Pneumologie 2019; 73(12): 723-814
DOI: 10.1055/a-1010-8764
Leitlinie
© Georg Thieme Verlag KG Stuttgart · New York

Prolongiertes Weaning[*]

S2k-Leitlinie herausgegeben von der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin e. V.Prolonged WeaningS2k-Guideline Published by the German Respiratory Society
B. Schönhofer#
 1   Klinikum Region Hannover
,
J. Geiseler#
 2   Klinikum Vest, Medizinische Klinik IV: Pneumologie, Beatmungs- und Schlafmedizin, Marl
,
D. Dellweg#
 3   Fachkrankenhaus Kloster Grafschaft GmbH, Abteilung Pneumologie II, Schmallenberg
,
H. Fuchs#
 4   Universitätsklinikum Freiburg, Zentrum für Kinder- und Jugendmedizin, Neonatologie und pädiatrische Intensivmedizin, Freiburg
,
O. Moerer#
 5   Universitätsmedizin Göttingen, Klinik für Anästhesiologie, Göttingen
,
S. Weber-Carstens#
 6   Charité – Universitätsmedizin Berlin, Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin, Campus Virchow-Klinikum und Campus Mitte, Berlin
,
M. Westhoff#
 7   Lungenklinik Hemer, Hemer
,
W. Windisch#
 8   Lungenklinik, Kliniken der Stadt Köln gGmbH, Universität Witten/Herdecke
,
J. Hirschfeld-Araujo
 9   BG Klinikum Hamburg, Abteilung Querschnittgelähmtenzentrum, Hamburg
,
U. Janssens
10   St. Antonius-Hospital GmbH, Klinik für Innere Medizin und Internistische Intensivmedizin, Eschweiler
,
J. Rollnik
11   BDH-Klinik Hessisch Oldendorf, Neurologisches Zentrum mit Intensivmedizin, Hessisch Oldendorf
,
S. Rosseau
12   Klinik Ernst von Bergmann Bad Belzig gGmbH, Pneumologisches Beatmungszentrum, Bad Belzig
,
D. Schreiter
13   Helios Park-Klinikum Leipzig, Klinik für Intensivmedizin, Leipzig
,
H. Sitter
14   Philips-Universität Marburg, Institut für chirurgische Forschung, Marburg (Moderatioin für AWMF)
,
Weitere beteiligte wissenschaftliche Fachgesellschaften und Institutionen: Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e. V. (DGAI), Deutsche Gesellschaft für Chirurgie e. V. (DGCH), Deutsche Gesellschaft für Ernährungsmedizin e. V. (DGEM), Deutsche Gesellschaft für Geriatrie e. V. (DGG), Deutsche Gesellschaft für Internistische Intensivmedizin und Notfallmedizin e. V. (DGIIN), Deutsche Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e. V. (DGK), Deutsche Gesellschaft für Neurointensiv- und Notfallmedizin e. V. (DGNI), Deutsche Gesellschaft für Neurorehabilitation e. V. (DGNR), Deutsche Gesellschaft für Palliativmedizin e. V. (DGP), Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin e. V. (DIVI)), Gesellschaft für Neonatologie und pädiatrische Intensivmedizin e. V. (GNPI), Deutsche Gesellschaft für Neurochirurgie e. V. (DGNC), Deutsche Gesellschaft für Neurologie e. V. (DGN), Deutschsprachige Medizinische Gesellschaft für Paraplegie e. V. (DMPG), Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie e. V. (DGTHG), Deutsche Gesellschaft für Fachkrankenpflege und Funktionsdienste e. V. (DGF), Deutsche Interdisziplinäre Gesellschaft für Außerklinische Beatmung e. V. (DIGAB), Deutscher Verband für Physiotherapie e. V. (ZVK), Deutscher Bundesverband für Logopädie e. V. (dbl) › Author Affiliations
Further Information

Publication History

Publication Date:
09 December 2019 (online)

Zusammenfassung

Beatmungstherapie stellt einen zentralen und wesentlichen Bestandteil der modernen Intensivmedizin dar. Sie kommt bei Patienten mit schwerer respiratorischer Insuffizienz infolge Versagens der muskulären Atempumpe oder bei direkter oder indirekter Schädigung des Lungenparenchyms mit nachfolgendem Oxygenierungsversagen zum Einsatz, wenn mit anderen nicht-medikamentösen Maßnahmen, Sauerstoffgabe, Sekretmobilisation, kontinuierlicher positiver Atemwegsdruck – Continuous Positive Airway Pressure (CPAP) oder Nasal-High-Flow-Therapie, keine ausreichende Stabilisierung erreicht werden kann.

Die maschinelle Beatmung dient der direkten Behandlung der Atmungsinsuffizienz und schafft Zeit für die Behandlung der zugrundeliegenden Ursache. Der überwiegende Anteil beatmeter Patienten kann nach kurzzeitiger Beatmungstherapie und kausaler Behandlung unproblematisch von der Beatmung entwöhnt werden. Allerdings muss die Beatmung bei ca. 20 % der Patienten auch noch dann fortgesetzt werden, wenn die ursprüngliche Indikation (z. B. eine schwere Pneumonie) längst behoben ist, sodass sich die Phase des Weanings (Entwöhnung von der maschinellen Beatmung) deutlich verlängert. Ungefähr 40 – 50 % der gesamten Beatmungszeit eines Intensivpatienten entfallen aufgrund einer prolongierten Atmungsinsuffizienz auf den Prozess, den Patienten von der Beatmung zu trennen. Neben der respiratorischen Funktionsstörung tragen häufig hohes Alter und Komorbiditäten der Patienten zum prolongierten Weaning-Prozess bei.

Nach internationalem Konsens liegt ein prolongiertes Weaning dann vor, wenn es erst nach 3 erfolglosen Spontanatmungsversuchen (spontaneous breathing trial = SBT) oder nach über 7 Tagen Beatmung nach dem ersten erfolglosen SBT gelingt, den Patienten von der Beatmung zu trennen.

Das Patientenkollektiv mit prolongiertem Weaning stellt das behandelnde Team vor eine besondere Herausforderung. Ganz wesentlich für den Therapieerfolg ist die eng verzahnte interdisziplinäre Behandlung der Patienten im prolongierten Weaning. Nicht selten sind es der fehlende multidisziplinäre Ansatz und die unzureichende Beachtung der multifaktoriellen Ursachen, die ein erfolgreiches Weaning verhindern. Dieses erfolgreich durchzuführen, setzt eine hohe Expertise in der modernen Intensivmedizin, der Anwendung invasiver und nichtinvasiver Beatmungsverfahren, ein klares Weaning-Konzept, und eine enge, fachübergreifende interdisziplinäre Zusammenarbeit voraus.

Im komplexen prolongierten Weaning-Prozess gelingt es in spezialisierten Weaning-Zentren/-Einheiten nach Verlegung der invasiv beatmeten Patienten in ca. 50 % der Fälle doch noch, ein Weaning-Versagen abzuwenden. Bei einem Teil der Patienten schlagen auch wiederholte Weaning-Versuche fehl, sodass gegebenenfalls eine dauerhafte invasive Beatmung in außerklinischer Umgebung erforderlich ist.

Vor dem Hintergrund der wachsenden Bedeutung des prolongierten Weanings, insbesondere der medizinischen, psychosozialen und ökonomischen Folgen des Weaning-Versagens, wurde erstmals 2014 diese Leitlinie auf Initiative der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin e. V. (DGP) gemeinsam mit anderen wissenschaftlichen Fachgesellschaften, die sich zum Thema prolongiertes Weaning engagieren, publiziert. Aktuelle Forschungs- und Studienergebnisse, Registerdaten und die Erfahrungen in der täglichen Praxis machten die Revision dieser Leitlinie erforderlich.

In der revidierten Leitlinie werden Definitionen, Epidemiologie und Weaning-Kategorien, die zugrundeliegende Pathophysiologie, Strategien zur Prävenion von prolongiertem Weaning, das gesamte Spektrum der verfügbaren Therapiestrategien, die Weaning-Einheit, die Überleitung in eine außerklinische Beatmung und schließlich Empfehlungen zu Therapieentscheidungen am Ende des Lebens bei prolongiertem bzw. erfolglosem Weaning abgehandelt.

Besondere Schwerpunkte in der Revision der Leitlinie sind folgende Themenfelder:

– Eine neue Klassifikation der Untergruppen der Patienten im prolongieren Weaning

– Wichtige Aspekte der pneumologischen Rehabilitation und Neurorehabilitation im prolongieren Weaning

– Infrastruktur und Prozessorganisation in der Versorgung von Patienten im prolongierten Weaning im Sinne eines kontinuierlichen Behandlungskonzeptes

– Therapiezieländerung und Kommunikation mit Angehörigen

Die Besonderheiten bei pädiatrischen Patienten werden innerhalb der einzelnen Kapitel jeweils gesondert behandelt.

Wichtige Adressaten dieser Leitlinie sind Intensivmediziner, Pneumologen, Anästhesisten, Internisten, Kardiologen, Chirurgen, Neurologen, Pädiater, Geriater, Palliativmediziner, Rehabilitationsmediziner, Pflegekräfte, Logopäden, Physiotherapeuten, Atmungstherapeuten, der medizinische Dienst der Krankenkassen und die Hersteller von Beatmungstechnik.

Die wesentlichen Ziele der revidierten Leitlinie sind es, den aktuellen Wissensstand zum Thema „Prolongiertes Weaning“ wissenschaftlich zu bewerten und auf Basis der Evidenz und der Erfahrung von Experten Empfehlungen hinsichtlich des prolongierten Weanings nicht nur für den Bereich der Akutmedizin, sondern auch für den Bereich „Chronic critical care“ zu geben.

Abstract

Mechanical ventilation (MV) is an essential part of modern intensive care medicine. MV is performed in patients with severe respiratory failure caused by insufficiency of respiratory muscles and/or lung parenchymal disease when/after other treatments, (i. e. medication, oxygen, secretion management, continuous positive airway pressure or nasal highflow) have failed.

MV is required to maintain gas exchange and to buy time for curative therapy of the underlying cause of respiratory failure. In the majority of patients weaning from MV is routine and causes no special problems. However, about 20 % of patients need ongoing MV despite resolution of the conditions which precipitated the need for MV. Approximately 40 – 50 % of time spent on MV is required to liberate the patient from the ventilator, a process called “weaning.”

There are numberous factors besides the acute respiratory failure that have an impact on duration and success rate of the weaning process such as age, comorbidities and conditions and complications acquired in the ICU. According to an international consensus conference “prolonged weaning” is defined as weaning process of patients who have failed at least three weaning attempts or require more than 7 days of weaning after the first spontaneous breathing trial (SBT). Prolonged weaning is a challenge, therefore, an inter- and multi-disciplinary approach is essential for a weaning success.

In specialised weaning centers about 50 % of patients with initial weaning failure can be liberated from MV after prolonged weaning. However, heterogeneity of patients with prolonged weaning precludes direct comparisons of individual centers. Patients with persistant weaning failure either die during the weaning process or are discharged home or to a long term care facility with ongoing MV.

Urged by the growing importance of prolonged weaning, this Sk2-guideline was first published in 2014 on the initiative of the German Respiratory Society (DGP) together with other scientific societies involved in prolonged weaning. Current research and study results, registry data and experience in daily practice made the revision of this guideline necessary.

The following topics are dealt with in the guideline: Definitions, epidemiology, weaning categories, the underlying pathophysiology, prevention of prolonged weaning, treatment strategies in prolonged weaning, the weaning unit, discharge from hospital on MV and recommendations for end of life decisions.

Special emphasis in the revision of the guideline was laid on the following topics:

– A new classification of subgroups of patients in prolonged weaning

– Important aspects of pneumological rehabilitation and neurorehabilitation in prolonged weaning

– Infrastructure and process organization in the care of patients in prolonged weaning in the sense of a continuous treatment concept

– Therapeutic goal change and communication with relatives

Aspects of pediatric weaning are given separately within the individual chapters.

The main aim of the revised guideline is to summarize current evidence and also expert based- knowledge on the topic of “prolonged weaning” and, based on the evidence and the experience of experts, make recommendations with regard to “prolonged weaning” not only in the field of acute medicine but also for chronic critical care.

Important addressees of this guideline are Intensivists, Pneumologists, Anesthesiologists, Internists, Cardiologists, Surgeons, Neurologists, Pediatricians, Geriatricians, Palliative care clinicians, Rehabilitation physicians, Nurses in intensive and chronic care, Physiotherapists, Respiratory therapists, Speech therapists, Medical service of health insurance and associated ventilator manufacturers.

* Verabschiedet von den Vorständen der beteiligten Fachgesellschaften am 09. 07. 2019.


