Kinder- und Jugendmedizin 2020; 20(01): 23-30
DOI: 10.1055/a-1071-2987
Schwerpunkt
© Georg Thieme Verlag KG Stuttgart · New York

Operationen und akute Erkrankungen bei Typ-1-Diabetes

Leipziger Schema zur intravenösen InsulininfusionstherapieSurgery and intercurrent illness in pediatric patients with type 1 diabetesIntravenous insulin infusion therapy protocol of Leipzig
Alena Gerlinde Thiele
1   Universitätsklinik und Poliklinik für Kinder und Jugendliche Leipzig
2   Center for Pediatric Research Leipzig (CPL), Department of Women and Child Health, Universitätsklinik und Poliklinik für Kinder und Jugendliche Leipzig
,
Maren Heckenmüller
1   Universitätsklinik und Poliklinik für Kinder und Jugendliche Leipzig
,
Heike Bartelt
1   Universitätsklinik und Poliklinik für Kinder und Jugendliche Leipzig
2   Center for Pediatric Research Leipzig (CPL), Department of Women and Child Health, Universitätsklinik und Poliklinik für Kinder und Jugendliche Leipzig
,
Sabine Klamt
1   Universitätsklinik und Poliklinik für Kinder und Jugendliche Leipzig
2   Center for Pediatric Research Leipzig (CPL), Department of Women and Child Health, Universitätsklinik und Poliklinik für Kinder und Jugendliche Leipzig
,
Thomas Michael Kapellen
1   Universitätsklinik und Poliklinik für Kinder und Jugendliche Leipzig
2   Center for Pediatric Research Leipzig (CPL), Department of Women and Child Health, Universitätsklinik und Poliklinik für Kinder und Jugendliche Leipzig
› Author Affiliations
Further Information

Publication History

Publication Date:
24 February 2020 (online)

ZUSAMMENFASSUNG

Eine kontinuierliche intravenöse Insulininfusionstherapie minimiert Blutzucker (BZ)-Schwankungen und damit das Risiko für Stoffwechselentgleisungen bei Kindern und Jugendlichen mit Diabetes mellitus Typ 1 (T1D), während einer Operation oder einer akuten Zweiterkrankung. Die Datenlage hinsichtlich sicherer BZ-Zielbereiche, adäquater Flüssigkeit- und Insulindosierungen während einer Insulininfusion bei pädiatrischen Patienten ist jedoch spärlich. Das hauseigene Schema zur Insulinfusionstherapie wurde nun hinsichtlich seiner Effektivität und Sicherheit in 124 Fällen bei 62 Patienten (n = 78 chirurgische Eingriffe, n = 46 akute Zweiterkrankung, mittleres Alter 9,6 ± 5,4 Jahre) evaluiert. In > 60 % der Infusionszeit lagen die BZ-Werte im Zielbereich, in nur 6 % der Zeit kam es zu kritischen Hypo- und Hyperglykämien. Damit erwies sich das Protokoll als effektiv und sicher. Allerdings erlebten Kinder < 12 Jahre signifikant mehr kritische Hypoglykämien im Vergleich zu Jugendlichen (Hypoglykämie/Fall 2,4 ± 2,7 vs. 0,9 ± 2,0; p < 0,001). Daher erscheint das Schema für Jugendliche geeigneter zu sein. Wir haben folglich das Protokoll für jüngeren Patienten durch Reduktion der Insulindosierung angepasst.

ABSTRACT

Continuous intravenous insulin infusion therapy minimizes blood glucose fluctuations and, therefore, the risk of metabolic crisis in children and adolescents with diabetes mellitus type 1 (T1D) during surgery or intercurrent illness. However, data on the adequate fluid and insulin substitution in this situation is rare. We evaluated effectiveness and safety of our local insulin infusion therapy regimen. We analyzed 124 cases in 62 patients (n = 78 surgical intervention, n = 46 intercurrent illness, mean age 9.6 ± 5.4 years). In > 60 % of the infusion time the blood glucose values were in the target range, in only 6 % of the time critical hypoglycemia and hyperglycemia occurred. Thus, the protocol proved to be effective and safe. However, children < 12 years experienced significantly more critical hypoglycemia compared to adolescents (hypoglycemia/case 2.4 ± 2.7 vs. 0.9 ± 2.0; p < 0.001). Therefore, the regime seems to be more suitable for adolescents. As a consequence, we adapted our protocol in younger patients with reduction of the insulin dose.

