Int J Sports Med 2020; 41(03): 141-153
DOI: 10.1055/a-1073-8104
Review
© © Georg Thieme Verlag KG Stuttgart · New York

Exercise Interventions and Cardiovascular Health in Childhood Cancer: A Meta-analysis

Javier S. Morales
1   Universidad Europea de Madrid, Faculty of Sport Sciences, Madrid, Spain
,
Pedro L. Valenzuela
2   Department of Systems Biology, University of Alcalá, Madrid, Spain
,
Alba M. Herrera-Olivares
1   Universidad Europea de Madrid, Faculty of Sport Sciences, Madrid, Spain
,
Antonio Baño-Rodrigo
3   Cardiology Departament, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
,
Adrián Castillo-García
4   Fissac – Physiology, Health and Physical Activity, Exercise and health, Madrid, Spain
,
Cecilia Rincón-Castanedo
1   Universidad Europea de Madrid, Faculty of Sport Sciences, Madrid, Spain
,
Asunción Martín-Ruiz
1   Universidad Europea de Madrid, Faculty of Sport Sciences, Madrid, Spain
,
Alejandro F. San-Juan
5   Laboratorio de Biomecánica Deportiva, Departamento de Salud y Rendimiento Humano, Facultad de Ciencias de la Actividad Física y del Deporte Universidad Politecnica de Madrid, Madrid, Spain
,
Carmen Fiuza-Luces
6   Research Institute of the Hospital 12 de Octubre (i+12) Madrid, Spain
,
Alejandro Lucia
1   Universidad Europea de Madrid, Faculty of Sport Sciences, Madrid, Spain
› Author Affiliations
Funding Research by the authors is supported by the Spanish Ministry of Education, Culture and Sport [Javier S. Morales, contract #FPU14/03435, Cecilia Rincón-Castanedo, contract #FPU16/03956, and Alba M. Herrera-Olivares, contract #FPU18/00215]; Universidad de Alcalá [Pedro L. Valenzuela, contract #FPI2016]; the Spanish Ministry of Economy and Competitiveness and Fondos Feder [Alejandro Lucia, grant #PI15/00558 and PI18/00139]; the Spanish Ministry of Economy and Competitiveness [Miguel Servet research contract (Carmen Fiuza-Luces, ref. #CP18/00034)], ‘Fundación Unoentrecienmil’, ‘Fundación MAPFRE’ [Convocatoria Ignacio H. de Larramendi], and the National Conditioning and Strength Association (NCSA).
Further Information

Publication History



accepted 20 November 2019

Publication Date:
14 January 2020 (online)

Abstract

This study analyzed the effects of physical exercise interventions on cardiovascular endpoints in childhood cancer survivors. Relevant articles were systematically searched in PubMed, CINAHL, and Web of Science databases (since inception to 11th September 2019). We performed a meta-analysis (random effects) to determine the mean difference (expressed together with 95% confidence intervals) between pre- and post-intervention values for those cardiovascular endpoints reported in more than three studies. Twenty-seven studies (of which 16 were controlled studies) comprising 697 participants were included. Only three studies reported adverse events related to exercise interventions. Exercise resulted in an increased performance on the 6-minute walk distance test (mean difference=111 m, 95% confidence interval=39–183, p=0.003) and a non-significant trend (mean difference=1.97 ml∙kg−1∙min−1, 95% confidence interval=−0.12–4.06, p=0.065) for improvement in peak oxygen uptake. Furthermore, left ventricular ejection fraction was preserved after exercise interventions (mean difference=0.29%, 95% confidence interval=−1.41–1.99, p=0.738). In summary, exercise interventions might exert a cardioprotective effect in childhood cancer survivors by improving – or attenuating the decline of – physical capacity and cardiovascular function. Further studies, particularly randomized controlled trials, are needed to confirm these benefits.