# Teilnehmer der Leitungs- bzw. Redaktionsgruppe der Leitlinie


 
  • 8 Literatur

  • 1 Ibsen B. The anaesthetistʼs viewpoint on the treatment of respiratory complications in poliomyelitis during the epidemic in Copenhagen, 1952. Proc R Soc Med 1954; 47: 72-74
  • 2 Reisner-Sénélar L. The birth of intensive care medicine: Björn Ibsenʼs records. Intensive Care Med 2011; 37: 1084-1086
  • 3 Windisch W, Dreher M, Geiseler J. et al. Guidelines for Non-Invasive and Invasive Home Mechanical Ventilation for Treatment of Chronic Respiratory Failure – Update 2017. Pneumologie 2017; 71: 722-795
  • 4 Esteban A, Anzueto A, Frutos F. et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 2002; 287: 345-355
  • 5 Goligher E, Ferguson ND. Mechanical ventilation: epidemiological insights into current practices. Curr Opin Crit Care 2009; 15: 44-51
  • 6 Esteban A, Alía I, Ibañez J. The Spanish Lung Failure Collaborative Group. et al. Modes of mechanical ventilation and weaning. A national survey of Spanish hospitals. Chest 1994; 106: 1188-1193
  • 7 Ely EW, Baker AM, Dunagan DP. et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med 1996; 335: 1864-1869
  • 8 Kollef MH, Shapiro SD, Silver P. et al. A randomized, controlled trial of protocol-directed versus physician-directed weaning from mechanical ventilation. Crit Care Med 1997; 25: 567-574
  • 9 Cohen IL, Booth FV. Cost containment and mechanical ventilation in the United States. New horizons 1994; 2: 283-290
  • 10 Huttmann SE, Windisch W, Storre JH. Invasive home mechanical ventilation: living conditions and health-related quality of life. Respiration 2015; 89: 312-321
  • 11 Huttmann SE, Magnet FS, Karagiannidis C. et al. Quality of life and life satisfaction are severely impaired in patients with long-term invasive ventilation following ICU treatment and unsuccessful weaning. Ann Intensive Care 2018; 8: 38
  • 12 Schönhofer B, Euteneuer S, Nava S. et al. Survival of mechanically ventilated patients admitted to a specialised weaning centre. Intensive Care Med 2002; 28: 908-916
  • 13 Schönhofer B, Geiseler J, Dellweg D. et al. [Prolonged weaning: S2k-guideline published by the German Respiratory Society]. Pneumologie 2014; 68: 19-75
  • 14 https://www.bsg.bund.de/DE/Entscheidungen/entscheidungen_node.html
  • 15 www.awmf.org/leitlinien/aktuelle-leitlinien
  • 16 Westhoff M, Schönhofer B, Neumann P. et al. Noninvasive Mechanical Ventilation in Acute Respiratory Failure. Pneumologie 2015; 69: 719-756
  • 17 Boles JM, Bion J, Connors A. et al. Weaning from mechanical ventilation. Eur Respir J 2007; 29: 1033-1056
  • 18 Torres A, Gatell JM, Aznar E. et al. Re-intubation increases the risk of nosocomial pneumonia in patients needing mechanical ventilation. Am J Respir Crit Care Med 1995; 152: 137-141
  • 19 Epstein SK, Ciubotaru RL, Wong JB. Effect of failed extubation on the outcome of mechanical ventilation. Chest 1997; 112: 186-192
  • 20 Seymour CW, Martinez A, Christie JD. et al. The outcome of extubation failure in a community hospital intensive care unit: a cohort study. Crit Care 2004; 8: R322-327
  • 21 Coplin WM, Pierson DJ, Cooley KD. et al. Implications of extubation delay in brain-injured patients meeting standard weaning criteria. Am J Respir Crit Care Med 2000; 161: 1530-1536
  • 22 Esteban A, Alía I, Tobin MJ. et al., Spanish Lung Failure Collaborative Group. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Am J Respir Crit Care Med 1999; 159: 512-518
  • 23 Vallverdú I, Calaf N, Subirana M. et al. Clinical characteristics, respiratory functional parameters, and outcome of a two-hour T-piece trial in patients weaning from mechanical ventilation. Am J Respir Crit Care Med 1998; 158: 1855-1862
  • 24 Epstein SK, Nevins ML, Chung J. Effect of unplanned extubation on outcome of mechanical ventilation. Am J Respir Crit Care Med 2000; 161: 1912-1916
  • 25 Epstein SK. Decision to extubate. Intensive Care Med 2002; 28: 535-546
  • 26 Lemaire F. Difficult weaning. Intensive Care Med 1993; 19: S69-S73
  • 27 Epstein SK, Durbin Jr CG. Should a patient be extubated and placed on noninvasive ventilation after failing a spontaneous breathing trial?. Respir Care 2010; 55: 198-206
  • 28 Nava S, Ambrosino N, Clini E. et al. Noninvasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease. A randomized, controlled trial. Ann Intern Med 1998; 128: 721-728
  • 29 Esteban A, Frutos-Vivar F, Ferguson ND. et al. Noninvasive positive-pressure ventilation for respiratory failure after extubation. N Engl J Med 2004; 350: 2452-2460
  • 30 Nava S, Gregoretti C, Fanfulla F. et al. Noninvasive ventilation to prevent respiratory failure after extubation in high-risk patients. Crit Care Med 2005; 33: 2465-2470
  • 31 Ferrer M, Valencia M, Nicolas JM. et al. Early noninvasive ventilation averts extubation failure in patients at risk: a randomized trial. Am J Respir Crit Care Med 2006; 173: 164-170
  • 32 Funk GC, Anders S, Breyer MK. et al. Incidence and outcome of weaning from mechanical ventilation according to new categories. Eur Respir J 2010; 35: 88-94
  • 33 Schönhofer B. Beatmungsmedizin – das Wichtigste aus 4 aktuellen Leitlinien. Dtsch Med Wochenschr 2018; 143: 793-796
  • 34 Béduneau G, Pham T, Schortgen F. et al. Epidemiology of Weaning Outcome according to a New Definition. The WIND Study. Am J Respir Crit Care Med 2017; 195: 772-783
  • 35 Esteban A, Frutos F, Tobin MJ. et al. A comparison of four methods of weaning patients from mechanical ventilation. N Engl J Med 1995; 332: 345-350
  • 36 Carson SS, Garrett J, Hanson LC. et al. A prognostic model for one-year mortality in patients requiring prolonged mechanical ventilation. Crit Care Med 2008; 36: 2061-2069
  • 37 Magnet FS, Bleichroth H, Huttmann SE. et al. Clinical evidence for respiratory insufficiency type II predicts weaning failure in long-term ventilated, tracheotomised patients: a retrospective analysis. J Intensive Care 2018; 6: 67
  • 38 WeanNet Study Group. (WeanNet: The network of weaning units of the DGP [Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin] – results to epidemiology an outcome in patients with prolonged weaning). Dtsch Med Wochenschr 2016; 141: e166-e172
  • 39 Karagiannidis C, Strassmann S, Callegari J. et al. Epidemiologische Entwicklung der außerklinischen Beatmung: Eine rasant zunehmende Herausforderung für die ambulante und stationäre Patientenversorgung. Dtsch Med Wochenschr 2019; 144: e58-e63
  • 40 Bellemare F, Grassino A. Effect of pressure and timing of contraction on human diaphragm fatigue. J Appl Physiol 1982; 53: 1190-1195
  • 41 Jubran A, Tobin MJ. Passive mechanics of lung and chest wall in patients who failed or succeeded in trials of weaning. Am J Respir Crit Care Med 1997; 155: 916-921
  • 42 Tobin MJ, Laghi F. Monitoring of Respiratory Muscle Function. In: Tobin MJ. Principle and practice of intensive care monitoring. New York: McGraw-Hill; 1998
  • 43 Vassilakopoulos T, Zakynthinos S, Roussos Ch. Respiratory muscles and weaning failure. Eur Respir J 1996; 9: 2383-2400
  • 44 Lopata M, Onal E. Mass loading, sleep apnea, and the pathogenesis of obesity hypoventilation. Am Rev Respir Dis 1982; 126: 640-645
  • 45 MacIntyre NR, Cook DJ, Ely Jr EW. et al. Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest 2001; 120: 375S-3795S
  • 46 Raju P, Manthous CA. The pathogenesis of respiratory failure: an overview. Respir Care Clin N Am 2000; 6: 195-212
  • 47 Fishman AP, Turino GM, Bergofsky EH. The syndrome of alveolar hypoventilation. Am J Med 1957; 23: 333-339
  • 48 Vallverdú I, Mancebo J. Approach to patients who fail initial weaning trials. Respir Care Clin N Am 2000; 6: 365-384
  • 49 Barrientos-Vega R, Mar Sánchez-Soria M, Morales-García C. et al. Prolonged sedation of critically ill patients with midazolam or propofol: impact on weaning and costs. Crit Care Med 1997; 25: 33-40
  • 50 Wheeler AP. Sedation, analgesia, and paralysis in the intensive care unit. Chest 1993; 104: 566-577
  • 51 Spitzer AR, Giancarlo T, Maher L. et al. Neuromuscular causes of prolonged ventilator dependency. Muscle & nerve 1992; 15: 682-686
  • 52 De Jonghe B, Bastuji-Garin S, Sharshar T. et al. Does ICU-acquired paresis lengthen weaning from mechanical ventilation?. Intensive Care Med 2004; 30: 1117-1121
  • 53 Hermans G, De Jonghe B, Bruyninckx F. et al. Clinical review: Critical illness polyneuropathy and myopathy. Crit Care 2008; 12: 238
  • 54 Maher J, Rutledge F, Remtulla H. et al. Neuromuscular disorders associated with failure to wean from the ventilator. Intensive Care Med 1995; 21: 737-743
  • 55 Peterson WP, Whiteneck GG, Gerhart KA. Chest tubes, lung entrapment, and failure to wean from the ventilator. Report of three patients with quadriplegia. Chest 1994; 105: 1292-1294
  • 56 Garnacho-Montero J, Madrazo-Osuna J, García-Garmendia JL. et al. Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med 2001; 27: 1288-1296
  • 57 Bercker S, Weber-Carstens S, Deja M. et al. Critical illness polyneuropathy and myopathy in patients with acute respiratory distress syndrome. Crit Care Med 2005; 33: 711-715
  • 58 Garnacho-Montero J, Amaya-Villar R, García-Garmendía JL. et al. Effect of critical illness polyneuropathy on the withdrawal from mechanical ventilation and the length of stay in septic patients. Crit Care Med 2005; 33: 349-354
  • 59 Schweickert WD, Hall J. ICU-acquired weakness. Chest 2007; 131: 1541-1549
  • 60 Puthucheary Z, Rawal J, Ratnayake G. et al. Neuromuscular blockade and skeletal muscle weakness in critically ill patients: time to rethink the evidence?. Am J Respir Crit Care Med 2012; 185: 911-917
  • 61 Alhazzani W, Alshahrani M, Jaeschke R. et al. Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care 2013; 17: R43
  • 62 Apostolakis E, Papakonstantinou NA, Baikoussis NG. et al. Intensive care unit-related generalized neuromuscular weakness due to critical illness polyneuropathy/myopathy in critically ill patients. J Anesth 2015; 29: 112-121
  • 63 Annane D. What Is the Evidence for Harm of Neuromuscular Blockade and Corticosteroid Use in the Intensive Care Unit?. Semin Respir Crit Care Med 2016; 37: 51-56
  • 64 Vassilakopoulos T, Petrof BJ. Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 2004; 169: 336-341
  • 65 Jubran A. Critical illness and mechanical ventilation: effects on the diaphragm. Respir Care 2006; 51: 1054-1061
  • 66 Kabitz HJ, Windisch W, Schönhofer B. Ventilator induzierter Zwerchfellschaden: ein Update. Pneumologie 2013; 67: 435-441
  • 67 Hermans G, Van Mechelen H, Clerckx B. et al. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis. Am J Respir Crit Care Med 2014; 190: 410-420
  • 68 Gay PC, Rodarte JR, Hubmayr RD. The effects of positive expiratory pressure on isovolume flow and dynamic hyperinflation in patients receiving mechanical ventilation. Am Rev Respir Dis 1989; 139: 621-626
  • 69 Parthasarathy S, Jubran A, Tobin MJ. Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med 1998; 158: 1471-1478
  • 70 Lim CK, Ruan SY, Lin FC. et al. Effect of Tracheostomy on Weaning Parameters in Difficult-to-Wean Mechanically Ventilated Patients: A Prospective Observational Study. PloS one 2015; 10: e0138294
  • 71 Davis K, Campbell RS, Johannigman JA. et al. Changes in respiratory mechanics after tracheostomy. Arch Surg 1999; 134: 59-62
  • 72 Diehl JL, El Atrous S, Touchard D. et al. Changes in the work of breathing induced by tracheotomy in ventilator-dependent patients. Am J Respir Crit Care Med 1999; 159: 383-388
  • 73 Moscovici da Cruz V, Demarzo SE, Sobrinho JB. et al. Effects of tracheotomy on respiratory mechanics in spontaneously breathing patients. Eur Respir J 2002; 20: 112-117
  • 74 Salam A, Tilluckdharry L, Amoateng-Adjepong Y. et al. Neurologic status, cough, secretions and extubation outcomes. Intensive Care Med 2004; 30: 1334-1339
  • 75 Epstein SK, Ciubotaru RL. Independent effects of etiology of failure and time to reintubation on outcome for patients failing extubation. Am J Respir Crit Care Med 1998; 158: 489-493
  • 76 Straus C, Louis B, Isabey D. et al. Contribution of the endotracheal tube and the upper airway to breathing workload. Am J Respir Crit Care Med 1998; 157: 23-30
  • 77 Rumbak MJ, Walsh FW, Anderson WM. et al. Significant tracheal obstruction causing failure to wean in patients requiring prolonged mechanical ventilation: a forgotten complication of long-term mechanical ventilation. Chest 1999; 115: 1092-1095
  • 78 Maeda H, Nakahara K, Ohno K. et al. Diaphragm function after pulmonary resection. Relationship to postoperative respiratory failure. Am Rev Respir Dis 1988; 137: 678-681
  • 79 Takeda S, Miyoshi S, Maeda H. et al. Ventilatory muscle recruitment and work of breathing in patients with respiratory failure after thoracic surgery. Eur J Cardiothorac Surg 1999; 15: 449-455
  • 80 Gaissert H, Wilcox SR. Diaphragmatic Dysfunction after Thoracic Operations. Thorac Cardiovasc Surg 2016; 64: 621-630
  • 81 Fintelmann FJ, Troschel FM, Mario J. et al. Thoracic Skeletal Muscle Is Associated With Adverse Outcomes After Lobectomy for Lung Cancer. Ann Thorac Surg 2018; 105: 1507-1515
  • 82 Richter LK, Svendsen UG, Milman N. et al. Exercise testing in the preoperative evaluation of patients with bronchogenic carcinoma. Eur Respir J 1997; 10: 1559-1565
  • 83 Brutsche MH, Spiliopoulos A, Bolliger CT. et al. Exercise capacity and extent of resection as predictors of surgical risk in lung cancer. Eur Respir J 2000; 15: 828-832
  • 84 Lemaire F, Teboul JL, Cinotti L. et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology 1988; 69: 171-179
  • 85 Epstein SK. Etiology of extubation failure and the predictive value of the rapid shallow breathing index. Am J Respir Crit Care Med 1995; 152: 545-549
  • 86 Richard C, Teboul JL, Archambaud F. et al. Left ventricular function during weaning of patients with chronic obstructive pulmonary disease. Intensive Care Med 1994; 20: 181-186
  • 87 Pinsky MR. Cardiovascular issues in respiratory care. Chest 2005; 128: 592S-597S
  • 88 Buda AJ, Pinsky MR, Ingels Jr. NB. et al. Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 1979; 301: 453-459
  • 89 Dres M, Teboul JL, Monnet X. Weaning the cardiac patient from mechanical ventilation. Curr Opin Crit Care 2014; 20: 493-498
  • 90 Jubran A, Mathru M, Dries D. et al. Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med 1998; 158: 1763-1769
  • 91 Vizza CD, Lynch JP, Ochoa LL. et al. Right and left ventricular dysfunction in patients with severe pulmonary disease. Chest 1998; 113: 576-583
  • 92 Alpert JS. Effect of right ventricular dysfunction on left ventricular function. Adv Cardiol 1986; 34: 25-34
  • 93 Tseng YH, Ko HK, Tseng YC. et al. Atrial Fibrillation on Intensive Care Unit Admission Independently Increases the Risk of Weaning Failure in Nonheart Failure Mechanically Ventilated Patients in a Medical Intensive Care Unit: A Retrospective Case-Control Study. Medicine 2016; 95: e3744
  • 94 Gerbaud E, Erickson M, Grenouillet-Delacre M. et al. Echocardiographic evaluation and N-terminal pro-brain natriuretic peptide measurement of patients hospitalized for heart failure during weaning from mechanical ventilation. Minerva Anestesiol 2012; 78: 415-425
  • 95 Moschietto S, Doyen D, Grech L. et al. Transthoracic Echocardiography with Doppler Tissue Imaging predicts weaning failure from mechanical ventilation: evolution of the left ventricle relaxation rate during a spontaneous breathing trial is the key factor in weaning outcome. Crit Care 2012; 16: R81
  • 96 Papanikolaou J, Makris D, Saranteas T. et al. New insights into weaning from mechanical ventilation: left ventricular diastolic dysfunction is a key player. Intensive Care Med 2011; 37: 1976-1985
  • 97 Voga G. Hemodynamic changes during weaning: can we assess and predict cardiac-related weaning failure by transthoracic echocardiography?. Crit Care 2010; 14: 174
  • 98 Richard C, Monnet X, Teboul JL. Pulmonary artery catheter monitoring in 2011. Curr Opin Crit Care 2011; 17: 296-302
  • 99 Ponikowski P, Voors AA, Anker SD. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016; 18: 891-975
  • 100 Hubmayr RD, Loosbrock LM, Gillespie DJ. et al. Oxygen uptake during weaning from mechanical ventilation. Chest 1988; 94: 1148-1155
  • 101 Tassaux D, Gainnier M, Battisti A. et al. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med 2005; 172: 1283-1289
  • 102 Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M. Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest 1997; 112: 1592-1599
  • 103 Lai YC, Ruan SY, Huang CT. et al. Hemoglobin levels and weaning outcome of mechanical ventilation in difficult-to-wean patients: a retrospective cohort study. PloS one 2013; 8: e73743
  • 104 Schönhofer B, Wenzel M, Geibel M. et al. Blood transfusion and lung function in chronically anemic patients with severe chronic obstructive pulmonary disease. Crit Care Med 1998; 26: 1824-1828
  • 105 Silver MR. Anemia in the long-term ventilator-dependent patient with respiratory failure. Chest 2005; 128: 568S-575S
  • 106 ZʼGraggen WJ, Lin CS, Howard RS. et al. Nerve excitability changes in critical illness polyneuropathy. Brain 2006; 129: 2461-2470
  • 107 Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol 2011; 10: 931-941
  • 108 Visser LH. Critical illness polyneuropathy and myopathy: clinical features, risk factors and prognosis. Eur J Neurol 2006; 13: 1203-1212
  • 109 Zochodne DW, Bolton CF, Wells GA. et al. Critical illness polyneuropathy. A complication of sepsis and multiple organ failure. Brain 1987; 110: 819-841
  • 110 Judemann K, Lunz D, Zausig YA. et al. [Intensive care unit-acquired weakness in the critically ill: critical illness polyneuropathy and critical illness myopathy]. Anaesthesist 2011; 60: 887-901
  • 111 Stevens RD, Dowdy DW, Michaels RK. Neuromuscular dysfunction acquired in critical illness: a systematic review. Intensive Care Med 2007; 33: 1876-1891
  • 112 Schmidt SB, Rollnik JD. Critical illness polyneuropathy (CIP) in neurological early rehabilitation: clinical and neurophysiological features. BMC Neurol 2016; 16: 256
  • 113 Latronico N, Bertolini G, Guarneri B. et al. A Simplified electrophysiological evaluation of peripheral nerves in critically ill patients: the Italian multi-centre CRIMYNE study. Crit Care 2007; 11: R11
  • 114 Latronico N, Nattino G, Guarneri B. et al. Validation of the peroneal nerve test to diagnose critical illness polyneuropathy and myopathy in the intensive care unit: the multicentre Italian CRIMYNE-2 diagnostic accuracy study. F1000Res 2014; 3: 127
  • 115 Moss M, Yang M, Macht M. et al. Screening for critical illness polyneuromyopathy with single nerve conduction studies. Intensive Care Med 2014; 40: 683-690
  • 116 Koch S, Wollersheim T, Bierbrauer J. et al. Long-term recovery In critical illness myopathy is complete, contrary to polyneuropathy. Muscle Nerve 2014; 50: 431-436
  • 117 Thabet MA, Tawfik MAM, Abd El Naby SA. et al. Neurophysiological study of critical illness polyneuropathy and myopathy in mechanically ventilated children; additional aspects in paediatric critical illness comorbidities. Eur J Neurol 2018; 25: 991-e76
  • 118 DeVita MA, Spierer-Rundback L. Swallowing disorders in patients with prolonged orotracheal intubation or tracheostomy tubes. Crit Care Med 1990; 18: 1328-1330