 
  • Literatur

  • 1 EURODIAB ACE Study Group Variation and trends in incidence of childhood diabetes in Europe. EURODIAB ACE Study Group. Lancet 2000; 355: 873-876
  • 2 Patterson CC, Gyürüs E, Rosenbauer J. et al Trends in childhood type 1 diabetes incidence in Europe during, 1989–2008 evidence of non-uniformity over time in rates of increase. Diabetologia 2012; 55: 2142-2147
  • 3 Manuwald U, Heinke P, Salzsieder E. et al Incidence trends of type 1 diabetes before and after the reunification in children up to 14 years of age in Saxony, Eastern Germany. PLoS ONE 2017; 12: e0183665
  • 4 DCCT Research Group (Diabetes Control and Complications Trial Research Group) Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. J Pediatr 1994; 125: 177-188
  • 5 Danne T, Kordonouri O, Holder M. et al Thomas A. Prevention of hypoglycemia by using low glucose suspend function in sensor-augmented pump therapy. Diabetes Technol Ther 2011; 13: 1129-1134
  • 6 Karges B, Schwandt A, Heidtmann B. et al Association of Insulin Pump Therapy vs Insulin Injection Therapy With Severe Hypoglycemia, Ketoacidosis, and Glycemic Control Among Children, Adolescents, and Young Adults With Type 1 Diabetes. JAMA 2017; 318: 1358-1366
  • 7 DeSalvo DJ, Miller KM, Hermann JM. et al T1D Exchange and DPV Registries Continuous glucose monitoring and glycemic control among youth with type 1 diabetes: International comparison from the T1D Exchange and DPV Initiative. Pediatr Diabetes 2018; 19: 1271-1275
  • 8 Laffel LM, Limbert C, Phelan H. et al ISPAD Clinical Practice Consensus Guidelines, 2018: Sick day management in children and adolescents with diabetes. Pediatr Diabetes 2018 27 193-204
  • 9 Jefferies C, Rhodes E, Rachmiel M. et al ISPAD Clinical Practice Consensus Guidelines, 2018 Management of children and adolescents with diabetes requiring surgery. Pediatr Diabetes 2018 27 227-236
  • 10 Golden Sh, Peart-Vigilance C, Kao WH. et al Perioperative Glycemic control and the risk of infectious complications in a cohort of adults with the diabetes. Diabetes Care 1999; 22: 1408-1414
  • 11 Wolfsdorf JI, Allgrove J, Craig ME. et al Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Pediatr Diabetes 2014; 15 20 154-179
  • 12 Kushion W, Salisbury PJ, Seitz KW. et al Issues in the care of infants and toddlers with insulin-dependent diabetes mellitus. Diabetes Edu 1991; 17: 107-110
  • 13 Wagner VM, Graber M, Holl RW. Severe hypoglycemia, metabolic control and diabetes management in children with type 1 diabetes in the decade after the Diabetes Control and Complication Trial – a large-scale multicentre study. Eur J Pediatr 2005; 164: 73-79
  • 14 Amiel SA, Sherwin RS, Simonson DC. et al Impaired insulin action in puberty. A contributing factor to poor Glycemic control in adolescents with diabetes. N Engl J Med 1988; 315: 215-219
  • 15 Moran A, Jacobs DR, Steinberger J. et al Insulin resistance during puberty: results from clamp studies in 357 children. Diabetes 1999; 48: 2039-2044
  • 16 Raab J, Haupt F, Kordonouri O. et al Continuous rise of insulin resistance before and after the onset of puberty in children at increased risk for type 1 diabetes-a cross-sectional analysis. Diabetes Metab Res Rev 2013; 29: 631-635
  • 17 Christiansen CL, Schurizek BA, Malling B. et al Insulin treatment of the insulin-dependent diabetic patient undergoing minor surgery. Anaesthesia 1988; 43: 533-537
  • 18 Kaufman FR, Devgan S, Roe TF, Costin G. Perioperative management with prolonged intravenous insulin infusion versus subcutaneous insulin in children with type I diabetes mellitus. J Diabetes Complications 1996; 10: 6-11