 
  • References

  • 1 Oeffinger KC, Mertens AC, Sklar CA. et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006 355. 1572-1582 DOI: 10.1056/NEJMsa060185
  • 2 Tukenova M, Guibout C, Oberlin O. et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol. 2010 28. 1308-1315 DOI: 10.1200/JCO.2008.20.2267
  • 3 Mulrooney DA, Armstrong GT, Huang S. et al. Cardiac outcomes in adult survivors of childhood cancer exposed to cardiotoxic therapy: a cross-sectional study. Ann Intern Med. 2016 164. 93-101 DOI: 10.7326/M15-0424
  • 4 Kremer LC, van der Pal HJ, Offringa M. et al. Frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: a systematic review. Ann Oncol 2002; 13: 819-829
  • 5 Ness KK, Armenian SH, Kadan-Lottick N. et al. Adverse effects of treatment in childhood acute lymphoblastic leukemia: general overview and implications for long-term cardiac health. Expert Rev Hematol. 2011 4. 185-197 DOI: 10.1586/ehm.11.8
  • 6 Morales JS, Valenzuela PL, Rincón-Castanedo C. et al. Is health status impaired in childhood cancer survivors? A systematic review and meta-analysis. Crit Rev Oncol Hematol. 2019 142. 94-118
  • 7 Shaikh F, Dupuis LL, Alexander S. et al. Cardioprotection and second malignant neoplasms associated with dexrazoxane in children receiving anthracycline chemotherapy: a systematic review and meta-analysis. J Natl Cancer Inst. 2015 108. djv357
  • 8 Morales JS, Santana-Sosa E, Santos-Lozano A. et al. Inhospital exercise benefits in childhood cancer: a prospective cohort study. Scand J Med Sci Sports. 2020 30. 126-134
  • 9 Bourdon A, Grandy SA, Keats MR. Aerobic exercise and cardiopulmonary fitness in childhood cancer survivors treated with a cardiotoxic agent: a meta-analysis. Support Care Cancer. 2018 26. 2113-2123 DOI: 10.1007/s00520-018-4208-z
  • 10 Moher D, Liberati A, Tetzlaff J. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009 62. 1006-1012 DOI: 10.1016/j.jclinepi.2009.06.005
  • 11 Harriss DJ, Macsween A, Atkinson G. Standards for ethics in sport and exercise science research: 2020 update. Int J Sports Med. 2019 40. 813-817
  • 12 Dubnov-Raz G, Azar M, Reuveny R. et al. Changes in fitness are associated with changes in body composition and bone health in children after cancer. Acta Paediatr. 2015 104. 1055-1061 DOI: 10.1111/apa.13052
  • 13 Rath SR, Long TM, Bear NL. et al. Metabolic and psychological impact of a pragmatic exercise intervention program in adolescent and young adult survivors of pediatric cancer-related cerebral insult. J Adolesc Young Adult Oncol. 2018 7. 349-357 DOI: 10.1089/jayao.2017.0105
  • 14 Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005 5. 13 DOI: 10.1186/1471-2288-5-13
  • 15 San Juan AF, Chamorro-Viña C, Moral S. et al. Benefits of intrahospital exercise training after pediatric bone marrow transplantation. Int J Sports Med. 2008 29. 439-446 DOI: 10.1055/s-2007-965571
  • 16 Long TM, Rath SR, Wallman KE. et al. Exercise training improves vascular function and secondary health measures in survivors of pediatric oncology related cerebral insult. PLoS One. 2018 13. e0201449 DOI: 10.1371/journal.pone.0201449
  • 17 Verhagen AP, de Vet HC, de Bie RA. et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol 1998; 51: 1235-1241
  • 18 Bax L, Yu LM, Ikeda N. et al. Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol. 2006 6. 50 DOI: 10.1186/1471-2288-6-50
  • 19 Beulertz J, Prokop A, Rustler V. et al. Effects of a 6-month, group-based, therapeutic exercise program for childhood cancer outpatients on motor performance, level of activity, and quality of life. Pediatr Blood Cancer. 2016 63. 127-132 DOI: 10.1002/pbc.25640
  • 20 Braam KI, van Dijk-Lokkart EM, van Dongen JM. et al. Cost-effectiveness of a combined physical exercise and psychosocial training intervention for children with cancer: results from the quality of life in motion study. Eur J Cancer Care (Engl). 2017: 26 DOI: 10.1111/ecc.12586
  • 21 Braam KI, van Dijk-Lokkart EM, Kaspers GJL. et al. Effects of a combined physical and psychosocial training for children with cancer: a randomized controlled trial. BMC Cancer. 2018 18. 1289 DOI: 10.1186/s12885-018-5181-0
  • 22 Takken T, van der Torre P, Zwerink M. et al. Development, feasibility and efficacy of a community-based exercise training program in pediatric cancer survivors. Psychooncology. 2009 18. 440-448 DOI: 10.1002/pon.1484
  • 23 Chamorro-Viña C, Ruiz JR, Santana-Sosa E. et al. Exercise during hematopoietic stem cell transplant hospitalization in children. Med Sci Sports Exerc. 2010 42. 1045-1053 DOI: 10.1249/MSS.0b013e3181c4dac1
  • 24 San Juan AF, Fleck SJ, Chamorro-Viña C. et al. Effects of an intrahospital exercise program intervention for children with leukemia. Med Sci Sports Exerc. 2007 39. 13-21 DOI: 10.1249/01.mss.0000240326.54147.fc