  • 119 Ponfick M, Linden R, Nowak DA. Dysphagia – a common, transient symptom in critical illness polyneuropathy: a fiberoptic endoscopic evaluation of swallowing study*. Crit Care Med 2015; 43: 365-372
  • 120 Dres M, Dubé BP, Mayaux J. et al. Coexistence and Impact of Limb Muscle and Diaphragm Weakness at Time of Liberation from Mechanical Ventilation in Medical Intensive Care Unit Patients. Am J Respir Crit Care Med 2017; 195: 57-66
  • 121 Li S, An YZ, Ren JY. et al. Myocardial injury after surgery is a risk factor for weaning failure from mechanical ventilation in critical patients undergoing major abdominal surgery. PloS one 2014; 9: e113410
  • 122 Rialp Cervera G, Raurich Puigdevall JM, Morán Chorro I. et al. Effects of early administration of acetazolamide on the duration of mechanical ventilation in patients with chronic obstructive pulmonary disease or obesity-hypoventilation syndrome with metabolic alkalosis. A randomized trial. Pulm Pharmacol Ther 2017; 44: 30-37
  • 123 Oppersma E, Doorduin J, van der Hoeven JG. et al. The effect of metabolic alkalosis on the ventilatory response in healthy subjects. Respir Physiol Neurobiol 2018; 249: 47-53
  • 124 Terzano C, Di Stefano F, Conti V. et al. Mixed acid-base disorders, hydroelectrolyte imbalance and lactate production in hypercapnic respiratory failure: the role of noninvasive ventilation. PloS one 2012; 7: e35245
  • 125 Sauthier M, Rose L, Jouvet P. Pediatric Prolonged Mechanical Ventilation: Considerations for Definitional Criteria. Respir Care 2017; 62: 49-53
  • 126 Baisch SD, Wheeler WB, Kurachek SC. et al. Extubation failure in pediatric intensive care incidence and outcomes. Pediatr Crit Care Med 2005; 6: 312-318
  • 127 Graham RJ, Fleegler EW, Robinson WM. Chronic ventilator need in the community: a 2005 pediatric census of Massachusetts. Pediatrics 2007; 119: e1280-e1287
  • 128 Jardine E, OʼToole M, Paton JY. et al. Current status of long term ventilation of children in the United Kingdom: questionnaire survey. BMJ 1999; 318: 295-299
  • 129 Kurachek SC, Newth CJ, Quasney MW. et al. Extubation failure in pediatric intensive care: a multiple-center study of risk factors and outcomes. Crit Care Med 2003; 31: 2657-2664
  • 130 Joho-Arreola AL, Bauersfeld U, Stauffer UG. et al. Incidence and treatment of diaphragmatic paralysis after cardiac surgery in children. Eur J Cardiothorac Surg 2005; 27: 53-57
  • 131 Teoh HL, Mohammad SS, Britton PN. et al. Clinical Characteristics and Functional Motor Outcomes of Enterovirus 71 Neurological Disease in Children. JAMA Neurol 2016; 73: 300-307
  • 132 Nicolai T. Therapeutic concepts in upper airway obstruction. Paediatr Respir Rev 2004; 5: 34-39
  • 133 Corbett HJ, Mann KS, Mitra I. et al. Tracheostomy – a 10-year experience from a UK pediatric surgical center. J Pediatr Surg 2007; 42: 1251-1254
  • 134 Fontela PS, Piva JP, Garcia PC. et al. Risk factors for extubation failure in mechanically ventilated pediatric patients. Pediatr Crit Care Med 2005; 6: 166-170
  • 135 Kamm M, Burger R, Rimensberger P. et al. Survey of children supported by long-term mechanical ventilation in Switzerland. Swiss Med Wkly 2001; 131: 261-266
  • 136 Cristea AI, Carroll AE, Davis SD. et al. Outcomes of children with severe bronchopulmonary dysplasia who were ventilator dependent at home. Pediatrics 2013; 132: e727-e734
  • 137 Gaies M, Tabbutt S, Schwartz SM. et al. Clinical Epidemiology of Extubation Failure in the Pediatric Cardiac ICU: A Report From the Pediatric Cardiac Critical Care Consortium. Pediatr Crit Care Med 2015; 16: 837-845
  • 138 Gupta P, McDonald R, Goyal S. et al. Extubation failure in infants with shunt-dependent pulmonary blood flow and univentricular physiology. Cardiol Young 2014; 24: 64-72
  • 139 Uhlig S, Frerichs I. Lung Protective Ventilation – Pathophysiology and Diagnostics. Anasthesiol Intensivmed Notfallmed Schmerzther 2008; 43: 438-445
  • 140 Ibrahim EH, Ward S, Sherman G. et al. A comparative analysis of patients with early-onset vs late-onset nosocomial pneumonia in the ICU setting. Chest 2000; 117: 1434-1442
  • 141 Quinnell TG, Pilsworth S, Shneerson JM. et al. Prolonged invasive ventilation following acute ventilatory failure in COPD: weaning results, survival, and the role of noninvasive ventilation. Chest 2006; 129: 133-139
  • 142 Damuth E, Mitchell JA, Bartock JL. et al. Long-term survival of critically ill patients treated with prolonged mechanical ventilation: a systematic review and meta-analysis. Lancet Respir Med 2015; 3: 544-553
  • 143 Cook D, Meade M, Guyatt G. et al. Criteria for weaning from mechanical ventilation. Evid Rep Technol Assess (Summ) 2000; 23: 1-4
  • 144 Ouellette DR, Patel S, Girard TD. et al. Liberation From Mechanical Ventilation in Critically Ill Adults: An Official American College of Chest Physicians/American Thoracic Society Clinical Practice Guideline: Inspiratory Pressure Augmentation During Spontaneous Breathing Trials, Protocols Minimizing Sedation, and Noninvasive Ventilation Immediately After Extubation. Chest 2017; 151: 166-180
  • 145 Infarkt-bedingter kardiogener Schock – Diagnose, Monitoring und Therapie. Leitlinie der Deutschen Gesellschaft für Kardiologie – Herz- und Kreislaufforschung. Unter: www.awmf.org/leitlinien/aktuelle-leitlinien
  • 146 DAS-Taskforce 2015. Baron R, Binder A. et al. Evidence and consensus based guideline for the management of delirium, analgesia, and sedation in intensive care medicine. Revision 2015 (DAS-Guideline 2015) – short version. Ger Med Sci 2015; 13: Doc19
  • 147 Ely EW, Baker AM, Evans GW. et al. The prognostic significance of passing a daily screen of weaning parameters. Intensive Care Med 1999; 25: 581-587
  • 148 Shehabi Y, Bellomo R, Reade MC. et al. Early intensive care sedation predicts long-term mortality in ventilated critically ill patients. Am J Respir Crit Care Med 2012; 186: 724-731
  • 149 Balzer F, Weiß B, Kumpf O. et al. Early deep sedation is associated with decreased in-hospital and two-year follow-up survival. Crit Care 2015; 19: 197
  • 150 Ramsay MA, Savege TM, Simpson BR. et al. Controlled sedation with alphaxalone-alphadolone. Br Med J 1974; 2: 656-659
  • 151 Riker RR, Picard JT, Fraser GL. Prospective evaluation of the Sedation-Agitation Scale for adult critically ill patients. Crit Care Med 1999; 27: 1325-1329
  • 152 Ely EW, Truman B, Shintani A. et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA 2003; 289: 2983-2991
  • 153 Sessler CN, Gosnell MS, Grap MJ. et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med 2002; 166: 1338-1344
  • 154 Martin J, Franck M, Fischer M. et al. Sedation and analgesia in German intensive care units: how is it done in reality? Results of a patient-based survey of analgesia and sedation. Intensive Care Med 2006; 32: 1137-1142
  • 155 Payen JF, Bru O, Bosson JL. et al. Assessing pain in critically ill sedated patients by using a behavioral pain scale. Crit Care Med 2001; 29: 2258-2263
  • 156 Kress JP, Pohlman AS, O'Connor MF. et al. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 2000; 342: 1471-1477
  • 157 Carson SS, Kress JP, Rodgers JE. et al. A randomized trial of intermittent lorazepam versus propofol with daily interruption in mechanically ventilated patients. Crit Care Med 2006; 34: 1326-1332
  • 158 Girard TD, Kress JP, Fuchs BD. et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet 2008; 371: 126-134
  • 159 Brook AD, Ahrens TS, Schaiff R. et al. Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med 1999; 27: 2609-2615
  • 160 Mehta S, Burry L, Cook D. et al. Daily sedation interruption in mechanically ventilated critically ill patients cared for with a sedation protocol: a randomized controlled trial. JAMA 2012; 308: 1985-1992
  • 161 Burry L, Rose L, McCullagh IJ. et al. Daily sedation interruption versus no daily sedation interruption for critically ill adult patients requiring invasive mechanical ventilation. Cochrane Database Syst Rev 2014; 7: CD009176
  • 162 Invasive Beatmung und Einsatz extrakorporaler Verfahren bei akuter respiratorischer Insuffizienz. Leitlinie der Deutschen Gesellschaft für Anästhesiologie & Intensivmedizin. Unter: www.awmf.org/leitlinien/aktuelle-leitlinien
  • 163 Ely EW, Gautam S, Margolin R. et al. The impact of delirium in the intensive care unit on hospital length of stay. Intensive Care Med 2001; 27: 1892-1900
  • 164 Ely EW, Margolin R, Francis J. et al. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit Care Med 2001; 29: 1370-1379
  • 165 Pandharipande P, Cotton BA, Shintani A. et al. Motoric subtypes of delirium in mechanically ventilated surgical and trauma intensive care unit patients. Intensive Care Med 2007; 33: 1726-1731
  • 166 Patel SB, Poston JT, Pohlman A. et al. Rapidly reversible, sedation-related delirium versus persistent delirium in the intensive care unit. Am J Respir Crit Care Med 2014; 189: 658-665
  • 167 Pandharipande PP, Girard TD, Jackson JC. et al. Long-term cognitive impairment after critical illness. N Engl J Med 2013; 369: 1306-1316
  • 168 Jackson JC, Pandharipande PP, Girard TD. et al. Depression, post-traumatic stress disorder, and functional disability in survivors of critical illness in the BRAIN-ICU study: a longitudinal cohort study. Lancet Respir Med 2014; 2: 369-379
  • 169 Ely EW, Shintani A, Truman B. et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 2004; 291: 1753-1762
  • 170 Devlin JW, Fong JJ, Schumaker G. et al. Use of a validated delirium assessment tool improves the ability of physicians to identify delirium in medical intensive care unit patients. Crit Care Med 2007; 35: 2721-2724
  • 171 Hommelsheim C, Sichau M, Heipel R. et al. Predictors of Outcomes in Patients with Prolonged Weaning with Focus on Respiratory Tract Pathogens and Infection. Respiration 2019; 97: 135-144
  • 172 Bickenbach J, Schöneis D, Marx G. et al. Impact of multidrug-resistant bacteria on outcome in patients with prolonged weaning. BMC Pulm Med 2018; 18: 141
  • 173 Dalhoff K, Abele-Horn M, Andreas S. et al. Epidemiology, Diagnosis and Treatment of Adult Patients with Nosocomial Pneumonia – Update 2017 – S3 Guideline of the German Society for Anaesthesiology and Intensive Care Medicine, the German Society for Infectious Diseases, the German Society for Hygiene and Microbiology, the German Respiratory Society and the Paul-Ehrlich-Society for Chemotherapy, the German Radiological Society and the Society for Virology. Pneumologie 2018; 72: 15-63
  • 174 Esteban A, Alía I, Gordo F. et al. Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. The Spanish Lung Failure Collaborative Group. J Respir Crit Care Med 1997; 156: 459-465
  • 175 Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med 1991; 324: 1445-1450
  • 176 Perren A, Domenighetti G, Mauri S. et al. Protocol-directed weaning from mechanical ventilation: clinical outcome in patients randomized for a 30-min or 120-min trial with pressure support ventilation. Intensive Care Med 2002; 28: 1058-1063
  • 177 Khamiees M, Raju P, DeGirolamo A. et al. Predictors of extubation outcome in patients who have successfully completed a spontaneous breathing trial. Chest 2001; 120: 1262-1270
  • 178 Bach JR, Saporito LR. Criteria for extubation and tracheostomy tube removal for patients with ventilatory failure. A different approach to weaning. Chest 1996; 110: 1566-1571
  • 179 Namen AM, Ely EW, Tatter SB. et al. Predictors of successful extubation in neurosurgical patients. Am J Respir Crit Care Med 2001; 163: 658-664
  • 180 Jubran A, Tobin MJ. Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med 1997; 155: 906-915
  • 181 Laghi F, Cattapan SE, Jubran A. et al. Is weaning failure caused by low-frequency fatigue of the diaphragm?. Am J Respir Crit Care Med 2003; 167: 120-127
  • 182 Matić I, Majerić-Kogler V. Comparison of pressure support and T-tube weaning from mechanical ventilation: randomized prospective study. Croat Med J 2004; 45: 162-166
  • 183 Jones DP, Byrne P, Morgan C. et al. Positive end-expiratory pressure vs T-piece. Extubation after mechanical ventilation. Chest 1991; 100: 1655-1659
  • 184 Haberthür C, Mols G, Elsasser S. et al. Extubation after breathing trials with automatic tube compensation, T-tube, or pressure support ventilation. Acta Anaesthesiol Scand 2002; 46: 973-979
  • 185 Cohen J, Shapiro M, Grozovski E. et al. Prediction of extubation outcome: a randomised, controlled trial with automatic tube compensation vs. pressure support ventilation. Crit Care 2009; 13: R21
  • 186 Kim WY, Suh HJ, Hong SB. et al. Diaphragm dysfunction assessed by ultrasonography: Influence on weaning from mechanical ventilation. Crit Care Med 2011; 39: 2627-2630
  • 187 DiNino E, Gartman EJ, Sethi JM. et al. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax 2014; 69: 423-427
  • 188 Soummer A, Perbet S, Brisson H. et al. Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress*. Crit Care Med 2012; 40: 2064-2072
  • 189 Boulain T. Unplanned extubations in the adult intensive care unit: a prospective multicenter study. Association des Réanimateurs du Centre-Ouest. Am J Respir Crit Care Med 1998; 157: 1131-1137
  • 190 Blackwood B, Alderdice F, Burns K. et al. Use of weaning protocols for reducing duration of mechanical ventilation in critically ill adult patients: Cochrane systematic review and meta-analysis. BMJ 2011; 342: c7237
  • 191 Blackwood B, Burns KE, Cardwell CR. et al. Protocolized versus non-protocolized weaning for reducing the duration of mechanical ventilation in critically ill adult patients. Cochrane Database Syst Rev 2014; 11: CD006904
  • 192 Frutos-Vivar F, Esteban A. When to wean from a ventilator: an evidence-based strategy. Cleve Clin J Med 2003; 70: 389, 392-393
  • 193 Girard TD, Ely EW. Protocol-driven ventilator weaning: reviewing the evidence. Clin Chest Med 2008; 29: 241-252
  • 194 Vitacca M, Vianello A, Colombo D. et al. Comparison of two methods for weaning patients with chronic obstructive pulmonary disease requiring mechanical ventilation for more than 15 days. Am J Respir Crit Care Med 2001; 164: 225-230
  • 195 Krishnan JA, Moore D, Robeson C. et al. A prospective, controlled trial of a protocol-based strategy to discontinue mechanical ventilation. Am J Respir Crit Care Med 2004; 169: 673-678
  • 196 Dries DJ, McGonigal MD, Malian MS. et al. Protocol-driven ventilator weaning reduces use of mechanical ventilation, rate of early reintubation, and ventilator-associated pneumonia. J Trauma 2004; 56: 943-951
  • 197 Jaber S, Chanques G, Matecki S. et al. Post-extubation stridor in intensive care unit patients. Risk factors evaluation and importance of the cuff-leak test. Intensive Care Med 2003; 29: 69-74
  • 198 De Bast Y, De Backer D, Moraine JJ. et al. The cuff leak test to predict failure of tracheal extubation for laryngeal edema. Intensive Care Med 2002; 28: 1267-1272
  • 199 Fisher MM, Raper RF. The ‘cuff-leak’ test for extubation. Anaesthesia 1992; 47: 10-12
  • 200 Pluijms WA, van Mook WN, Wittekamp BH. et al. Postextubation laryngeal edema and stridor resulting in respiratory failure in critically ill adult patients: updated review. Crit Care 2015; 19: 295
  • 201 Kuriyama A, Umakoshi N, Sun R. et al. Prophylactic Corticosteroids for Prevention of Postextubation Stridor and Reintubation in Adults: A Systematic Review and Meta-analysis. Chest 2017; 151: 1002-1010
  • 202 Ochoa ME, Marín Mdel C, Frutos-Vivar F. et al. Cuff-leak test for the diagnosis of upper airway obstruction in adults: a systematic review and meta-analysis. Intensive Care Med 2009; 35: 1171-1179
  • 203 Lemyze M, Durville E, Meddour M. et al. Impact of fiber-optic laryngoscopy on the weaning process from mechanical ventilation in high-risk patients for postextubation stridor. Medicine 2017; 96: e5971
  • 204 Sutherasan Y, Theerawit P, Hongphanut T. et al. Predicting laryngeal edema in intubated patients by portable intensive care unit ultrasound. J Crit Care 2013; 28: 675-680
  • 205 Girard TD, Alhazzani W, Kress JP. et al. An Official American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: Liberation from Mechanical Ventilation in Critically Ill Adults. Rehabilitation Protocols, Ventilator Liberation Protocols, and Cuff Leak Tests. Am J Respir Crit Care Med 2017; 195: 120-133
  • 206 Schmidt GA, Girard TD, Kress JP. et al. Liberation from mechanical ventilation in critically ill adults. Chest 2017; 151: 160-165
  • 207 Jaber S, Jung B, Chanques G. et al. Effects of steroids on reintubation and post-extubation stridor in adults: meta-analysis of randomised controlled trials. Crit Care 2009; 13: R49
  • 208 Bein T, Bischoff M, Brückner U. et al. S2e guideline: positioning and early mobilisation in prophylaxis or therapy of pulmonary disorders: Revision 2015: S2e guideline of the German Society of Anaesthesiology and Intensive Care Medicine (DGAI). Anaesthesist 2015; 64: 1-26
  • 209 Brower RG. Consequences of bed rest. Crit Care Med 2009; 37: S422-S428
  • 210 Hodgson CL, Bailey M, Bellomo R. et al. A Binational Multicenter Pilot Feasibility Randomized Controlled Trial of Early Goal-Directed Mobilization in the ICU. Crit Care Med 2016; 44: 1145-1152
  • 211 Burtin C, Clerckx B, Robbeets C. et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 2009; 37: 2499-2505
  • 212 Morris PE, Goad A, Thompson C. et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med 2008; 36: 2238-2243
  • 213 Schweickert WD, Pohlman MC, Pohlman AS. et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 2009; 373: 1874-1882
  • 214 Schaller SJ, Anstey M, Blobner M. et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet 2016; 388: 1377-1388
  • 215 Denehy L, Skinner EH, Edbrooke L. et al. Exercise rehabilitation for patients with critical illness: a randomized controlled trial with 12 months of follow-up. Crit Care 2013; 17: R156
  • 216 Moss M, Nordon-Craft A, Malone D. et al. A Randomized Trial of an Intensive Physical Therapy Program for Patients with Acute Respiratory Failure. Am J Respir Crit Care Med 2016; 193: 1101-1110
  • 217 Hodgson CL, Capell E, Tipping CJ. Early Mobilization of Patients in Intensive Care: Organization, Communication and Safety Factors that Influence Translation into Clinical Practice. Crit Care 2018; 22: 77 doi:10.1186/s13054-018-1998-9
  • 218 Morris PE, Berry MJ, Files DC. et al. Standardized Rehabilitation and Hospital Length of Stay Among Patients With Acute Respiratory Failure: A Randomized Clinical Trial. JAMA 2016; 315: 2694-2702
  • 219 Wright SE, Thomas K, Watson G. et al. Intensive versus standard physical rehabilitation therapy in the critically ill (EPICC): a multicentre, parallel-group, randomised controlled trial. Thorax 2018; 73: 213-221
  • 220 Gerovasili V, Stefanidis K, Vitzilaios K. et al. Electrical muscle stimulation preserves the muscle mass of critically ill patients: a randomized study. Crit Care 2009; 13: R161
  • 221 Routsi C, Gerovasili V, Vasileiadis I. et al. Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial. Crit Care 2010; 14: R74
  • 222 Karatzanos E, Gerovasili V, Zervakis D. et al. Electrical muscle stimulation: an effective form of exercise and early mobilization to preserve muscle strength in critically ill patients. Crit Care Res Pract 2012; 2012: 432752
  • 223 Weber-Carstens S, Schneider J, Wollersheim T. et al. Critical illness myopathy and GLUT4: significance of insulin and muscle contraction. Am J Respir Crit Care Med 2013; 187: 387-396