  • 19 Van den Berghe G, Wouters P, Weekers F. et al Intensive Insulin Therapy in Critically Ill Patients. N Engl J Med 2001; 345: 1359-1367
  • 20 Van den Berghe G, Wilmer A, Hermans G. et al Intensive insulin therapy in the medical ICU. N Engl J Med 2006; 354: 449-461
  • 21 Agus MSD, Steil GM, Wypij D. et al Tight glycemic Control versus standard care after pediatric cardiac surgery. N Engl J Med 2012; 367: 1208-1219
  • 22 Penning S, Chase JG, Preiser JC. et al Does the achievement of an intermediate Glycemic target reduce organ failure and mortality? A post hoc analysis of the Glucontrol trial. J Crit Care 2014; 29: 374-379
  • 23 Thiele AG, Heckenmüller M, Bartelt H. et al Review of Leipzig protocol for intravenous insulin infusion in pediatric patients with type 1 diabetes during intercurrent illness and surgery. Pediatr Diabetes 2019 February 13th, doi: 10.1111/pedi.12830
  • 24 Allison SP, Tomlin PJ, Chamberlain MJ. Some effects of anaesthesia and surgery on carbohydrate and fat metabolism. Br J Anaesth 1969; 41: 588-593
  • 25 Clarke RS. The hyperglycaemic response to different types of surgery and anaesthesia. Br J Anaesth 1970; 42: 45-53
  • 26 Yudkin JS, Stehouwer CD, Emeis JJ. et al C-reactive protein in healthy subjects. Associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue?. Arterioscler Thromb Vasc Biol 1999; 19: 972-978
  • 27 Festa A, D’Agostino Jr R, Howard G. et al Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000; 102: 42-47
  • 28 Thorell A, Efendic S, Gutniak M. et al Insulin resistance after abdominal surgery. Brit J Surg 1994; 81: 59-63
  • 29 Thorell A, Nygren J, Ljunggvist O. Insulin resistance: a marker of surgical stress. Curr Opin Clin Nutr Metab Care 1999; 2: 69-78
  • 30 Srinivasan V, Spinella PC, Drott HR. et al Association of timing, duration, and intensity of hyperglycemia with intensive care unit mortality in critically ill children. Pediatr Crit Care Med 2004; 5: 329-336
  • 31 Wintergerst KA, Buckingham B, Gandrud L. et al Association of hypoglycemia, hyperglycemia, and glucose variability with morbidity and death in the pediatric intensive care unit. Pediatrics 2006; 118: 173-179
  • 32 Vlasselaers D, Milants I, Desmet L. et al Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. The Lancet 2009; 373: 547-556
  • 33 Dronge AS, Perkal MF, Kancir S. et al Long-term glycemic control and postoperative infectious complications. Arch Surg 2006; 141: 375-380
  • 34 Guvener M, Pasaoglu I, Demircin M. et al Perioperative hyperglycemia is a strong correlate of postoperative infection in type II diabetic patients after coronary artery bypass grafting. Endocrine journal 2002; 49: 531-537
  • 35 Meijering S, Corstjens AM, Tulleken JE. et al Towards a feasible algorithm for tight glycaemic control in critically ill patients: a systematic review of the literature. Crit Care 2006; 10: R19
  • 36 Buchleitner AM, Martinez-Alonso M, Hernandez M. et al Perioperative glycaemic control for diabetic patients undergoing surgery. Cochrane Database Syst Rev 2012; 9: CD007315
  • 37 Macrae D, Grieve R, Allen E. et al A clinical and economic evaluation of Control of Hyperglycaemia in Paediatric intensive care (CHiP): a randomised controlled trial. Health Technol Assess 2014; 18: 1-210
  • 38 Nathan DM, DCCT/EDIC Research Group The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 2014; 37: 9-16
  • 39 Kao LS, Meeks D, Moyer VA. et al Peri-operative glycaemic control regimens for preventing surgical site infections in adults. Cochrane Database Syst Rev 2009; 8: CD006806