparse parallel imaging. Journal of magnetic resonance imaging: JMRI 2018; 48: 459-468 . doi:10.1002/jmri.25977
  • 12 Nagel SN, Kim D, Penzkofer T. et al. Pulmonary MRI at 3T: Non-enhanced pulmonary magnetic resonance Imaging Characterization Quotients for differentiation of infectious and malignant lesions. European journal of radiology 2017; 89: 33-39 . doi:10.1016/j.ejrad.2017.01.012
  • 13 De Pauw B, Walsh TJ, Donnelly JP. et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2008; 46: 1813-1821 . doi:10.1086/588660
  • 14 Nagel SN, Wyschkon S, Schwartz S. et al. Can magnetic resonance imaging be an alternative to computed tomography in immunocompromised patients with suspected fungal infections? Feasibility of a speed optimized examination protocol at 3 Tesla. European journal of radiology 2016; 85: 857-863 . doi:10.1016/j.ejrad.2016.02.009
  • 15 Biederer J, Beer M, Hirsch W. et al. MRI of the lung (2/3). Why … when … how?. Insights into imaging 2012; 3: 355-371 . doi:10.1007/s13244-011-0146-8
  • 16 Attenberger UI, Morelli JN, Henzler T. et al. 3Tesla proton MRI for the diagnosis of pneumonia/lung infiltrates in neutropenic patients with acute myeloid leukemia: Initial results in comparison to HRCT. European journal of radiology 2014; 83: e61-e66 . doi:10.1016/j.ejrad.2013.09.002
  • 17 Fedorov A, Beichel R, Kalpathy-Cramer J. et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic resonance imaging 2012; 30: 1323-1341 . doi:10.1016/j.mri.2012.05.001
  • 18 Park H, Yoon SW, Sokolov A. Scaled signal intensity of uterine fibroids based on T2-weighted MR images: a potential objective method to determine the suitability for magnetic resonance-guided focused ultrasound surgery of uterine fibroids. European radiology 2015; 25: 3455-3458 . doi:10.1007/s00330-015-3806-0
  • 19 R Development Core Team. R: A language and environment for statistical computing. In: R Foundation for Statistical Computing 2016
  • 20 Koo CW, Lu A, Takahashi EA. et al. Can MRI contribute to pulmonary nodule analysis?. Journal of magnetic resonance imaging: JMRI 2018; DOI: 10.1002/jmri.26587.
  • 21 Li J, Qu J, Zhang H. et al. 3.0T MRI for long-term observation of lung nodules post cryoablation: a pilot study. Cancer imaging: the official publication of the International Cancer Imaging Society 2017; 17: 29 . doi:10.1186/s40644-017-0131-7
  • 22 Zhang F, Zhou Z, Tang D. et al. Diffusion-weighted MRI in solitary pulmonary lesions: associations between apparent diffusion coefficient and multiple histopathological parameters. Sci Rep 2018; 8: 11248 . doi:10.1038/s41598-018-29534-z
  • 23 Çakır Ç, Gençhellaç H, Temizöz O. et al. Diffusion Weighted Magnetic Resonance Imaging for the Characterization of Solitary Pulmonary Lesions. Balkan Med J 2015; 32: 403-409 . doi:10.5152/balkanmedj.2015.15663
  • 24 Kurihara Y, Matsuoka S, Yamashiro T. et al. MRI of pulmonary nodules. Am J Roentgenol American journal of roentgenology 2014; 202: W210-W216 . doi:10.2214/Am J Roentgenol.13.11618
  • 25 Guan HX, Pan YY, Wang YJ. et al. Comparison of Various Parameters of DWI in Distinguishing Solitary Pulmonary Nodules. Curr Med Sci 2018; 38: 920-924 . doi:10.1007/s11596-018-1963-5
  • 26 Tyagi N, Cloutier M, Zakian K. et al. Diffusion-weighted MRI of the lung at 3T evaluated using echo-planar-based and single-shot turbo spin-echo-based acquisition techniques for radiotherapy applications. J Appl Clin Med Phys 2018; DOI: 10.1002/acm2.12493.
  • 27 Ibrahim TS, Lee R, Abduljalil AM. et al. Dielectric resonances and B(1) field inhomogeneity in UHFMRI: computational analysis and experimental findings. Magnetic resonance imaging 2001; 19: 219-226
  • 28 Wild JM, Marshall H, Bock M. et al. MRI of the lung (1/3): methods. Insights into imaging 2012; 3: 345-353 . doi:10.1007/s13244-012-0176-x
  • 29 Fink C, Puderbach M, Biederer J. et al. Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five different pulse sequences. Investigative radiology 2007; 42: 377-383 . doi:10.1097/01.rli.0000261926.86278.96
  • 30 Roller FC, Fuest S, Meyer M. et al. Assessment of Cardiac Involvement in Fabry Disease (FD) with Native T1 Mapping. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 2019; DOI: 10.1055/a-0836-2723.