  • 224 Fischer A, Spiegl M, Altmann K. et al. Muscle mass, strength and functional outcomes in critically ill patients after cardiothoracic surgery: does neuromuscular electrical stimulation help? The Catastim 2 randomized controlled trial. Crit Care 2016; 20: 30
  • 225 Nydahl P, Dewes M, Dubb R. et al. Early mobilization. Competencies, responsibilities, milestones. Med Klin Intensivmed Notfmed 2016; 111: 153-159
  • 226 Jolley SE, Moss M, Needham DM. et al. Point Prevalence Study of Mobilization Practices for Acute Respiratory Failure Patients in the United States. Crit Care Med 2017; 45: 205-215
  • 227 Jolley SE, Caldwell E, Hough CL. Factors associated with receipt of physical therapy consultation in patients requiring prolonged mechanical ventilation. Dimens Crit Care Nurs 2014; 33: 160-167
  • 228 Dubb R, Nydahl P, Hermes C. et al. Barriers and Strategies for Early Mobilization of Patients in Intensive Care Units. Ann Am Thorac Soc 2016; 13: 724-730
  • 229 Nickels M, Aitken LM, Walsham J. et al. Cliniciansʼ perceptions of rationales for rehabilitative exercise in a critical care setting: A cross-sectional study. Aust Crit Care 2017; 30: 79-84
  • 230 Nydahl P, Dubb R, Filipovic S. et al. [Algorithms for early mobilization in intensive care units]. Med Klin Intensivmed Notfmed 2017; 112: 156-162
  • 231 Schwabbauer N, Klarmann S, Geiseler J. Stellenwert der Atmungs- und Physiotherapie im Weaning. DIVI 2017; 2: 70
  • 232 Jorch G, Kluge S, Markewitz A. et al. Empfehlungen zur Struktur und Ausstattung von Intensivstationen. DIVI 2011; 2: 78-86
  • 233 Rollnik JD, Adolphsen J, Bauer J. et al. Prolongiertes Weaning in der neurologisch-neurochirurgischen Frührehabilitation. S2k-Leitlinie herausgegeben von der Weaning-Kommission der Deutschen Gesellschaft für Neurorehabilitation e. V. (DGNR). Nervenarzt 2017; 88: 652-674
  • 234 Zanotti E, Felicetti G, Maini M. et al. Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation: effect of electrical stimulation. Chest 2003; 124: 292-296
  • 235 Wageck B, Nunes GS, Silva FL. et al. Application and effects of neuromuscular electrical stimulation in critically ill patients: systematic review. MED INTENSIVA 2014; 38: 444-454
  • 236 Bouletreau P, Patricot MC, Saudin F. et al. Effects of intermittent electrical stimulations on muscle catabolism in intensive care patients. JPEN J Parenter Enteral Nutr 1987; 11: 552-555
  • 237 Jones S, Man WD, Gao W. et al. Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev 2016; 10: CD009419
  • 238 Parry SM, Berney S, Warrillow S. et al. Functional electrical stimulation with cycling in the critically ill: a pilot case-matched control study. J Crit Care 2014; 29: 695.e1-7
  • 239 Rollnik JD. Outcome of MRSA carriers in neurological early rehabilitation. BMC Neurol 2014; 14: 34
  • 240 Gosselink R, Bott J, Johnson M. et al. Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill Patients. Intensive Care Med 2008; 34: 1188-1199
  • 241 Sricharoenchai T, Parker AM, Zanni JM. et al. Safety of physical therapy interventions in critically ill patients: a single-center prospective evaluation of 1110 intensive care unit admissions. J Crit Care 2014; 29: 395-400
  • 242 Bach JR, Bianchi C, Aufiero E. Oximetry and indications for tracheotomy for amyotrophic lateral sclerosis. Chest 2004; 126: 1502-1507
  • 243 Smina M, Salam A, Khamiees M. et al. Cough peak flows and extubation outcomes. Chest 2003; 124: 262-268
  • 244 Beuret P, Roux C, Auclair A. et al. Interest of an objective evaluation of cough during weaning from mechanical ventilation. Intensive Care Med 2009; 35: 1090-1093
  • 245 Duan J, Zhou L, Xiao M. et al. Semiquantitative cough strength score for predicting reintubation after planned extubation. Am J Crit Care 2015; 24: e86-e90
  • 246 Smailes ST, McVicar AJ, Martin R. Cough strength, secretions and extubation outcome in burn patients who have passed a spontaneous breathing trial. Burns 2013; 39: 236-242
  • 247 Lai CC, Chen CM, Chiang SR. et al. Establishing predictors for successfully planned endotracheal extubation. Medicine (Baltimore) 2016; 95: e4852
  • 248 Tobin MJ. Principles and Practice of Mechanical Ventilation. New York: McGraw-Hill; 1994
  • 249 Vassilakopoulos T, Zakynthinos S, Roussos C. Bench-to-bedside review: weaning failure-should we rest the respiratory muscles with controlled mechanical ventilation?. Crit Care 2006; 10: 204
  • 250 Vassilakopoulos T. Ventilator-induced diaphragm dysfunction: the clinical relevance of animal models. Intensive Care Med 2008; 34: 7-16
  • 251 Sassoon CS, Caiozzo VJ, Manka A. et al. Altered diaphragm contractile properties with controlled mechanical ventilation. J Appl Physiol 2002; 92: 2585-2595
  • 252 Levine S, Nguyen T, Taylor N. et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 2008; 358: 1327-1335
  • 253 Barwing J, Pedroni C, Olgemoller U. et al. Electrical activity of the diaphragm (EAdi) as a monitoring parameter in difficult weaning from respirator: a pilot study. Crit Care 2013; 17: R182
  • 254 Jaber S, Petrof BJ, Jung B. et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 2011; 183: 364-371
  • 255 Hermans G, Agten A, Testelmans D. et al. Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care 2010; 14: R127
  • 256 Sassoon CS, Zhu E, Caiozzo VJ. Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 2004; 170: 626-632
  • 257 Prinianakis G, Delmastro M, Carlucci A. et al. Effect of varying the pressurisation rate during noninvasive pressure support ventilation. Eur Respir J 2004; 23: 314-320
  • 258 Hoff FC, Tucci MR, Amato MB. et al. Cycling-off modes during pressure support ventilation: effects on breathing pattern, patient effort, and comfort. J Crit Care 2014; 29: 380-385
  • 259 Marini JJ, Rodriguez RM, Lamb V. The inspiratory workload of patient-initiated mechanical ventilation. Am Rev Respir Dis 1986; 134: 902-909
  • 260 Harnisch LO, Zippel C, Herrmann P. et al. Adjusting ventilator off-cycling in invasively ventilated COPD patients needs comprehensive adjustments. Minerva Anestesiol 2016; 82: 743-750
  • 261 Moerer O, Harnisch LO, Herrmann P. et al. Patient-Ventilator Interaction During Noninvasive Ventilation in Simulated COPD. Respir Care 2016; 61: 15-22
  • 262 Brochard L, Harf A, Lorino H. et al. Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis 1989; 139: 513-521
  • 263 Nava S, Bruschi C, Rubini F. et al. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med 1995; 21: 871-879
  • 264 Imsand C, Feihl F, Perret C. et al. Regulation of inspiratory neuromuscular output during synchronized intermittent mechanical ventilation. Anesthesiology 1994; 80: 13-22
  • 265 Marini JJ, Smith TC, Lamb VJ. External work output and force generation during synchronized intermittent mechanical ventilation. Effect of machine assistance on breathing effort. Am Rev Respir Dis 1988; 138: 1169-1179
  • 266 Kirakli C, Naz I, Ediboglu O. et al. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest 2015; 147: 1503-1509
  • 267 Kirakli C, Ozdemir I, Ucar ZZ. et al. Adaptive support ventilation for faster weaning in COPD: a randomised controlled trial. Eur Respir J 2011; 38: 774-780
  • 268 Celli P, Privato E, Ianni S. et al. Adaptive support ventilation versus synchronized intermittent mandatory ventilation with pressure support in weaning patients after orthotopic liver transplantation. Transplant Proc 2014; 46: 2272-2278
  • 269 Zhu F, Gomersall CD, Ng SK. et al. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery. Anesthesiology 2015; 122: 832-840
  • 270 Sulzer CF, Chioléro R, Chassot PG. et al. Adaptive support ventilation for fast tracheal extubation after cardiac surgery: a randomized controlled study. Anesthesiology 2001; 95: 1339-1345
  • 271 Gruber PC, Gomersall CD, Leung P. et al. Randomized controlled trial comparing adaptive-support ventilation with pressure-regulated volume-controlled ventilation with automode in weaning patients after cardiac surgery. Anesthesiology 2008; 109: 81-87
  • 272 Dongelmans DA, Veelo DP, Paulus F. et al. Weaning automation with adaptive support ventilation: a randomized controlled trial in cardiothoracic surgery patients. Anesth Analg 2009; 108: 565-571
  • 273 Petter AH, Chioléro RL, Cassina T. et al. Automatic “respirator/weaning” with adaptive support ventilation: the effect on duration of endotracheal intubation and patient management. Anesth Analg 2003; 97: 1743-1750
  • 274 Tassaux D, Dalmas E, Gratadour P. et al. Patient-ventilator interactions during partial ventilatory support: a preliminary study comparing the effects of adaptive support ventilation with synchronized intermittent mandatory ventilation plus inspiratory pressure support. Crit Care Med 2002; 30: 801-807
  • 275 Brochard L, Rauss A, Benito S. et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med 1994; 150: 896-903
  • 276 Sinderby C, Beck J, Spahija J. et al. Voluntary activation of the human diaphragm in health and disease. J Appl Physiol 1998; 85: 2146-2158
  • 277 Beck J, Weinberg J, Hamnegård CH. et al. Diaphragmatic function in advanced Duchenne muscular dystrophy. Neuromuscul Disord 2006; 16: 161-167
  • 278 Tuchscherer D, Zʼgraggen WJ, Passath C. et al. Neurally adjusted ventilatory assist in patients with critical illness-associated polyneuromyopathy. Intensive Care Med 2011; 37: 1951-1961
  • 279 Rozé H, Repusseau B, Perrier V. et al. Neuro-ventilatory efficiency during weaning from mechanical ventilation using neurally adjusted ventilatory assist. Br J Anaesth 2013; 111: 955-960
  • 280 Dres M, Schmidt M, Ferre A. et al. Diaphragm electromyographic activity as a predictor of weaning failure. Intensive Care Med 2012; 38: 2017-2025
  • 281 Barwing J, Pedroni C, Olgemöller U. et al. Electrical activity of the diaphragm (EAdi) as a monitoring parameter in difficult weaning from respirator: a pilot study. Crit Care 2013; 17: R182
  • 282 Trapp O, Fiedler M, Hartwich M. et al. Monitoring of Electrical Activity of the Diaphragm Shows Failure of T-Piece Trial Earlier than Protocol-Based Parameters in Prolonged Weaning in Non-communicative Neurological Patients. Neurocrit Care 2017; 27: 35-43
  • 283 Muttini S, Villani PG, Trimarco R. et al. Relation between peak and integral of the diaphragm electromyographic activity at different levels of support during weaning from mechanical ventilation: a physiologic study. J Crit Care 2015; 30: 7-12
  • 284 Yonis H, Crognier L, Conil JM. et al. Patient-ventilator synchrony in Neurally Adjusted Ventilatory Assist (NAVA) and Pressure Support Ventilation (PSV): a prospective observational study. BMC Anesthesiol 2015; 15: 117
  • 285 Delisle S, Ouellet P, Bellemare P. et al. Sleep quality in mechanically ventilated patients: comparison between NAVA and PSV modes. Ann Intensive Care 2011; 1: 42
  • 286 Spahija J, de Marchie M, Albert M. et al. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med 2010; 38: 518-526
  • 287 Thille AW, Rodriguez P, Cabello B. et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 2006; 32: 1515-1522
  • 288 Thille AW, Brochard L. Promoting Patient-Ventilator Synchrony. Clin Pulm Med 2007; 14: 350-359
  • 289 de Wit M, Miller KB, Green DA. et al. Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med 2009; 37: 2740-2745
  • 290 Vagheggini G, Mazzoleni S, Vlad Panait E. et al. Physiologic response to various levels of pressure support and NAVA in prolonged weaning. Respir Med 2013; 107: 1748-1754
  • 291 Di Mussi R, Spadaro S, Mirabella L. et al. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care 2016; 20: 1
  • 292 Kuo NY, Tu ML, Hung TY. et al. A randomized clinical trial of neurally adjusted ventilatory assist versus conventional weaning mode in patients with COPD and prolonged mechanical ventilation. Int J Chron Obstruct Pulmon Dis 2016; 11: 945-951
  • 293 Vitacca M, Clini E, Pagani M. et al. Physiologic effects of early administered mask proportional assist ventilation in patients with chronic obstructive pulmonary disease and acute respiratory failure. Crit Care Med 2000; 28: 1791-1797
  • 294 Grasso S, Puntillo F, Mascia L. et al. Compensation for increase in respiratory workload during mechanical ventilation. Pressure-support versus proportional-assist ventilation. Am J Respir Crit Care Med 2000; 161: 819-826
  • 295 Kondili E, Prinianakis G, Alexopoulou C. et al. Respiratory load compensation during mechanical ventilation--proportional assist ventilation with load-adjustable gain factors versus pressure support. Intensive Care Med 2006; 32: 692-699
  • 296 Xirouchaki N, Kondili E, Vaporidi K. et al. Proportional assist ventilation with load-adjustable gain factors in critically ill patients: comparison with pressure support. Intensive Care Med 2008; 34: 2026-2034
  • 297 Bosma K, Ferreyra G, Ambrogio C. et al. Patient-ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation. Crit Care Med 2007; 35: 1048-1054
  • 298 Bosma KJ, Read BA, Bahrgard Nikoo MJ. et al. A Pilot Randomized Trial Comparing Weaning From Mechanical Ventilation on Pressure Support Versus Proportional Assist Ventilation. Crit Care Med 2016; 44: 1098-1108
  • 299 Räsänen J. IMPRV – synchronized APRV, or more?. Intensive Care Med 1992; 18: 65-66
  • 300 De Jonghe B, Bastuji-Garin S, Durand MC. et al. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med 2007; 35: 2007-2015
  • 301 Carrie C, Gisbert-Mora C, Bonnardel E. et al. Ultrasonographic diaphragmatic excursion is inaccurate and not better than the MRC score for predicting weaning-failure in mechanically ventilated patients. Anaesth Crit Care Pain Med 2017; 36: 9-14
  • 302 Luo L, Li Y, Chen X. et al. Different effects of cardiac and diaphragm function assessed by ultrasound on extubation outcomes in difficult-to-wean patients: a cohort study. BMC Pulm Med 2017; 17: 161
  • 303 Farghaly S, Hasan AA. Diaphragm ultrasound as a new method to predict extubation outcome in mechanically ventilated patients. Aust Crit Care 2017; 30: 37-43
  • 304 Huang D, Ma H, Zhong W. et al. Using M-mode ultrasonography to assess diaphragm dysfunction and predict the success of mechanical ventilation weaning in elderly patients. J Thorac Dis 2017; 9: 3177-3186
  • 305 Llamas-Álvarez AM, Tenza-Lozano EM, Latour-Pérez J. Diaphragm and Lung Ultrasound to Predict Weaning Outcome: Systematic Review and Meta-Analysis. Chest 2017; 152: 1140-1150
  • 306 Yoo JW, Lee SJ, Lee JD. et al. Comparison of clinical utility between diaphragm excursion and thickening change using ultrasonography to predict extubation success. Korean J Intern Med 2018; 33: 331-339
  • 307 Ferrari G, De Filippi G, Elia F. et al. Diaphragm ultrasound as a new index of discontinuation from mechanical ventilation. Crit Ultrasound J 2014; 6: 8
  • 308 Samanta S, Singh RK, Baronia AK. et al. Diaphragm thickening fraction to predict weaning-a prospective exploratory study. J Intensive Care 2017; 5: 62
  • 309 Watson AC, Hughes PD, Louise Harris M. et al. Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med 2001; 29: 1325-1331
  • 310 Köhler D, Schönhofer B. Weaning nach Langzeitbeatmung bei Patienten mit erschöpfter Atempumpe – ein neues Behandlungskonzept. Medizinische Klinik 1994; 89: 11-15
  • 311 Martin AD, Davenport PD, Franceschi AC. et al. Use of inspiratory muscle strength training to facilitate ventilator weaning: a series of 10 consecutive patients. Chest 2002; 122: 192-196
  • 312 Martin AD, Smith BK, Davenport PD. et al. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care 2011; 15: R84
  • 313 Jubran A, Van de Graaff WB, Tobin MJ. Variability of patient-ventilator interaction with pressure support ventilation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1995; 152: 129-136
  • 314 Nava S, Bruschi C, Fracchia C. et al. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J 1997; 10: 177-183
  • 315 Mancebo J, Amaro P, Mollo JL. et al. Comparison of the effects of pressure support ventilation delivered by three different ventilators during weaning from mechanical ventilation. Intensive Care Med 1995; 21: 913-919
  • 316 Dojat M, Harf A, Touchard D. et al. Clinical evaluation of a computer-controlled pressure support mode. Am J Respir Crit Care Med 2000; 161: 1161-1166
  • 317 Lellouche F, Mancebo J, Jolliet P. et al. A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am J Respir Crit Care Med 2006; 174: 894-900
  • 318 Laghi F. Weaning: can the computer help?. Intensive Care Med 2008; 34: 1746-1748
  • 319 Rose L, Presneill JJ, Johnston L. et al. A randomised, controlled trial of conventional versus automated weaning from mechanical ventilation using SmartCare/PS. Intensive Care Med 2008; 34: 1788-1795
  • 320 Burns KE, Meade MO, Lessard MR. et al. Wean earlier and automatically with new technology (the WEAN study). A multicenter, pilot randomized controlled trial. Am J Respir Crit Care Med 2013; 187: 1203-1211
  • 321 Draeger medical AG and CoKG. 2005 SmartCare. Knowledgebased system for clinical guidelines Sortware 1.1. Addendum to operating instructions Evita XL Software 6.0 or higher.
  • 322 Bouadma L, Lellouche F, Cabello B. et al. Computer-driven management of prolonged mechanical ventilation and weaning: a pilot study. Intensive Care Med 2005; 31: 1446-1450
  • 323 Rose L, Schultz MJ, Cardwell CR. et al. Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children. Cochrane Database Syst Rev 2014; 6: CD009235
  • 324 Taniguchi C, Victor ES, Pieri T. et al. Smart Care™ versus respiratory physiotherapy-driven manual weaning for critically ill adult patients: a randomized controlled trial. Crit Care 2015; 19: 246
  • 325 Fry RW, Morton AR, Keast D. Periodisation of training stress – a review. Can J Sport Sci 1992; 17: 234-240
  • 326 MacIntyre NR, Epstein SK, Carson S. et al. Management of patients requiring prolonged mechanical ventilation: report of a NAMDRC consensus conference. Chest 2005; 128: 3937-3954
  • 327 Liang Z, Ren D, Choi J. et al. Music intervention during daily weaning trials-A 6 day prospective randomized crossover trial. Complement Ther Med 2016; 29: 72-77
  • 328 Hetland B, Lindquist R, Weinert CR. et al. Predictive Associations of Music, Anxiety, and Sedative Exposure on Mechanical Ventilation Weaning Trials. Am J Crit Care 2017; 26: 210-220
  • 329 Dellweg D, Barchfeld T, Haidl P. et al. Tracheostomy decannulation: implication on respiratory mechanics. Head Neck 2007; 29: 1121-1127
  • 330 Thille AW, Lyazidi A, Richard JC. et al. A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators. Intensive Care Med 2009; 35: 1368-1376
  • 331 Richard JC, Carlucci A, Breton L. et al. Bench testing of pressure support ventilation with three different generations of ventilators. Intensive Care Med 2002; 28: 1049-1057
  • 332 Brochard L, Thille AW. What is the proper approach to liberating the weak from mechanical ventilation?. Crit Care Med 2009; 37: S410-S415
  • 333 Caroleo S, Agnello F, Abdallah K. et al. Weaning from mechanical ventilation: an open issue. Minerva Anestesiol 2007; 73: 417-427
  • 334 Burns KE, Lellouche F, Loisel F. et al. Weaning critically ill adults from invasive mechanical ventilation: a national survey. Can J Anaesth 2009; 56: 567-576
  • 335 Bapat P, Verghese C. Cuff deflation for easier weaning from ventilation. Br J Anaesth 1997; 79: 145
  • 336 Shneerson JM. Are there new solutions to old problems with weaning?. Br J Anaesth 1997; 78: 238-240
  • 337 Fornataro-Clerici L, Zajac DJ. Aerodynamic characteristics of tracheostomy speaking valves. J Speech Hear Res 1993; 36: 529-532
  • 338 Johnson DC, Campbell SL, Rabkin JD. Tracheostomy tube manometry: evaluation of speaking valves, capping and need for downsizing. Clin Respir J 2009; 3: 8-14
  • 339 Jiang TX, Reid WD, Road JD. Free radical scavengers and diaphragm injury following inspiratory resistive loading. Am J Respir Crit Care Med 2001; 164: 1288-1294
  • 340 Jubran A, Grant BJ, Duffner LA. et al. Effect of pressure support vs unassisted breathing through a tracheostomy collar on weaning duration in patients requiring prolonged mechanical ventilation: a randomized trial. JAMA 2013; 309: 671-677
  • 341 Hubmayr RD, Abel MD, Rehder K. Physiologic approach to mechanical ventilation. Crit Care Med 1990; 18: 103-13
  • 342 Petrof BJ, Legaré M, Goldberg P. et al. Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 1990; 141: 281-289
  • 343 Ranieri VM, Giuliani R, Cinnella G. et al. Physiologic effects of positive end-expiratory pressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation. Am Rev Respir Dis 1993; 147: 5-13
  • 344 Reissmann HK, Ranieri VM, Goldberg P. et al. Continuous positive airway pressure facilitates spontaneous breathing in weaning chronic obstructive pulmonary disease patients by improving breathing pattern and gas exchange. Intensive Care Med 2000; 26: 1764-1772
  • 345 El-Khatib MF, Zeineldine SM, Jamaleddine GW. Effect of pressure support ventilation and positive end expiratory pressure on the rapid shallow breathing index in intensive care unit patients. Intensive Care Med 2008; 34: 505-510
  • 346 Schmidt GB, Bombeck CT, Bennett EJ. et al. Continuous positive airway pressure in the prophylaxis of the adult respiratory distress syndrome (ARDS). Langenbecks Arch Chir 1975; Ausg: 439-442
  • 347 Ferreyra GP, Baussano I, Squadrone V. et al. Continuous positive airway pressure for treatment of respiratory complications after abdominal surgery: a systematic review and meta-analysis. Ann Surg 2008; 247: 617-626
  • 348 Nieszkowska A, Combes A, Luyt CE. et al. Impact of tracheotomy on sedative administration, sedation level, and comfort of mechanically ventilated intensive care unit patients. Crit Care Med 2005; 33: 2527-2533
  • 349 Pierson DJ. Tracheostomy and weaning. Respir Care 2005; 50: 526-533
  • 350 Shapiro M, Wilson RK, Casar G. et al. Work of breathing through different sized endotracheal tubes. Crit Care Med 1986; 14: 1028-1031
  • 351 Natalini G, Tuzzo DM, Comunale G. et al. Work of breathing-tidal volume relationship: analysis on an in vitro model and clinical implications. J Clin Monit Comput 1999; 15: 119-123
  • 352 Boqué MC, Gualis B, Sandiumenge A. et al. Endotracheal tube intraluminal diameter narrowing after mechanical ventilation: use of acoustic reflectometry. Intensive Care Med 2004; 30: 2204-2209
  • 353 Hewitt MS, Garland DE, Ayyoub Z. Heterotopic ossification complicating prolonged intubation: case report and review of the literature. J Spinal Cord Med 2002; 25: 46-49
  • 354 Honig EG, Francis PB. Persistent tracheal dilatation: onset after brief mechanical ventilation with a “soft-cuff” endotracheal tube. South Med J 1979; 72: 487-490
  • 355 Moons P, Sels K, De Becker W. et al. Development of a risk assessment tool for deliberate self-extubation in intensive care patients. Intensive Care Med 2004; 30: 1348-1355
  • 356 Pandey CK, Singh N, Srivastava K. et al. Self-extubation in intensive care and re-intubation predictors: a retrospective study. J Indian Med Assoc 2002; 100: 14-16
  • 357 Holzapfel L, Chevret S, Madinier G. et al. Influence of long-term oro- or nasotracheal intubation on nosocomial maxillary sinusitis and pneumonia: results of a prospective, randomized, clinical trial. Crit Care Med 1993; 21: 1132-1138
  • 358 Nordin U. The trachea and cuff-induced tracheal injury. An experimental study on causative factors and prevention. Acta Otolaryngol Suppl 1977; 345: 1-71
  • 359 Ceriana P, Carlucci A, Navalesi P. et al. Physiological responses during a T-piece weaning trial with a deflated tube. Intensive Care Med 2006; 32: 1399-1403
  • 360 The Commission for Hospital Hygiene and Infection Prevention (KRINKO) at the Robert Koch Institute. Prevention of nosocomial ventilator-associated pneumonia. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 2013; 56: 1578-1590
  • 361 Mao Z, Gao L, Wang G. et al. Subglottic secretion suction for preventing ventilator-associated pneumonia: an updated meta-analysis and trial sequential analysis. Crit Care 2016; 20: 353
  • 362 Caroff DA, Li L, Muscedere J. et al. Subglottic Secretion Drainage and Objective Outcomes: A Systematic Review and Meta-Analysis. Crit Care Med 2016; 44: 830-840
  • 363 Lin WC, Chen CW, Wang JD. et al. Is tracheostomy a better choice than translaryngeal intubation for critically ill patients requiring mechanical ventilation for more than 14 days? A comparison of short-term outcomes. BMC Anesthesiol 2015; 15: 181
  • 364 Mehta AB, Syeda SN, Bajpayee L. et al. Trends in Tracheostomy for Mechanically Ventilated Patients in the United States, 1993–2012. Am J Respir Crit Care Med 2015; 192: 446-454
  • 365 Kluge S, Baumann HJ, Nierhaus A. et al. Safety of percutaneous dilational tracheostomy in hematopoietic stem cell transplantation recipients requiring long-term mechanical ventilation. J Crit Care 2008; 23: 394-398
  • 366 Vargas M, Sutherasan Y, Antonelli M. et al. Tracheostomy procedures in the intensive care unit: an international survey. Crit Care 2015; 19: 291
  • 367 Wilson AM, Gray DM, Thomas JG. Increases in endotracheal tube resistance are unpredictable relative to duration of intubation. Chest 2009; 136: 1006-1013
  • 368 Durbin Jr CG. Tracheostomy: why, when, and how?. Respir Care 2010; 55: 1056-1068
  • 369 Maziak DE, Meade MO, Todd TR. The timing of tracheotomy: a systematic review. Chest 1998; 114: 605-609
  • 370 Pilarczyk K, Haake N, Dudasova M. et al. Risk factors for bleeding complications after percutaneous dilatational tracheostomy: a ten-year institutional analysis. Anaesth Intensive Care 2016; 44: 227-236
  • 371 Brass P, Hellmich M, Ladra A. et al. Percutaneous techniques versus surgical techniques for tracheostomy. Cochrane Database Syst Rev 2016; 7: CD008045
  • 372 Simon M, Metschke M. et al. Death after percutaneous dilatational tracheostomy: a systematic review and analysis of risk factors. Crit Care 2013; 17: R258
  • 373 Klemm E, Nowak AK. Tracheotomy-Related Deaths. Dtsch Arztebl Int 2017; 114: 273-279
  • 374 Dempsey GA, Morton B, Hammell C. et al. Long-Term Outcome Following Tracheostomy in Critical Care: A Systematic Review. Crit Care Med 2016; 44: 617-628
  • 375 Romero CM, Marambio A, Larrondo J. et al. Swallowing dysfunction in nonneurologic critically ill patients who require percutaneous dilatational tracheostomy. Chest 2010; 137: 1278-1282
  • 376 Bader CA, Keilmann A. Swallowing Disorders in Tracheo(s)tomized Patients. Laryngorhinootologie 2017; 96: 280-292
  • 377 Rello J, Soñora R, Jubert P. et al. Pneumonia in intubated patients: role of respiratory airway care. Am J Respir Crit Care Med 1996; 154: 111-115
  • 378 Heffner JE. Tracheal intubation in mechanically ventilated patients. Clin Chest Med 1988; 9: 23-35
  • 379 Heuer B, Deller A. Early and long-term results of percutaneous dilatation tracheostomy (PDT Ciaglia) in 195 intensive care patients. Anasthesiol Intensivmed Notfallmed Schmerzther 1998; 33: 306-312
  • 380 Muttini S, Melloni G, Gemma M. et al. Percutaneous or surgical trachetomy. Prospective, randomized comparison of the incidence of early and late complications. Minerva Anestesiol 1999; 65: 521-527
  • 381 Arabi YM, Alhashemi JA, Tamim HM. et al. The impact of time to tracheostomy on mechanical ventilation duration, length of stay, and mortality in intensive care unit patients. J Crit Care 2009; 24: 435-440
  • 382 Veenith T, Ganeshamoorthy S, Standley T. et al. Intensive care unit tracheostomy: a snapshot of UK practice. Int Arch Med 2008; 1: 21
  • 383 Johnson-Obaseki S, Veljkovic A, Javidnia H. Complication rates of open surgical versus percutaneous tracheostomy in critically ill patients. Laryngoscope 2016; 126: 2459-2467
  • 384 Putensen C, Theuerkauf N, Guenther U. et al. Percutaneous and surgical tracheostomy in critically ill adult patients: a meta-analysis. Crit Care 2014; 18: 544
  • 385 Dulguerov P, Gysin C, Perneger TV. et al. Percutaneous or surgical tracheostomy: a meta-analysis. Crit Care Med 1999; 27: 1617-1625
  • 386 Delaney A, Bagshaw SM, Nalos M. Percutaneous dilatational tracheostomy versus surgical tracheostomy in critically ill patients: a systematic review and meta-analysis. Crit Care 2006; 10: R55
  • 387 Higgins KM, Punthakee X. Meta-analysis comparison of open versus percutaneous tracheostomy. Laryngoscope 2007; 117: 447-454
  • 388 Ciaglia P, Firsching R, Syniec C. Elective percutaneous dilatational tracheostomy. A new simple bedside procedure; preliminary report. Chest 1985; 87: 715-719
  • 389 Schachner A, Ovil Y, Sidi J. et al. Percutaneous tracheostomy – a new method. Crit Care Med 1989; 17: 1052-1056
  • 390 Griggs WM, Worthley LI, Gilligan JE. et al. A simple percutaneous tracheostomy technique. Surg Gynecol Obstet 1990; 170: 543-545
  • 391 Fantoni A, Ripamonti D. A non-derivative, non-surgical tracheostomy: the translaryngeal method. Intensive Care Med 1997; 23: 386-392
  • 392 Byhahn C, Wilke HJ, Halbig S. et al. Percutaneous tracheostomy: ciaglia blue rhino versus the basic ciaglia technique of percutaneous dilational tracheostomy. Anesth Analg 2000; 91: 882-886
  • 393 Frova G, Quintel M. A new simple method for percutaneous tracheostomy: controlled rotating dilation. A preliminary report. Intensive Care Med 2002; 28: 299-303
  • 394 Zgoda MA, Berger R. Balloon-facilitated percutaneous dilational tracheostomy tube placement: preliminary report of a novel technique. Chest 2005; 128: 3688-3690
  • 395 Sanabria A. Which percutaneous tracheostomy method is better? A systematic review. Respir Care 2014; 59: 1660-1670
  • 396 Marelli D, Paul A, Manolidis S. et al. Endoscopic guided percutaneous tracheostomy: early results of a consecutive trial. J Trauma 1990; 30: 433-435
  • 397 Fernandez L, Norwood S, Roettger R. et al. Bedside percutaneous tracheostomy with bronchoscopic guidance in critically ill patients. Arch Surg 1996; 131: 129-132
  • 398 Hinerman R, Alvarez F, Keller CA. Outcome of bedside percutaneous tracheostomy with bronchoscopic guidance. Intensive Care Med 2000; 26: 1850-1856
  • 399 Reilly PM, Sing RF, Giberson FA. et al. Hypercarbia during tracheostomy: a comparison of percutaneous endoscopic, percutaneous Doppler, and standard surgical tracheostomy. Intensive Care Med 1997; 23: 859-864
  • 400 Beiderlinden M, Karl Walz M, Sander A. et al. Complications of bronchoscopically guided percutaneous dilational tracheostomy: beyond the learning curve. Intensive Care Med 2002; 28: 59-62
  • 401 Halum SL, Ting JY, Plowman EK. et al. A multi-institutional analysis of tracheotomy complications. Laryngoscope 2012; 122: 38-45
  • 402 Sustić A, Zupan Z, Eskinja N. et al. Ultrasonographically guided percutaneous dilatational tracheostomy after anterior cervical spine fixation. Acta Anaesthesiol Scand 1999; 43: 1078-1080
  • 403 Alansari M, Alotair H, Al Aseri Z. et al. Use of ultrasound guidance to improve the safety of percutaneous dilatational tracheostomy: a literature review. Crit Care 2015; 19: 229
  • 404 Gobatto AL, Besen BA, Tierno PF. et al. Ultrasound-guided percutaneous dilational tracheostomy versus bronchoscopy-guided percutaneous dilational tracheostomy in critically ill patients (TRACHUS): a randomized noninferiority controlled trial. Intensive Care Med 2016; 42: 342-351
  • 405 Sangwan YS, Chasse R. A modified technique for percutaneous dilatational tracheostomy: A retrospective review of 60 cases. J Crit Care 2016; 31: 144-149
  • 406 Peris A, Linden M, Pellegrini G. et al. Percutaneous dilatational tracheostomy: a self-drive control technique with video fiberoptic bronchoscopy reduces perioperative complications. Minerva Anestesiol 2009; 75: 21-25
  • 407 Oberwalder M, Weis H, Nehoda H. et al. Videobronchoscopic guidance makes percutaneous dilational tracheostomy safer. Surg Endosc 2004; 18: 839-842
  • 408 McGregor IA, Neill RS. Tracheostomy and the Björk flap. Lancet 1983; 2: 1259
  • 409 Price DG. Techniques of tracheostomy for intensive care unit patients. Anaesthesia 1983; 38: 902-904
  • 410 Bjork VO, Engstrom CG. The treatment of ventilatory insufficiency after pulmonary resection with tracheostomy and prolonged artificial ventilation. J Thorac Surg 1955; 30: 356-367
  • 411 Heffner JE, Hess D. Tracheostomy management in the chronically ventilated patient. Clin Chest Med 2001; 22: 55-69
  • 412 Cox CE, Carson SS, Holmes GM. et al. Increase in tracheostomy for prolonged mechanical ventilation in North Carolina, 1993–2002. Crit Care Med 2004; 32: 2219-2226
  • 413 Heffner JE, Zamora CA. Clinical predictors of prolonged translaryngeal intubation in patients with the adult respiratory distress syndrome. Chest 1990; 97: 447-452
  • 414 Sellers BJ, Davis BL, Larkin PW. et al. Early prediction of prolonged ventilator dependence in thermally injured patients. J Trauma 1997; 43: 899-903
  • 415 Troché G, Moine P. Is the duration of mechanical ventilation predictable?. Chest 1997; 112: 745-751
  • 416 Möller MG, Slaikeu JD, Bonelli P. et al. Early tracheostomy versus late tracheostomy in the surgical intensive care unit. Am J Surg 2005; 189: 293-296
  • 417 Rumbak MJ, Newton M, Truncale T. et al. A prospective, randomized, study comparing early percutaneous dilational tracheotomy to prolonged translaryngeal intubation (delayed tracheotomy) in critically ill medical patients. Crit Care Med 2004; 32: 1689-1694
  • 418 Hsu CL, Chen KY, Chang CH. et al. Timing of tracheostomy as a determinant of weaning success in critically ill patients: a retrospective study. Crit Care 2005; 9: R46-52
  • 419 Trouillet JL, Luyt CE, Guiguet M. et al. Early percutaneous tracheotomy versus prolonged intubation of mechanically ventilated patients after cardiac surgery: a randomized trial. Ann Intern Med 2011; 154: 373-383
  • 420 Young D, Harrison DA, Cuthbertson BH. et al. Effect of early vs late tracheostomy placement on survival in patients receiving mechanical ventilation: the TracMan randomized trial. JAMA 2013; 309: 2121-2129
  • 421 Terragni PP, Antonelli M, Fumagalli R. et al. Early vs late tracheotomy for prevention of pneumonia in mechanically ventilated adult ICU patients: a randomized controlled trial. JAMA 2010; 303: 1483-1489
  • 422 McCredie VA, Alali AS, Scales DC. et al. Effect of Early Versus Late Tracheostomy or Prolonged Intubation in Critically Ill Patients with Acute Brain Injury: A Systematic Review and Meta-Analysis. Neurocrit Care 2017; 26: 14-25
  • 423 Meng L, Wang C, Li J. et al. Early vs late tracheostomy in critically ill patients: a systematic review and meta-analysis. Clin Respir J 2016; 10: 684-692
  • 424 Andriolo BN, Andriolo RB, Saconato H. et al. Early versus late tracheostomy for critically ill patients. Cochrane Database Syst Rev 2015; 1: CD007271
  • 425 Liu CC, Dort J. Re: Early versus late tracheostomy: a systematic review and meta-analysis. Otolaryngol Head Neck Surg 2015; 152: 768-769
  • 426 Cai SQ, Hu JW, Liu D. et al. The influence of tracheostomy timing on outcomes in trauma patients: A meta-analysis. Injury 2017; 48: 866-873
  • 427 Szakmany T, Russell P, Wilkes AR. et al. Effect of early tracheostomy on resource utilization and clinical outcomes in critically ill patients: meta-analysis of randomized controlled trials. Br J Anaesth 2015; 114: 396-405
  • 428 Huang H, Li Y, Ariani F. et al. Timing of tracheostomy in critically ill patients: a meta-analysis. PloS one 2014; 9: e92981
  • 429 Shan L, Zhang R, Li LD. Effect of timing of tracheotomy on clinical outcomes: an update meta-analysis including 11 trials. Chin Med Sci J 2013; 28: 159-166
  • 430 Siempos II, Ntaidou TK, Filippidis FT. et al. Effect of early versus late or no tracheostomy on mortality and pneumonia of critically ill patients receiving mechanical ventilation: a systematic review and meta-analysis. Lancet Respir Med 2015; 3: 150-158
  • 431 Hosokawa K, Nishimura M, Egi M. et al. Timing of tracheotomy in ICU patients: a systematic review of randomized controlled trials. Crit Care 2015; 19: 424
  • 432 Ledgerwood LG, Salgado MD, Black H. et al. Tracheotomy tubes with suction above the cuff reduce the rate of ventilator-associated pneumonia in intensive care unit patients. Ann Otol Rhinol Laryngol 2013; 122: 3-8
  • 433 Srinet P, Van Daele DJ, Adam SI. et al. A Biomechanical Study of Hyoid Bone and Laryngeal Movements During Swallowing Comparing the Blom Low Profile Voice Inner Cannula and Passy-Muir One Way Tracheotomy Tube Speaking Valves. Dysphagia 2015; 30: 723-729
  • 434 Adam SI, Srinet P, Aronberg RM. et al. Verbal communication with the Blom low profile and Passy-Muir one-way tracheotomy tube speaking valves. J Commun Disord 2015; 56: 40-46
  • 435 Garguilo M, Leroux K, Lejaille M. et al. Patient-controlled positive end-expiratory pressure with neuromuscular disease: effect on speech in patients with tracheostomy and mechanical ventilation support. Chest 2013; 143: 1243-1251
  • 436 Prigent H, Orlikowski D, Blumen MB. et al. Characteristics of tracheostomy phonation valves. Eur Respir J 2006; 27: 992-996
  • 437 van den Boer C, Lansaat L, Muller SH. et al. Comparative ex vivo study on humidifying function of three speaking valves with integrated heat and moisture exchanger for tracheotomised patients. Clin Otolaryngol 2015; 40: 616-621
  • 438 Marchese S, Corrado A, Scala R. et al. Tracheostomy in patients with long-term mechanical ventilation: a survey. Respir Med 2010; 104: 749-753
  • 439 Rosenblüh J, Schönhofer B, Kemper P. et al. Bedeutung von Platzhaltern tracheotomierter Patienten während der Entwöhnungsphasen nach Langzeitbeatmung. Med Klin 1994; 89: 61-63
  • 440 Ferrer M, Esquinas A, Arancibia F. et al. Noninvasive ventilation during persistent weaning failure: a randomized controlled trial. Am J Respir Crit Care Med 2003; 168: 70-76
  • 441 Girault C, Daudenthun I, Chevron V. et al. Noninvasive ventilation as a systematic extubation and weaning technique in acute-on-chronic respiratory failure: a prospective, randomized controlled study. Am J Respir Crit Care Med 1999; 160: 86-92
  • 442 Ferrer M, Sellarés J, Valencia M. et al. Non-invasive ventilation after extubation in hypercapnic patients with chronic respiratory disorders: randomised controlled trial. Lancet 2009; 374: 1082-1088
  • 443 Bach JR, Goncalves M. Ventilator weaning by lung expansion and decannulation. Am J Phys Med Rehabil 2004; 83: 560-568
  • 444 Bach JR, Gonçalves MR, Hamdani I. et al. Extubation of patients with neuromuscular weakness: a new management paradigm. Chest 2010; 137: 1033-1039
  • 445 Lin MC, Liaw MY, Huang CC. et al. Bilateral diaphragmatic paralysis – a rare cause of acute respiratory failure managed with nasal mask bilevel positive airway pressure (BiPAP) ventilation. Eur Respir J 1997; 10: 1922-1924
  • 446 Pilcher DV, Bailey MJ, Treacher DF. et al. Outcomes, cost and long term survival of patients referred to a regional weaning centre. Thorax 2005; 60: 187-192
  • 447 Murphy PB, Rehal S, Arbane G. et al. Effect of Home Noninvasive Ventilation With Oxygen Therapy vs Oxygen Therapy Alone on Hospital Readmission or Death After an Acute COPD Exacerbation: A Randomized Clinical Trial. JAMA 2017; 317: 2177-2186
  • 448 Köhnlein T, Windisch W, Köhler D. et al. Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicentre, randomised, controlled clinical trial. Lancet Respir Med 2014; 2: 698-705
  • 449 Ward JJ. High-flow oxygen administration by nasal cannula for adult and perinatal patients. Respir Care 2013; 58: 98-122
  • 450 Patel A, Nouraei SA. Transnasal Humidified Rapid-Insufflation Ventilatory Exchange (THRIVE): a physiological method of increasing apnoea time in patients with difficult airways. Anaesthesia 2015; 70: 323-329
  • 451 Goligher EC, Slutsky AS. Not Just Oxygen? Mechanisms of Benefit from High-Flow Nasal Cannula in Hypoxemic Respiratory Failure. Am J Respir Crit Care Med 2017; 195: 1128-1131
  • 452 Christopher KL, Schwartz MD. Transtracheal oxygen therapy. Chest 2011; 139: 435-440
  • 453 Schönhofer B, Wenzel M, Wiemann J. et al. Transtracheale Sauerstoffinsufflation: Reduktion der Atemarbeit in der Entwöhnung vom Respirator nach Langzeitbeatmung. Intensivmed 1995; 32: 199-204
  • 454 Schönhofer B, Geibel M, Stickeler P. et al. Endoscopic placement of a tracheal oxygen catheter: a new technique. Intensive Care Med 1997; 23: 445-449
  • 455 Nuckton TJ, Alonso JA, Kallet RH. et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002; 346: 1281-1286
  • 456 Frat JP, Thille AW, Mercat A. et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015; 372: 2185-2196
  • 457 Stéphan F, Barrucand B, Petit P. et al. High-Flow Nasal Oxygen vs Noninvasive Positive Airway Pressure in Hypoxemic Patients After Cardiothoracic Surgery: A Randomized Clinical Trial. JAMA 2015; 313: 2331-2339
  • 458 Hernández G, Vaquero C, González P. et al. Effect of Postextubation High-Flow Nasal Cannula vs Conventional Oxygen Therapy on Reintubation in Low-Risk Patients: A Randomized Clinical Trial. JAMA 2016; 315: 1354-1361
  • 459 Hernández G, Vaquero C, Colinas L. et al. Effect of Postextubation High-Flow Nasal Cannula vs Noninvasive Ventilation on Reintubation and Postextubation Respiratory Failure in High-Risk Patients: A Randomized Clinical Trial. JAMA 2016; 316: 1565-1574
  • 460 Doshi P, Whittle JS, Bublewicz M. et al. High-Velocity Nasal Insufflation in the Treatment of Respiratory Failure: A Randomized Clinical Trial. Ann Emerg Med 2018; 72: 73-83.e5
  • 461 Monro-Somerville T, Sim M, Ruddy J. et al. The Effect of High-Flow Nasal Cannula Oxygen Therapy on Mortality and Intubation Rate in Acute Respiratory Failure: A Systematic Review and Meta-Analysis. Crit Care Med 2017; 45: e449-e456
  • 462 Zhu Y, Yin H, Zhang R. et al. High-flow nasal cannula oxygen therapy versus conventional oxygen therapy in patients with acute respiratory failure: a systematic review and meta-analysis of randomized controlled trials. BMC Pulm Med 2017; 17: 201
  • 463 Corley A, Rickard CM, Aitken LM. et al. High-flow nasal cannulae for respiratory support in adult intensive care patients. Cochrane Database Syst Rev 2017; 5: CD010172
  • 464 Ni YN, Luo J, Yu H. et al. Can High-flow Nasal Cannula Reduce the Rate of Endotracheal Intubation in Adult Patients With Acute Respiratory Failure Compared With Conventional Oxygen Therapy and Noninvasive Positive Pressure Ventilation? A Systematic Review and Meta-analysis. Chest 2017; 151: 764-775
  • 465 Ischaki E, Pantazopoulos I, Zakynthinos S. Nasal high flow therapy: a novel treatment rather than a more expensive oxygen device. Eur Respir Rev 2017; 26: 145
  • 466 Ou X, Hua Y, Liu J. et al. Effect of high-flow nasal cannula oxygen therapy in adults with acute hypoxemic respiratory failure: a meta-analysis of randomized controlled trials. CMAJ 2017; 189: E260-E267
  • 467 Leeies M, Flynn E, Turgeon AF. et al. High-flow oxygen via nasal cannulae in patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. Syst Rev 2017; 6: 202
  • 468 Zhao H, Wang H, Sun F. et al. High-flow nasal cannula oxygen therapy is superior to conventional oxygen therapy but not to noninvasive mechanical ventilation on intubation rate: a systematic review and meta-analysis. Crit Care 2017; 21: 184
  • 469 Nedel WL, Deutschendorf C, Moraes Rodrigues Filho E. High-Flow Nasal Cannula in Critically Ill Subjects With or at Risk for Respiratory Failure: A Systematic Review and Meta-Analysis. Respir Care 2017; 62: 123-132
  • 470 Liatsi D, Tsapas B, Pampori S. et al. Respiratory, metabolic and hemodynamic effects of clonidine in ventilated patients presenting with withdrawal syndrome. Intensive Care Med 2009; 35: 275-281
  • 471 Natalini G, Di Maio A, Rosano A. et al. Remifentanil improves breathing pattern and reduces inspiratory workload in tachypneic patients. Respir Care 2011; 56: 827-833
  • 472 Heunks LM, van der Hoeven JG. Clinical review: the ABC of weaning failure – a structured approach. Crit Care 2010; 14: 245
  • 473 Bancalari E, Claure N. Strategies to accelerate weaning from respiratory support. Early Hum Dev 2013; 89: S4-S6
  • 474 Parnell H, Quirke G, Farmer S. et al. The successful treatment of hypercapnic respiratory failure with oral modafinil. Int J Chron Obstruct Pulmon Dis 2014; 9: 413-419
  • 475 Kim DW, Joo JD, In JH. et al. Comparison of the recovery and respiratory effects of aminophylline and doxapram following total intravenous anesthesia with propofol and remifentanil. J Clin Anesth 2013; 25: 173-176
  • 476 Abbasi S, Farsaei S, Fazel K. et al. Can donepezil facilitate weaning from mechanical ventilation in difficult to wean patients? An interventional pilot study. Daru 2015; 23: 23
  • 477 Williams SC, Marshall NS, Kennerson M. et al. Modafinil effects during acute continuous positive airway pressure withdrawal: a randomized crossover double-blind placebo-controlled trial. Am J Respir Crit Care Med 2010; 181: 825-831
  • 478 Faisy C, Meziani F, Planquette B. et al. Effect of Acetazolamide vs Placebo on Duration of Invasive Mechanical Ventilation Among Patients With Chronic Obstructive Pulmonary Disease: A Randomized Clinical Trial. JAMA 2016; 315: 480-488
  • 479 Rialp G, Raurich JM, Llompart-Pou JA. et al. Respiratory CO2 response depends on plasma bicarbonate concentration in mechanically ventilated patients. Med Intensiv 2014; 38: 203-210
  • 480 Beattie WS, Karkouti K, Wijeysundera DN. et al. Risk associated with preoperative anemia in noncardiac surgery: a single-center cohort study. Anesthesiology 2009; 110: 574-581
  • 481 Carrascal Y, Maroto L, Rey J. et al. Impact of preoperative anemia on cardiac surgery in octogenarians. Interact Cardiovasc Thorac Surg 2010; 10: 249-255
  • 482 De Santo L, Romano G, Della Corte A. et al. Preoperative anemia in patients undergoing coronary artery bypass grafting predicts acute kidney injury. J Thorac Cardiovasc Surg 2009; 138: 965-970
  • 483 Karkouti K, Wijeysundera DN, Beattie WS. Reducing Bleeding in Cardiac Surgery (RBC) Investigators Risk associated with preoperative anemia in cardiac surgery: a multicenter cohort study. Circulation 2008; 117: 478-484
  • 484 Wu WC, Schifftner TL, Henderson WG. et al. Preoperative hematocrit levels and postoperative outcomes in older patients undergoing noncardiac surgery. JAMA 2007; 297: 2481-2488
  • 485 Kulier A, Levin J, Moser R. et al. Impact of preoperative anemia on outcome in patients undergoing coronary artery bypass graft surgery. Circulation 2007; 116: 471-479
  • 486 Wu WC, Smith TS, Henderson WG. et al. Operative blood loss, blood transfusion, and 30-day mortality in older patients after major noncardiac surgery. Ann Surg 2010; 252: 11-17
  • 487 Klein HG, Spahn DR, Carson JL. Red blood cell transfusion in clinical practice. Lancet 2007; 370: 415-426
  • 488 Wang JK, Klein HG. Red blood cell transfusion in the treatment and management of anaemia: the search for the elusive transfusion trigger. Vox Sang 2010; 98: 2-11
  • 489 Viires N, Sillye G, Aubier M. et al. Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation. J Clin Invest 1983; 72: 935-947
  • 490 Holst LB, Haase N, Wetterslev J. et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med 2014; 371: 1381-1391
  • 491 Murphy GJ, Pike K, Rogers CA. et al. Liberal or restrictive transfusion after cardiac surgery. N Engl J Med 2015; 372: 997-1008
  • 492 Mazer CD, Whitlock RP, Fergusson DA. et al. Restrictive or Liberal Red-Cell Transfusion for Cardiac Surgery. N Engl J Med 2017; 377: 2133-2144
  • 493 Odutayo A, Desborough MJ, Trivella M. et al. Restrictive versus liberal blood transfusion for gastrointestinal bleeding: a systematic review and meta-analysis of randomised controlled trials. Lancet Gastroenterol Hepatol 2017; 2: 354-360
  • 494 Cornet AD, Zwart E, Kingma SD. et al. Pulmonary effects of red blood cell transfusion in critically ill, non-bleeding patients. Transfus Med 2010; 20: 221-226
  • 495 Zilberberg MD, Shorr AF. Effect of a restrictive transfusion strategy on transfusion-attributable severe acute complications and costs in the US ICUs: a model simulation. BMC Health Serv Res 2007; 7: 138
  • 496 Zilberberg MD, Stern LS, Wiederkehr DP. et al. Anemia, transfusions and hospital outcomes among critically ill patients on prolonged acute mechanical ventilation: a retrospective cohort study. Crit Care 2008; 12: R60
  • 497 Hendrickson JE, Hillyer CD. Noninfectious serious hazards of transfusion. Anesth Analg 2009; 108: 759-769
  • 498 Rohde JM, Dimcheff DE, Blumberg N. et al. Health care-associated infection after red blood cell transfusion: a systematic review and meta-analysis. JAMA 2014; 311: 1317-1326
  • 499 Carson JL, Stanworth SJ, Roubinian N. et al. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev 2016; 10: CD002042
  • 500 American Society of Anesthesiologists Task Force on Perioperative Blood Management. Practice guidelines for perioperative blood management: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management*. Anesthesiology 2015; 122: 241-275
  • 501 Carson JL, Grossman BJ, Kleinman S. et al. Red blood cell transfusion: a clinical practice guideline from the AABB*. Ann Intern Med 2012; 157: 49-58
  • 502 Bundesärztekammer. Querschnitts-Leitlinien (BÄK) zur Therapie mit Blutkomponenten und Plasmaderivaten – 4. aktualisierte und überarbeitete Auflage. Köln: Deutscher Ärzte-Verlag; 2015. ISBN: 978-3-7691-1269-6
  • 503 Dellinger RP, Levy MM, Rhodes A. et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013; 39: 165-228
  • 504 Qaseem A, Humphrey LL, Fitterman N. et al. Treatment of anemia in patients with heart disease: a clinical practice guideline from the American College of Physicians. Ann Intern Med 2013; 159: 770-779
  • 505 Schönhofer B, Böhrer H, Köhler D. Blood transfusion facilitating difficult weaning from the ventilator. Anaesthesia 1998; 53: 181-184
  • 506 Orlov D, OʼFarrell R, McCluskey SA. et al. The clinical utility of an index of global oxygenation for guiding red blood cell transfusion in cardiac surgery. Transfusion 2009; 49: 682-688
  • 507 Vallet B, Adamczyk S, Barreau O. et al. Physiologic transfusion triggers. Best Pract Res Clin Anaesthesiol 2007; 21: 173-181
  • 508 Adamczyk S, Robin E, Barreau O. et al. Contribution of central venous oxygen saturation in postoperative blood transfusion decision. Ann Fr Anesth Reanim 2009; 28: 522-530
  • 509 Vallet B, Robin E, Lebuffe G. Venous oxygen saturation as a physiologic transfusion trigger. Crit Care 2010; 14: 213
  • 510 Vuille-Lessard E, Boudreault D, Girard F. et al. Red blood cell transfusion practice in elective orthopedic surgery: a multicenter cohort study. Transfusion 2010; 50: 2117-2124
  • 511 Hébert PC, Tinmouth A, Corwin HL. Controversies in RBC transfusion in the critically ill. Chest 2007; 131: 1583-1590
  • 512 Zeroual N, Samarani G, Gallais J. et al. ScvO2 changes after red-blood-cell transfusion for anaemia in cardiothoracic and vascular ICU patients: an observational study. Vox sanguinis 2018; 113: 136-142
  • 513 Römers LH, Bakker C, Dollée N. et al. Cutaneous Mitochondrial PO2, but Not Tissue Oxygen Saturation, Is an Early Indicator of the Physiologic Limit of Hemodilution in the Pig. Anesthesiology 2016; 125: 124-132
  • 514 Cahill NE, Dhaliwal R, Day AG. et al. Nutrition therapy in the critical care setting: what is “best achievable” practice? An international multicenter observational study. Crit Care Med 2010; 38: 395-401
  • 515 Compher C, Chittams J, Sammarco T. et al. Greater Protein and Energy Intake May Be Associated With Improved Mortality in Higher Risk Critically Ill Patients: A Multicenter, Multinational Observational Study. Crit Care Med 2017; 45: 156-163
  • 516 Hill GL. Impact of nutritional support on the clinical outcome of the surgical patient. Clin Nutr 1994; 13: 331-340
  • 517 Plank LD, Hill GL. Energy balance in critical illness. Proc Nutr Soc 2003; 62: 545-552
  • 518 Herve P, Simonneau G, Girard P. et al. Hypercapnic acidosis induced by nutrition in mechanically ventilated patients: glucose versus fat. Crit Care Med 1985; 13: 537-540
  • 519 McClave SA, Taylor BE, Martindale RG. et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 2016; 40: 159-211
  • 520 Reintam Blaser A, Starkopf J, Alhazzani W. et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med 2017; 43: 380-398
  • 521 al-Saady NM, Blackmore CM, Bennett ED. High fat, low carbohydrate, enteral feeding lowers PaCO2 and reduces the period of ventilation in artificially ventilated patients. Intensive Care Med 1989; 15: 290-295
  • 522 van den Berg B, Bogaard JM, Hop WC. High fat, low carbohydrate, enteral feeding in patients weaning from the ventilator. Intensive Care Med 1994; 20: 470-475
  • 523 Mesejo A, Acosta JA, Ortega C. et al. Comparison of a high-protein disease-specific enteral formula with a high-protein enteral formula in hyperglycemic critically ill patients. Clin Nutr 2003; 22: 295-305
  • 524 Kostadima E, Kaditis AG, Alexopoulos EI. et al. Early gastrostomy reduces the rate of ventilator-associated pneumonia in stroke or head injury patients. Eur Respir J 2005; 26: 106-111
  • 525 Elke G, Hartl WH, Kreymann KG. et al. DGEM-Leitlinie: „Klinische Ernährung in der Intensivmedizin“. 2018 www.awmf.org/leitlinien/aktuelle-leitlinien Register-Nummer 073-004
  • 526 Peterson SJ, Tsai AA, Scala CM. et al. Adequacy of oral intake in critically ill patients 1 week after extubation. J Am Diet Assoc 2010; 110: 427-433
  • 527 Kreymann G, Adolph M, Mueller MJ. Working group for developing the guidelines for parenteral nutrition of The German Association for Nutritional Medicine Energy expenditure and energy intake – Guidelines on Parenteral Nutrition, Chapter 3. Ger Med Sci 2009; 7: Doc25
  • 528 Zusman O, Theilla M, Cohen J. et al. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study. Crit Care 2016; 20: 367
  • 529 Singer P, Blaser AR, Berger MM. et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 2019; 38: 48-79
  • 530 Gadek JE, DeMichele SJ, Karlstad MD. et al. Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group. Crit Care Med 1999; 27: 1409-1420
  • 531 Singer P, Theilla M, Fisher H. et al. Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med 2006; 34: 1033-1038
  • 532 Pontes-Arruda A, Aragão AM, Albuquerque JD. Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crit Care Med 2006; 34: 2325-2333
  • 533 Pontes-Arruda A, Demichele S, Seth A. et al. The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of outcome data. JPEN J Parenter Enteral Nutr 2008; 32: 596-605
  • 534 Marik PE, Zaloga GP. Immunonutrition in critically ill patients: a systematic review and analysis of the literature. Intensive Care Med 2008; 34: 1980-1990
  • 535 Rice TW, Wheeler AP, Thompson BT. et al. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA 2011; 306: 1574-1581
  • 536 Li C, Bo L, Liu W. et al. Enteral Immunomodulatory Diet (Omega-3 Fatty Acid, γ-Linolenic Acid and Antioxidant Supplementation) for Acute Lung Injury and Acute Respiratory Distress Syndrome: An Updated Systematic Review and Meta-Analysis. Nutrients 2015; 7: 5572-5585
  • 537 Santacruz CA, Orbegozo D, Vincent JL. et al. Modulation of Dietary Lipid Composition During Acute Respiratory Distress Syndrome: Systematic Review and Meta-Analysis. JPEN J Parenter Enteral Nutr 2015; 39: 837-846
  • 538 Hurt RT, McClave SA, Martindale RG. et al. Summary Points and Consensus Recommendations From the International Protein Summit. Nutr Clin Pract 2017; 32: 142S-151S
  • 539 Heyland DK, Stapleton RD, Mourtzakis M. et al. Combining nutrition and exercise to optimize survival and recovery from critical illness: Conceptual and methodological issues. Clin Nutr 2016; 35: 1196-1206
  • 540 Ha EV, Rogers DF. Novel Therapies to Inhibit Mucus Synthesis and Secretion in Airway Hypersecretory Diseases. Pharmacology 2016; 97: 84-100
  • 541 Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med 2010; 363: 2233-2247
  • 542 Strickland SL, Rubin BK, Haas CF. et al. AARC Clinical Practice Guideline: Effectiveness of Pharmacologic Airway Clearance Therapies in Hospitalized Patients. Respir Care 2015; 60: 1071-1077
  • 543 Branson RD. Secretion management in the mechanically ventilated patient. Respir Care 2007; 52: 1328-1342
  • 544 Sturgess JM, Palfrey AJ, Reid L. The viscosity of bronchial secretion. Clin Sci 1970; 38: 145-156
  • 545 McCarren B, Alison JA. Physiological effects of vibration in subjects with cystic fibrosis. Eur Respir J 2006; 27: 1204-1209
  • 546 Clini EM, Antoni FD, Vitacca M. et al. Intrapulmonary percussive ventilation in tracheostomized patients: a randomized controlled trial. Intensive Care Med 2006; 32: 1994-2001
  • 547 Donaldson SH, Bennett WD, Zeman KL. et al. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 2006; 354: 241-250
  • 548 Bellone A, Spagnolatti L, Massobrio M. et al. Short-term effects of expiration under positive pressure in patients with acute exacerbation of chronic obstructive pulmonary disease and mild acidosis requiring non-invasive positive pressure ventilation. Intensive Care Med 2002; 28: 581-585
  • 549 Chen YH, Yeh MC, Hu HC. et al. Effects of Lung Expansion Therapy on Lung Function in Patients with Prolonged Mechanical Ventilation. Can Respir J 2016; 2016: 5624315
  • 550 Guimarães FS, Lopes AJ, Constantino SS. et al. Expiratory rib cage Compression in mechanically ventilated subjects: a randomized crossover trial [corrected]. Respir Care 2014; 59: 678-685
  • 551 Bach JR. Update and perspective on noninvasive respiratory muscle aids. Part 2: The expiratory aids. Chest 1994; 105: 1538-1544
  • 552 Chatwin M, Ross E, Hart N. et al. Cough augmentation with mechanical insufflation/exsufflation in patients with neuromuscular weakness. Eur Respir J 2003; 21: 502-508
  • 553 Bach JR, Saporito LR, Shah HR. et al. Decanulation of patients with severe respiratory muscle insufficiency: efficacy of mechanical insufflation-exsufflation. J Rehabil Med 2014; 46: 1037-1041
  • 554 Rose L, Adhikari NK, Leasa D. et al. Cough augmentation techniques for extubation or weaning critically ill patients from mechanical ventilation. Cochrane Database Syst Rev 2017; 1: CD011833
  • 555 Macht M, King CJ, Wimbish T. et al. Post-extubation dysphagia is associated with longer hospitalization in survivors of critical illness with neurologic impairment. Crit Care 2013; 17: R119
  • 556 Skoretz SA, Flowers HL, Martino R. The incidence of dysphagia following endotracheal intubation: a systematic review. Chest 2010; 137: 665-673
  • 557 Kwok AM, Davis JW, Cagle KM. et al. Post-extubation dysphagia in trauma patients: itʼs hard to swallow. Am J Surg 2013; 206: 924-927
  • 558 Skoretz SA, Yau TM, Ivanov J. et al. Dysphagia and associated risk factors following extubation in cardiovascular surgical patients. Dysphagia 2014; 29: 647-654
  • 559 Dasgupta A, Rice R, Mascha E. et al. Four-year experience with a unit for long-term ventilation (respiratory special care unit) at the Cleveland Clinic Foundation. Chest 1999; 116: 447-455
  • 560 Zielske J, Bohne S, Brunkhorst FM. et al. Acute and long-term dysphagia in critically ill patients with severe sepsis: results of a prospective controlled observational study. Eur Arch Otorhinolaryngol 2014; 271: 3085-3093
  • 561 Leder SB. Incidence and type of aspiration in acute care patients requiring mechanical ventilation via a new tracheotomy. Chest 2002; 122: 1721-1726
  • 562 Donzelli J, Brady S, Wesling M. et al. Effects of the removal of the tracheotomy tube on swallowing during the fiberoptic endoscopic exam of the swallow (FEES). Dysphagia 2005; 20: 283-289
  • 563 Terk AR, Leder SB, Burrell MI. Hyoid bone and laryngeal movement dependent upon presence of a tracheotomy tube. Dysphagia 2007; 22: 89-93
  • 564 Berlinghof K, Rollnik JD. Trachealkanülenmanagement. In: Rollnik JD. Die neurologisch-neurochirurgische Frührehabilitation. Heidelberg: Springer; 2013: 179-192
  • 565 Pohl M, Bertram M, Bucka C. et al. Course of rehabilitation in early neurological/neurosurgical rehabilitation. Results of a 2014 multi-center evaluation in Germany. Nervenarzt 2016; 87: 634-644
  • 566 Donzelli J, Brady S, Wesling M. et al. Simultaneous modified Evans blue dye procedure and video nasal endoscopic evaluation of the swallow. Laryngoscope 2001; 111: 1746-1750
  • 567 Belafsky PC, Blumenfeld L, LePage A. et al. The accuracy of the modified Evanʼs blue dye test in predicting aspiration. Laryngoscope 2003; 113: 1969-1972
  • 568 Lynch YT, Clark BJ, Macht M. et al. The accuracy of the bedside swallowing evaluation for detecting aspiration in survivors of acute respiratory failure. J Crit Care 2017; 39: 143-148
  • 569 Reynolds J, Carroll S, Sturdivant C. Fiberoptic Endoscopic Evaluation of Swallowing: A Multidisciplinary Alternative for Assessment of Infants With Dysphagia in the Neonatal Intensive Care Unit. Adv Neonatal Care 2016; 16: 37-43
  • 570 Rosenbek JC, Robbins JA, Roecker EB. et al. A penetration-aspiration scale. Dysphagia 1996; 11: 93-98
  • 571 Bullerdiek M. Dysphagiemanagement. In: Rollnik JD. Die neurologisch-neurochirurgische Frührehabilitation. Heidelberg: Springer; 2013: 117-128
  • 572 So JI, Song DH, Park JH. et al. Accuracy of Ultrasound-Guided and Non-ultrasound-Guided Botulinum Toxin Injection Into Cadaver Salivary Glands. Ann Rehabil Med 2017; 41: 51-57
  • 573 Suiter DM, McCullough GH, Powell PW. Effects of cuff deflation and one-way tracheostomy speaking valve placement on swallow physiology. Dysphagia 2003; 18: 284-292
  • 574 Windisch W, Schönhofer B, Magnet FS. et al. Diagnosis and Treatment of Diaphragmatic Dysfunction. Pneumologie 2016; 70: 454-461
  • 575 Elkins M, Dentice R. Inspiratory muscle training facilitates weaning from mechanical ventilation among patients in the intensive care unit: a systematic review. J Physiother 2015; 61: 125-134
  • 576 Bissett BM, Leditschke IA, Neeman T. et al. Inspiratory muscle training to enhance recovery from mechanical ventilation: a randomised trial. Thorax 2016; 71: 812-819
  • 577 Moodie L, Reeve J, Elkins M. Inspiratory muscle training increases inspiratory muscle strength in patients weaning from mechanical ventilation: a systematic review. J Physiother 2011; 57: 213-221
  • 578 Hulzebos EH, Helders PJ, Favié NJ. et al. Preoperative intensive inspiratory muscle training to prevent postoperative pulmonary complications in high-risk patients undergoing CABG surgery: a randomized clinical trial. JAMA 2006; 296: 1851-1857
  • 579 Sarnoff SJ, Hardenbergh E, Whittenberger JL. Electrophrenic Respiration. Science 1948; 108: 482
  • 580 Velazco JF, Ghamande S, Surani S. Phrenic Nerve Pacing: Current Concepts. Chapter 13 in Current Issues and Recent Advances in Pacemaker Therapy. Croatia, European Union: InTech; 2012
  • 581 Smith BK, Fuller DD, Martin AD. et al. Diaphragm Pacing as a Rehabilitative Tool for Patients With Pompe Disease Who Are Ventilator-Dependent: Case Series. Phys Ther 2016; 96: 696-703
  • 582 Testelmans D, Nafteux P, Van Cromphaut S. et al. Feasibility of diaphragm pacing in patients after bilateral lung transplantation. Clin Transplant 2017; 31: 12
  • 583 Reynolds SC, Meyyappan R, Thakkar V. et al. Mitigation of Ventilator-induced Diaphragm Atrophy by Transvenous Phrenic Nerve Stimulation. Am J Respir Crit Care Med 2017; 195: 339-348
  • 584 Reynolds S, Ebner A, Meffen T. et al. Diaphragm Activation in Ventilated Patients Using a Novel Transvenous Phrenic Nerve Pacing Catheter. Crit Care Med 2017; 45: e691-e694
  • 585 Percutaneous Temporary Placement of a Phrenic Nerve Stimulator for Diaphragm Pacing (RESCUE2), NCT03096639. https://clinicaltrials.gov/ct2/show/NCT03096639?term=REscue2&rank=1
  • 586 Kaushik M, Wojewodzka-Zelezniakowicz M, Cruz DN. et al. Extracorporeal carbon dioxide removal: the future of lung support lies in the history. Blood Purif 2012; 34: 94-106
  • 587 May AG, Sen A, Cove ME. et al. Extracorporeal CO2 removal by hemodialysis: in vitro model and feasibility. Intensive Care Med Exp 2017; 5: 20
  • 588 Allardet-Servent J, Castanier M, Signouret T. et al. Safety and Efficacy of Combined Extracorporeal CO2 Removal and Renal Replacement Therapy in Patients With Acute Respiratory Distress Syndrome and Acute Kidney Injury: The Pulmonary and Renal Support in Acute Respiratory Distress Syndrome Study. Crit Care Med 2015; 43: 2570-2581
  • 589 Cressoni M, Zanella A, Epp M. et al. Decreasing pulmonary ventilation through bicarbonate ultrafiltration: an experimental study. Crit Care Med 2009; 37: 2612-2618
  • 590 Zanella A, Castagna L, Salerno D. et al. Respiratory Electrodialysis. A Novel, Highly Efficient Extracorporeal CO2 Removal Technique. Am J Respir Crit Care Med 2015; 192: 719-726
  • 591 Fanelli V, Ranieri MV, Mancebo J. et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress sindrome. Crit Care 2016; 20: 36
  • 592 Burki NK, Mani RK, Herth FJF. et al. A novel extracorporeal CO(2) removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest 2013; 143: 678-686
  • 593 Braune S, Sieweke A, Brettner F. et al. The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study. Intensive Care Med 2016; 42: 1437-1444
  • 594 Abrams DC, Brenner K, Burkart KM. et al. Pilot study of extracorporeal carbon dioxide removal to facilitate extubation and ambulation in exacerbations of chronic obstructive pulmonary disease. Ann Am Thorac Soc 2013; 10: 307-314
  • 595 Terragni PP, Del Sorbo L, Mascia L. et al. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 2009; 111: 826-835
  • 596 Taccone FS, Malfertheiner MV, Ferrari F. et al. Extracorporeal CO2 removal in critically ill patients: a systematic review. Minerva Anestesiol 2017; 83: 762-772
  • 597 Karagiannidis C, Brodie D, Strassmann S. et al. Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Med 2016; 42: 889-896
  • 598 Cooper AB, Thornley KS, Young GB. et al. Sleep in critically ill patients requiring mechanical ventilation. Chest 2000; 117: 809-818
  • 599 Elliott R, McKinley S, Cistulli P. et al. Characterisation of sleep in intensive care using 24-hour polysomnography: an observational study. Crit Care 2013; 17: R46
  • 600 Hilton BA. Quantity and quality of patientsʼ sleep and sleep-disturbing factors in a respiratory intensive care unit. J Adv Nurs 1976; 1: 453-468
  • 601 Pisani MA, Friese RS, Gehlbach BK. et al. Sleep in the intensive care unit. Am J Respir Crit Care Med 2015; 191: 731-738
  • 602 Chen HI, Tang YR. Sleep loss impairs inspiratory muscle endurance. Am Rev Respir Dis 1989; 140: 907-909
  • 603 Huttmann SE, Wilms K, Hamm C. et al. Assessment of Sleep in Patients Receiving Invasive Mechanical Ventilation in a Specialized Weaning Unit. Lung 2017; 195: 361-369
  • 604 Bihari S, Doug Mc Evoy R, Matheson E. et al. Factors affecting sleep quality of patients in intensive care unit. J Clin Sleep Med 2012; 8: 301-307
  • 605 https://pneumologie.de/fileadmin/user_upload/Erhebungsbogen_zur_Zertifizierung_Weaning-Zentren_Version_06.pdf
  • 606 Van Rompaey B, Elseviers MM, Van Drom W. et al. The effect of earplugs during the night on the onset of delirium and sleep perception: a randomized controlled trial in intensive care patients. Crit Care 2012; 16: R73
  • 607 Pandharipande P, Ely EW. Sedative and analgesic medications: risk factors for delirium and sleep disturbances in the critically ill. Crit Care Clin 2006; 22: 313-327
  • 608 Kondili E, Alexopoulou C, Xirouchaki N. et al. Effects of propofol on sleep quality in mechanically ventilated critically ill patients: a physiological study. Intensive Care Med 2012; 38: 1640-1646
  • 609 Devlin JW, Skrobik Y, Gélinas C. et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit Care Med 2018; 46: e825-e873
  • 610 Bourne RS, Mills GH, Minelli C. Melatonin therapy to improve nocturnal sleep in critically ill patients: encouraging results from a small randomised controlled trial. Crit Care 2008; 12: R52
  • 611 Shilo L, Dagan Y, Smorjik Y. et al. Effect of melatonin on sleep quality of COPD intensive care patients: a pilot study. Chronobiol Int 2000; 17: 71-76
  • 612 Ibrahim MG, Bellomo R, Hart GK. et al. A double-blind placebo-controlled randomised pilot study of nocturnal melatonin in tracheostomised patients. Crit Care Resusc 2006; 8: 187-191
  • 613 Hatta K, Kishi Y, Wada K. et al. Preventive effects of ramelteon on delirium: a randomized placebo-controlled trial. JAMA psychiatry 2014; 71: 397-403
  • 614 Nishikimi M, Numaguchi A, Takahashi K. et al. Effect of Administration of Ramelteon, a Melatonin Receptor Agonist, on the Duration of Stay in the ICU: A Single-Center Randomized Placebo-Controlled Trial. Crit Care Med 2018; 46: 1099-1105
  • 615 Harrop JS, Sharan AD, Scheid Jr EH. et al. Tracheostomy placement in patients with complete cervical spinal cord injuries: American Spinal Injury Association Grade A. J Neurosurg 2004; 100: 20-23
  • 616 Füssenich W, Hirschfeld Araujo S, Kowald B. et al. Discontinuous ventilator weaning of patients with acute SCI. Spinal Cord 2018; 56: 461-468
  • 617 Chiodo AE, Scelza W, Forchheimer M. Predictors of ventilator weaning in individuals with high cervical spinal cord injury. J Spinal Cord Med 2008; 31: 72-77
  • 618 Popa C, Popa F, Grigorean VT. et al. Vascular dysfunctions following spinal cord injury. J Med Life 2010; 3: 275-285
  • 619 Fromm B, Hundt G, Gerner HJ. et al. Management of respiratory problems unique to high tetraplegia. Spinal Cord 1999; 37: 239-244
  • 620 Gondim FA, Lopes Jr. AC, Oliveira GR. et al. Cardiovascular control after spinal cord injury. Curr Vasc Pharmacol 2004; 2: 71-79
  • 621 Brown R, DiMarco AF, Hoit JD. et al. Respiratory dysfunction and management in spinal cord injury. Respir Care 2006; 51: 853-868
  • 622 McCool D, Ayas N, Brown R. Mechanical ventilation and disuse atrophy of the diaphragm. N Engl J Med 2008; 359: 89
  • 623 Faulkner JA, Maxwell LC, Ruff GL. et al. The diaphragm as a muscle. Contractile properties. Am Rev Respir Dis 1979; 119: 89-92
  • 624 Mantilla CB, Seven YB, Zhan WZ. et al. Diaphragm motor unit recruitment in rats. Respir Physiol Neurobiol 2010; 173: 101-106
  • 625 Hirschfeld S, Exner G, Luukkaala T. et al. Mechanical ventilation or phrenic nerve stimulation for treatment of spinal cord injury-induced respiratory insufficiency. Spinal Cord 2008; 46: 738-742
  • 626 Roussos CS, Macklem PT. Diaphragmatic fatigue in man. J Appl Physiol 1977; 43: 189-197
  • 627 Edwards RH. The diaphragm as a muscle. Mechanisms underlying fatigue. Am Rev Respir Dis 1979; 119: 81-84
  • 628 Walker DJ, Walterspacher S, Schlager D. et al. Characteristics of diaphragmatic fatigue during exhaustive exercise until task failure. Respir Physiol Neurobiol 2011; 176: 14-20
  • 629 Baydur A, Adkins RH, Milic-Emili J. Lung mechanics in individuals with spinal cord injury: effects of injury level and posture. J Appl Physiol 2001; 90: 405-411
  • 630 Estenne M, De Troyer A. Mechanism of the postural dependence of vital capacity in tetraplegic subjects. Am Rev Respir Dis 1987; 135: 367-371
  • 631 Schultz TR, Lin RJ, Watzman HM. et al. Weaning children from mechanical ventilation: a prospective randomized trial of protocol-directed versus physician-directed weaning. Respir Care 2001; 46: 772-782
  • 632 Foronda FK, Troster EJ, Farias JA. et al. The impact of daily evaluation and spontaneous breathing test on the duration of pediatric mechanical ventilation: a randomized controlled trial. Crit Care Med 2011; 39: 2526-2533
  • 633 Hughes MR, Smith CD, Tecklenburg FW. et al. Effects of a weaning protocol on ventilated pediatric intensive care unit (PICU) patients. Top Health Inf Manage 2001; 22: 35-43
  • 634 Restrepo RD, Fortenberry JD, Spainhour C. et al. Protocol-driven ventilator management in children: comparison to nonprotocol care. J Intensive Care Med 2004; 19: 274-284
  • 635 Randolph AG, Wypij D, Venkataraman ST. et al. Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial. JAMA 2002; 288: 2561-2568
  • 636 Bach JR, Sinquee DM, Saporito LR. et al. Efficacy of mechanical insufflation-exsufflation in extubating unweanable subjects with restrictive pulmonary disorders. Respir Care 2015; 60: 477-483
  • 637 Bach JR, Niranjan V, Weaver B. Spinal muscular atrophy type 1: A noninvasive respiratory management approach. Chest 2000; 117: 1100-1105
  • 638 Jouvet P, Farges C, Hatzakis G. et al. Weaning children from mechanical ventilation with a computer-driven system (closed-loop protocol): a pilot study. Pediatr Crit Care Med 2007; 8: 425-432
  • 639 Jouvet P, Eddington A, Payen V. et al. A pilot prospective study on closed loop controlled ventilation and oxygenation in ventilated children during the weaning phase. Crit Care 2012; 16: R85
  • 640 Rose L, Schultz MJ, Cardwell CR. et al. Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children: a cochrane systematic review and meta-analysis. Crit Care 2015; 19: 48
  • 641 Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2015; 16: 428-439
  • 642 Venkataraman ST. Weaning and extubation in infants and children: religion, art, or science. Pediatr Crit Care Med 2002; 3: 203-205
  • 643 Newth CJ, Venkataraman S, Willson DF. et al. Weaning and extubation readiness in pediatric patients. Pediatr Crit Care Med 2009; 10: 1-11
  • 644 Randolph AG, Forbes PW, Gedeit RG. et al. Cumulative fluid intake minus output is not associated with ventilator weaning duration or extubation outcomes in children. Pediatr Crit Care Med 2005; 6: 642-647
  • 645 Foland JA, Fortenberry JD, Warshaw BL. et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med 2004; 32: 1771-1776
  • 646 Goldstein SL, Somers MJ, Baum MA. et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int 2005; 67: 653-658
  • 647 Curley MA, Harris SK, Fraser KA. et al. State Behavioral Scale: a sedation assessment instrument for infants and young children supported on mechanical ventilation. Pediatr Crit Care Med 2006; 7: 107-114
  • 648 Franck LS, Harris SK, Soetenga DJ. et al. The Withdrawal Assessment Tool-1 (WAT-1): an assessment instrument for monitoring opioid and benzodiazepine withdrawal symptoms in pediatric patients. Pediatr Crit Care Med 2008; 9: 573-580
  • 649 Curley MA, Wypij D, Watson RS. et al. Protocolized sedation vs usual care in pediatric patients mechanically ventilated for acute respiratory failure: a randomized clinical trial. JAMA 2015; 313: 379-389
  • 650 Alexander E, Carnevale FA, Razack S. Evaluation of a sedation protocol for intubated critically ill children. Intensive Crit Care Nurs 2002; 18: 292-301
  • 651 Deeter KH, King MA, Ridling D. et al. Successful implementation of a pediatric sedation protocol for mechanically ventilated patients. Crit Care Med 2011; 39: 683-688
  • 652 Jin HS, Yum MS, Kim SL. et al. The efficacy of the COMFORT scale in assessing optimal sedation in critically ill children requiring mechanical ventilation. J Korean Med Sci 2007; 22: 693-697
  • 653 Gupta K, Gupta VK, Muralindharan J. et al. Randomized controlled trial of interrupted versus continuous sedative infusions in ventilated children. Pediatr Crit Care Med 2012; 13: 131-135
  • 654 Farias JA, Retta A, Alía I. et al. A comparison of two methods to perform a breathing trial before extubation in pediatric intensive care patients. Intensive Care Med 2001; 27: 1649-1654
  • 655 Laham JL, Breheny PJ, Rush A. Do clinical parameters predict first planned extubation outcome in the pediatric intensive care unit?. J Intensive Care Med 2015; 30: 89-96
  • 656 Manczur TI, Greenough A, Pryor D. et al. Assessment of respiratory drive and muscle function in the pediatric intensive care unit and prediction of extubation failure. Pediatr Crit Care Med 2000; 1: 124-126
  • 657 Farias JA, Alía I, Retta A. et al. An evaluation of extubation failure predictors in mechanically ventilated infants and children. Intensive Care Med 2002; 28: 752-757
  • 658 Chavez A, dela Cruz R, Zaritsky A. Spontaneous breathing trial predicts successful extubation in infants and children. Pediatr Crit Care Med 2006; 7: 324-328
  • 659 Faustino EV, Gedeit R, Schwarz AJ. et al. Accuracy of an Extubation Readiness Test in Predicting Successful Extubation in Children With Acute Respiratory Failure From Lower Respiratory Tract Disease. Crit Care Med 2017; 45: 94-102
  • 660 Thiagarajan RR, Bratton SL, Martin LD. et al. Predictors of successful extubation in children. Am J Respir Crit Care Med 1999; 160: 1562-1566
  • 661 Riou Y, Chaari W, Leteurtre S. et al. Predictive value of the physiological deadspace/tidal volume ratio in the weaning process of mechanical ventilation in children. J Pediatr (Rio J) 2012; 88: 217-221
  • 662 Johnston C, de Carvalho WB, Piva J. et al. Risk factors for extubation failure in infants with severe acute bronchiolitis. Respir Care 2010; 55: 328-333
  • 663 Baumeister BL, el-Khatib M, Smith PG. et al. Evaluation of predictors of weaning from mechanical ventilation in pediatric patients. Pediatr Pulmonol 1997; 24: 344-352
  • 664 Venkataraman ST, Khan N, Brown A. Validation of predictors of extubation success and failure in mechanically ventilated infants and children. Crit Care Med 2000; 28: 2991-2996
  • 665 Khan N, Brown A, Venkataraman ST. Predictors of extubation success and failure in mechanically ventilated infants and children. Crit Care Med 1996; 24: 1568-1579
  • 666 Manczur TI, Greenough A, Pryor D. et al. Comparison of predictors of extubation from mechanical ventilation in children. Pediatr Crit Care Med 2000; 1: 28-32
  • 667 Noizet O, Leclerc F, Sadik A. et al. Does taking endurance into account improve the prediction of weaning outcome in mechanically ventilated children?. Crit Care 2005; 9: R798-R807
  • 668 Leclerc F, Lecine T, Riou Y. et al. Multi-parameter indices of weaning from mechanical ventilation in children. Rev Mal Respir 2002; 19: 53-61
  • 669 Harikumar G, Egberongbe Y, Nadel S. et al. Tension-time index as a predictor of extubation outcome in ventilated children. Am J Respir Crit Care Med 2009; 180: 982-988
  • 670 Ferguson LP, Walsh BK, Munhall D. et al. A spontaneous breathing trial with pressure support overestimates readiness for extubation in children. Pediatr Crit Care Med 2011; 12: e330-e335
  • 671 Moraes MA, Bonatto RC, Carpi MF. et al. Comparison between intermittent mandatory ventilation and synchronized intermittent mandatory ventilation with pressure support in children. J Pediatr (Rio J) 2009; 85: 15-20
  • 672 Piastra M, De Luca D, Costa R. et al. Neurally adjusted ventilatory assist vs pressure support ventilation in infants recovering from severe acute respiratory distress syndrome: nested study. J Crit Care 2014; 29: 312.e1-5
  • 673 Khemani RG, Hotz J, Morzov R. et al. Evaluating Risk Factors for Pediatric Post-extubation Upper Airway Obstruction Using a Physiology-based Tool. Am J Respir Crit Care Med 2016; 193: 198-209
  • 674 Principi T, Fraser DD, Morrison GC. et al. Complications of mechanical ventilation in the pediatric population. Pediatr Pulmonol 2011; 46: 452-457
  • 675 Edmunds S, Weiss I, Harrison R. Extubation failure in a large pediatric ICU population. Chest 2001; 119: 897-900
  • 676 Foland JA, Super DM, Dahdah NS. et al. The use of the air leak test and corticosteroids in intubated children: a survey of pediatric critical care fellowship directors. Respir Care 2002; 47: 662-666
  • 677 Mhanna MJ, Zamel YB, Tichy CM. et al. The “air leak” test around the endotracheal tube, as a predictor of postextubation stridor, is age dependent in children. Crit Care Med 2002; 30: 2639-2643
  • 678 Wratney AT, Benjamin Jr. DK, Slonim AD. et al. The endotracheal tube air leak test does not predict extubation outcome in critically ill pediatric patients. Pediatr Crit Care Med 2008; 9: 490-496
  • 679 Markovitz BP, Randolph AG. Corticosteroids for the prevention of reintubation and postextubation stridor in pediatric patients: A meta-analysis. Pediatr Crit Care Med 2002; 3: 223-226
  • 680 Markovitz BP, Randolph AG, Khemani RG. Corticosteroids for the prevention and treatment of post-extubation stridor in neonates, children and adults. Cochrane Database Syst Rev 2008; 2: CD001000
  • 681 Nascimento MS, Prado C, Troster EJ. et al. Risk factors for post-extubation stridor in children: the role of orotracheal cannula. Einstein (Sao Paulo) 2015; 13: 226-231
  • 682 Tibballs J, Shann FA, Landau LI. Placebo-controlled trial of prednisolone in children intubated for croup. Lancet 1992; 340: 745-748
  • 683 Kemper KJ, Benson MS, Bishop MJ. Predictors of postextubation stridor in pediatric trauma patients. Crit Care Med 1991; 19: 352-355
  • 684 Kemper KJ, Ritz RH, Benson MS. et al. Helium-oxygen mixture in the treatment of postextubation stridor in pediatric trauma patients. Crit Care Med 1991; 19: 356-359
  • 685 Gupta VK, Cheifetz IM. Heliox administration in the pediatric intensive care unit: an evidence-based review. Pediatr Crit Care Med 2005; 6: 204-211
  • 686 Yaneza MM, James HL, James HP. et al. Changing indications for paediatric tracheostomy and the role of a multidisciplinary tracheostomy clinic. J Laryngol Otol 2015; 129: 882-886
  • 687 Fauroux B, Leboulanger N, Roger G. et al. A Noninvasive positive-pressure ventilation avoids recannulation and facilitates early weaning from tracheotomy in children. Pediatr Crit Care Med 2010; 11: 31-37
  • 688 Suresh S, Huxol HG, Morton RL. Decreasing mechanical ventilator support in medically fragile children with bronchopulmonary dysplasia: A step-by-step weaning protocol at a pediatric long term extended care facility. J Pediatr Rehabil Med 2015; 8: 147-156
  • 689 Tsuboi N, Ide K, Nishimura N. et al. Pediatric tracheostomy: Survival and long-term outcomes. Int J Pediatr Otorhinolaryngol 2016; 89: 81-85
  • 690 Carron JD, Derkay CS, Strope GL. et al. Pediatric tracheotomies: changing indications and outcomes. Laryngoscope 2000; 110: 1099-1104
  • 691 Lewis CW, Carron JD, Perkins JA. et al. Tracheotomy in pediatric patients: a national perspective. Arch Otolaryngol Head Neck Surg 2003; 129: 523-529
  • 692 Lee W, Koltai P, Harrison AM. et al. Indications for tracheotomy in the pediatric intensive care unit population: a pilot study. Arch Otolaryngol Head Neck Surg 2002; 128: 1249-1252
  • 693 Da Silva PS, Waisberg J, Paulo CS. et al. Outcome of patients requiring tracheostomy in a pediatric intensive care unit. Pediatr Int 2005; 47: 554-559
  • 694 Holscher CM, Stewart CL, Peltz ED. et al. Early tracheostomy improves outcomes in severely injured children and adolescents. J Pediatr Surg 2014; 49: 590-592
  • 695 Wootten CT, French LC, Thomas RG. et al. Tracheotomy in the first year of life: outcomes in term infants, the Vanderbilt experience. Otolaryngol Head Neck Surg 2006; 134: 365-369
  • 696 Wilcox LJ, Weber BC, Cunningham TD. et al. Tracheostomy Complications in Institutionalized Children with Long-term Tracheostomy and Ventilator Dependence. Otolaryngol Head Neck Surg 2016; 154: 725-730
  • 697 Vianello A, Arcaro G, Braccioni F. et al. Prevention of extubation failure in high-risk patients with neuromuscular disease. J Crit Care 2011; 26: 517-524
  • 698 Mayordomo-Colunga J, Medina A, Rey C. et al. Non invasive ventilation after extubation in paediatric patients: a preliminary study. BMC Pediatr 2010; 10: 29
  • 699 Essouri S, Chevret L, Durand P. et al. Noninvasive positive pressure ventilation: five years of experience in a pediatric intensive care unit. Pediatr Crit Care Med 2006; 7: 329-334
  • 700 James CS, Hallewell CP, James DP. et al. Predicting the success of non-invasive ventilation in preventing intubation and re-intubation in the paediatric intensive care unit. Intensive Care Med 2011; 37: 1994-2001
  • 701 Testa G, Iodice F, Ricci Z. et al. Comparative evaluation of high-flow nasal cannula and conventional oxygen therapy in paediatric cardiac surgical patients: a randomized controlled trial. Interact Cardiovasc Thorac Surg 2014; 19: 456-461
  • 702 Zilberberg MD, Shorr AF. Prolonged acute mechanical ventilation and hospital bed utilization in 2020 in the United States: implications for budgets, plant and personnel planning. BMC Health Serv Res 2008; 8: 242
  • 703 Stichtag 6. 8. 2015. www.gbe-bund.de Zugriff 06. 08. 2017
  • 704 Tonnelier A, Tonnelier JM, Nowak E. et al. Clinical relevance of classification according to weaning difficulty. Respir Care 2011; 56: 583-590
  • 705 Sellares J, Ferrer M, Cano E. et al. Predictors of prolonged weaning and survival during ventilator weaning in a respiratory ICU. Intensive Care Med 2011; 37: 775-784
  • 706 Pu L, Zhu B, Jiang L. et al. Weaning critically ill patients from mechanical ventilation: A prospective cohort study. J Crit Care 2015; 30: 862.e7-13
  • 707 Jeong BH, Ko MG, Nam J. et al. Differences in clinical outcomes according to weaning classifications in medical intensive care units. PloS one 2015; 10: e0122810
  • 708 Eckehard Frisch, Praxis für außerklinische Beatmung und AOK Nordost; Deutscher Pflegetag 2016. https://docplayer.org/30447596-Politik-wirtschaft-pflege-gesellschaft-das-veranstaltungsheft-zum-deutschen-pflegetag-alle-vortraege-alle-referenten-alle-aussteller.html
  • 709 Kastrup M, Tittmann B, Sawatzki T. et al. Transition from in-hospital ventilation to home ventilation: process description and quality indicators. Ger Med Sci 2017; 15: Doc18
  • 710 Barchfeld T, Dellweg D, Böckling S. et al. Weaning from long-term mechanical ventilation: data of a single weaning center from 2007 to 2011. Dtsch Med Wochenschr 2014; 139: 527-533
  • 711 Kahn JM, Le T, Angus DC. et al. The epidemiology of chronic critical illness in the United States*. Crit Care Med 2015; 43: 282-287
  • 712 Bingold T, Bickenbach J, Coburn M. et al. DGAI-Zertifizierung anästhesiologische Intensivmedizin: Entwöhnung von der Beatmung Modul 1. Anästh Intensivmed 2013; 54: 212-216
  • 713 Bingold T, Bickenbach J, Coburn MD. et al. Modulares Zertifikat Intensivmedizin der DGAI. Anästh Intensivmed 2014; 55: 316-329
  • 714 Beyer J, Berliner M, Glaesener JJ. et al. Position paper on interdisciplinary acute care rehabilitation. Phys Med Rehab Kuror 2015; 25: 260-280
  • 715 Musicco M, Emberti L, Nappi G. et al. Early and long-term outcome of rehabilitation in stroke patients: the role of patient characteristics, time of initiation, and duration of interventions. Arch Phys Med Rehabil 2003; 84: 551-558
  • 716 Bundesarbeitsgemeinschaft Für Rehabilitation (BAR). Empfehlungen zur Neurologischen Rehabilitation von Patienten mit schweren und schwersten Hirnschädigungen in den Phasen B und C. Frankfurt/M: Bundesarbeitsgemeinschaft Für Rehabilitation (BAR); 1995
  • 717 Rollnik JD, Platz T, Böhm KD. et al. Argumente für eine Zuordnung der neurologisch-neurochirurgischen Frührehabilitation (Phase B) zum Krankenhausbereich (§ 39 SGB V). Positionspapier der Kliniken des BDH Bundesverband Rehabilitation. Akt Neurol 2011; 38: 362-368
  • 718 Rollnik JD, Janosch U. Current trends in the length of stay in neurological early rehabilitation. Dtsch Arztebl Int 2010; 107: 286-292
  • 719 Oehmichen F, Ketter G, Mertl-Rötzer M. et al. Weaning from prolonged mechanical ventilation in neurological weaning units: an evaluation of the German Working Group for early Neurorehabilitation. Nervenarzt 2012; 83: 1300-1307
  • 720 Rollnik JD, Krauss JK, Gutenbrunner C. et al. Weaning of neurological early rehabilitation patients from mechanical ventilation: a retrospective observational study. Eur J Phys Rehabil Med 2017; 53: 441-446
  • 721 Dellweg D, Siemon K, Höhn E. et al. Pneumologische Frührehabilitation nach Langzeitbeatmung. DMW 2019; 144: e80-e86
  • 722 Brummel NE, Jackson JC, Pandharipande PP. et al. Delirium in the ICU and subsequent long-term disability among survivors of mechanical ventilation. Crit Care Med 2014; 42: 369-377
  • 723 Heidler MD, Bidu L, Friedrich N. et al. Oral feeding of long-term ventilated patients with a tracheotomy tube. Underestimated danger of dysphagia. Med Klin Intensivmed Notfmed 2015; 110: 55-60
  • 724 Díaz O, Bégin P, Andresen M. et al. Physiological and clinical effects of diurnal noninvasive ventilation in hypercapnic COPD. Eur Respir J 2005; 26: 1016-1023
  • 725 Dellweg D, Reissig K, Hoehn E. et al. Inspiratory muscle training during rehabilitation in successfully weaned hypercapnic patients with COPD. Respir Med 2017; 123: 116-123
  • 726 https://www.aerzteblatt.de/nachrichten/95084/Aerztetag-beschliesst-Liberalisierung-der-Fernbehandlung
  • 727 Randerath WJ, Kamps N, Brambring J. et al. Recommendations for invasive home mechanical ventilation. Pneumologie 2011; 65: 72-88
  • 728 Edwards JD, Morris MC, Nelson JE. et al. Decisions around Long-term Ventilation for Children. Perspectives of Directors of Pediatric Home Ventilation Programs. Ann Am Thorac Soc 2017; 14: 1539-1547
  • 729 Kherani T, Sayal A, Al-Saleh S. et al. A comparison of invasive and noninvasive ventilation in children less than 1 year of age: A long-term follow-up study. Pediatr Pulmonol 2016; 51: 189-195
  • 730 Amin R, Sayal A, Syed F. et al. How long does it take to initiate a child on long-term invasive ventilation? Results from a Canadian pediatric home ventilation program. Can Respir J 2015; 22: 103-108
  • 731 Murphy J. Medically stable children in PICU: better at home. Paediatr Nurs 2008; 20: 14-16
  • 732 Jardine E, Wallis C. Core guidelines for the discharge home of the child on long-term assisted ventilation in the United Kingdom. UK Working Party on Paediatric Long Term Ventilation. Thorax 1998; 53: 762-767
  • 733 Make BJ, Hill NS, Goldberg AI. et al. Mechanical ventilation beyond the intensive care unit. Report of a consensus conference of the American College of Chest Physicians. Chest 1998; 113: 289S-344S
  • 734 Hammer J. Home mechanical ventilation in children: indications and practical aspects. Schweiz Med Wochenschr 2000; 130: 1894-1902
  • 735 Margolan H, Fraser J, Lenton S. Parental experience of services when their child requires long-term ventilation. Implications for commissioning and providing services. Child Care Health Dev 2004; 30: 257-264
  • 736 Ziring PR, Brazdziunas D, Cooley WC. et al. American Academy of Pediatrics. Committee on Children With Disabilities. Care coordination: integrating health and related systems of care for children with special health care needs. Pediatrics 1999; 104: 978-981
  • 737 Liptzin DR, Connell EA, Marable J. et al. Weaning nocturnal ventilation and decannulation in a pediatric ventilator care program. Pediatr Pulmonol 2016; 51: 825-829
  • 738 Henningfeld JK, Maletta K, Ren B. et al. Liberation from home mechanical ventilation and decannulation in children. Pediatr Pulmonol 2016; 51: 838-849
  • 739 Schönhofer B, Geiseler J, Pfeifer M. et al. WeanNet: a network of weaning units headed by pneumologists. Pneumologie 2014; 68: 737-742
  • 740 Hirschfeld S, Thietje R. Spezifische Aspekte der Rehabilitation bei hoher Querschnittlähmung mit Beatmung. Neurol Rehabil 2018; 24: 7-12
  • 741 Simons KS, Laheij RJ, van den Boogaard M. et al. Dynamic light application therapy to reduce the incidence and duration of delirium in intensive-care patients: a randomised controlled trial. Lancet Respir Med 2016; 4: 194-202
  • 742 Oldham MA, Lee HB, Desan PH. Circadian Rhythm Disruption in the Critically Ill: An Opportunity for Improving Outcomes. Crit Care Med 2016; 44: 207-217
  • 743 Schönhofer B, Pfeifer M, Köhler D. [Protracted respiratory insufficiency – epidemiology and network on respiratory weaning after prolonged ventilation]. Pneumologie 2010; 64: 595-599
  • 744 Neitzke G, Burchardi H, Duttge G. et al. Limits of the meaningfulness of intensive care medicine: Position paper of the Ethics Section of DIVI. Med Klin Intensivmed Notfmed 2016; 111: 486-492
  • 745 Janssens U, Burchardi N, Duttge G. et al. Therapiezieländerung und Therapiebegrenzung in der Intensivmedizin. Positionspapier der Sektion Ethik der DIVI. DIVI 2012; 3: 103-107
  • 746 Bundesgesetzblatt: Drittes Gesetz zur Änderung des Betreuungsrechts vom 29. 7. 2009. https://www.bgbl.de/
  • 747 Allensbacher Kurzberichte – Deutlicher Anstieg der Patientenverfügungen. https://www.ifd-allensbach.de/fileadmin/kurzberichte_dokumentationen/PD_2014_20.pdf
  • 748 de Heer G, Saugel B, Sensen B. et al. Advance Directives and Powers of Attorney in Intensive Care Patients. Dtsch Arztebl Int 2017; 114: 363-370
  • 749 Campbell ML, Bizek KS, Thill M. Patient responses during rapid terminal weaning from mechanical ventilation: a prospective study. Crit Care Med 1999; 27: 73-77
  • 750 Schneiderman LJ, Gilmer T, Teetzel HD. Impact of ethics consultations in the intensive care setting: a randomized, controlled trial. Crit Care Med 2000; 28: 3920-3924
  • 751 Dowdy MD, Robertson C, Bander JA. A study of proactive ethics consultation for critically and terminally ill patients with extended lengths of stay. Crit Care Med 1998; 26: 252-259
  • 752 Neitzke G, Böll B, Burchardi H. et al. Documentation of decisions to withhold or withdraw life-sustaining therapies : Recommendation of the Ethics Section of the German Interdisciplinary Association of Critical Care and Emergency Medicine (DIVI) in collaboration with the Ethics Section of the German Society for Medical Intensive Care and Emergency Medicine (DGIIN). Med Klin Intensivmed Notfmed 2017; 112: 527-530
  • 753 Davidson JE, Aslakson RA, Long AC. et al. Guidelines for Family-Centered Care in the Neonatal, Pediatric, and Adult ICU. Crit Care Med 2017; 45: 103-128
  • 754 Muscedere J, Waters B, Varambally A. et al. The impact of frailty on intensive care unit outcomes: a systematic review and meta-analysis. Intensive Care Med 2017; 43: 1105-1122
  • 755 Nauck F. Palliativmedizin in der Intensivmedizin. In: Burchardi H, Larsen R, Marx G, Muhl E, Schölmerich J. Die Intensivmedizin. Berlin, Heidelberg: Springer; 2011
  • 756 Nava S, Sturani C, Hartl S. et al. End-of-life decision-making in respiratory intermediate care units: a European survey. Eur Respir J 2007; 30: 156-164
  • 757 Asch DA, Faber-Langendoen K, Shea JA. et al. The sequence of withdrawing life-sustaining treatment from patients. Am J Med 1999; 107: 153-156
  • 758 Sold M, Schmidt KW. Therapiebegrenzung und Therapiereduktion – praktisch umgesetzt. In: Salomon F. Praxisbuch Ethik in der Intensivmedizin. Berlin: Medizinisch Wissenschaftliche Verlagsgesellschaft; 2012: 247-281
  • 759 Billings JA. Humane terminal extubation reconsidered: the role for preemptive analgesia and sedation. Crit Care Med 2012; 40: 625-630
  • 760 OʼMahony S, McHugh M, Zallman L. et al. Ventilator withdrawal: procedures and outcomes. Report of a collaboration between a critical care division and a palliative care service. J Pain Symptom Manage 2003; 26: 954-961
  • 761 Janssens U. Wann kann eine Reanimation beendet werden?. DIVI 2016; 7: 150-156
  • 762 Kompanje EJ. ‘Death rattle’ after withdrawal of mechanical ventilation: practical and ethical considerations. Intensive Crit Care Nurs 2006; 22: 214-219
  • 763 Kumpf O, Braun JP, Brinkmann A. et al. Quality indicators in intensive care medicine for Germany – third edition 2017. Ger Med Sci 2017; 15: Doc10
  • 764 Deutsche Gesellschaft für Medizinrecht. Grenzen ärztlicher Behandlungspflicht bei schwerstgeschädigten Neugeborenen. Einbecker Empfehlungen. revidierte Fassung 4, 1992: 237
  • 765 Merkel R. Früheuthanasie: Rechtsethische und strafrechtliche Grundlagen ärztlicher Entscheidungen über Leben und Tod in der Neonatalmedizin. Baden-Baden: Nomos; 2001
  • 766 Garros D, Rosychuk RJ, Cox PN. Circumstances surrounding end of life in a pediatric intensive care unit. Pediatrics 2003; 112: e371
  • 767 Livingston MH, Rosenbaum PL, Russell DJ. et al. Quality of life among adolescents with cerebral palsy: what does the literature tell us?. Dev Med Child Neurol 2007; 49: 225-231
  • 768 Lumeng JC, Warschausky SA, Nelson VS. et al. The quality of life of ventilator-assisted children. Pediatr Rehabil 2001; 4: 21-27
  • 769 Paditz E, Zieger S, Bickhardt J. et al. Self-reported quality of life in home mechanical ventilation in childhood, adosescence and young adulthood: Differences between parents and children. Somnologie 2009; 4: 13-19
  • 770 Bach JR, Vega J, Majors J. et al. Spinal muscular atrophy type 1 quality of life. Am J Phys Med Rehabil 2003; 82: 137-142
  • 771 Masri C, Farrell CA, Lacroix J. et al. Decision making and end-of-life care in critically ill children. J Palliat Care 2000; 16: S45-S52
  • 772 Giannini A, Messeri A, Aprile A. et al. End-of-life decisions in pediatric intensive care. Recommendations of the Italian Society of Neonatal and Pediatric Anesthesia and Intensive Care (SARNePI). Paediatr Anaesth 2008; 18: 1089-1095
  • 773 Weidner NJ, Cameron M, Lee RC. et al. End-of-life care for the dying child: what matters most to parents. J Palliat Care 2011; 27: 279-286
  • 774 Oberender F, Tibballs J. Withdrawal of life-support in paediatric intensive care--a study of time intervals between discussion, decision and death. BMC Pediatr 2011; 11: 39
  • 775 Paruk F, Kissoon N, Hartog CS. et al. The Durban World Congress Ethics Round Table Conference Report: III. Withdrawing Mechanical ventilation – the approach should be individualized. J Crit Care 2014; 29: 902-907