  • 25 Cox CL, Zhu L, Kaste SC. et al. Modifying bone mineral density, physical function, and quality of life in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2017 DOI: 10.1002/pbc.26929
  • 26 Esbenshade AJ, Friedman DL, Smith WA. et al. Feasibility and initial effectiveness of home exercise during maintenance therapy for childhood acute lymphoblastic leukemia. Pediatr Phys Ther. 2014 26. 301-307 DOI: 10.1097/PEP.0000000000000053
  • 27 Fiuza-Luces C, Padilla JR, Soares-Miranda L. et al. Exercise intervention in pediatric patients with solid tumors: The Physical Activity in Pediatric Cancer Trial. Med Sci Sports Exerc. 2017 49. 223-230 DOI: 10.1249/MSS.0000000000001094
  • 28 Järvelä LS, Kemppainen J, Niinikoski H. et al. Effects of a home-based exercise program on metabolic risk factors and fitness in long-term survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2012 59. 155-160 DOI: 10.1002/pbc.24049
  • 29 Järvelä LS, Niinikoski H, Heinonen OJ. et al. Endothelial function in long-term survivors of childhood acute lymphoblastic leukemia: effects of a home-based exercise program. Pediatr Blood Cancer. 2013 60. 1546-1551 DOI: 10.1002/pbc.24565
  • 30 Järvelä LS, Saraste M, Niinikoski H. et al. Home-based exercise training improves left ventricle diastolic function in survivors of childhood all: a tissue Doppler and velocity vector imaging study. Pediatr Blood Cancer. 2016 63. 1629-1635 DOI: 10.1002/pbc.26051
  • 31 Marchese VG, Chiarello LA, Lange BJ. Effects of physical therapy intervention for children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2004 42. 127-133 DOI: 10.1002/pbc.10481
  • 32 Keats MR, Culos-Reed SN. A community-based physical activity program for adolescents with cancer (project TREK): program feasibility and preliminary findings. J Pediatr Hematol Oncol. 2008 30. 272-280 DOI: 10.1097/MPH.0b013e318162c476
  • 33 Kim Y, Park S. Feasibility and benefits of a combined programme of exercise and play for paediatric cancer survivors: A pilot study. Eur J Cancer Care (Engl). 2019 28. e13111
  • 34 Moyer-Mileur LJ, Ransdell L, Bruggers CS. Fitness of children with standard-risk acute lymphoblastic leukemia during maintenance therapy: response to a home-based exercise and nutrition program. J Pediatr Hematol Oncol. 2009 31. 259-266 DOI: 10.1097/MPH.0b013e3181978fd4
  • 35 Shore S, Shepard RJ. Immune responses to exercise in children treated for cancer. J Sports Med Phys Fitness 1999; 39: 240-243
  • 36 Tanir MK, Kuguoglu S. Impact of exercise on lower activity levels in children with acute lymphoblastic leukemia: a randomized controlled trial from Turkey. Rehabil Nurs. 2013 38. 48-59 DOI: 10.1002/rnj.58
  • 37 Su HL, Wu LM, Chiou SS. et al. Assessment of the effects of walking as an exercise intervention for children and adolescents with cancer: A feasibility study. Eur J Oncol Nurs. 2018 37. 29-34 DOI: 10.1016/j.ejon.2018.10.006
  • 38 Piscione PJ, Bouffet E, Timmons B. et al. Exercise training improves physical function and fitness in long-term paediatric brain tumour survivors treated with cranial irradiation. Eur J Cancer. 2017 80. 63-72 DOI: 10.1016/j.ejca.2017.04.020
  • 39 Riggs L, Piscione J, Laughlin S. et al. Exercise training for neural recovery in a restricted sample of pediatric brain tumor survivors: a controlled clinical trial with crossover of training versus no training. Neuro Oncol. 2017 19. 440-450 DOI: 10.1093/neuonc/now177
  • 40 Smith WA, Ness KK, Joshi V. et al. Exercise training in childhood cancer survivors with subclinical cardiomyopathy who were treated with anthracyclines. Pediatr Blood Cancer. 2013 DOI: 10.1002/pbc.24850
  • 41 López-de-Uralde-Villanueva I, Sarría Visa T, Moscardó Marichalar P. et al. Minimal detectable change in six-minute walk test in children and adolescents with cystic fibrosis. Disabil Rehabil. 2019 19. 1-6 DOI: 10.1080/09638288.2019.1663947
  • 42 Kodama S, Saito K, Tanaka S. et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009 301. 2024-2035 DOI: 10.1001/jama.2009.681
  • 43 van Brussel M, Takken T, Lucia A. et al. Is physical fitness decreased in survivors of childhood leukemia? A systematic review. Leukemia. 2005 19. 13-17 DOI: 10.1038/sj.leu.2403547
  • 44 Mertens AC, Liu Q, Neglia JP. et al. Cause-specific late mortality among 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2008 100. 1368-1379 DOI: 10.1093/jnci/djn310
  • 45 Ahmadian M, Dabidi Roshan V. Modulatory effect of aerobic exercise training on doxorubicin-induced cardiotoxicity in rats with different ages. Cardiovasc Toxicol . 2018 18. 33-42 DOI: 10.1007/s12012-017-9411-5
  • 46 Wang F, Iskra B, Kleinerman E. et al. Aerobic exercise during early murine doxorubicin exposure mitigates cardiac toxicity. J Pediatr Hematol Oncol. 2018 40. 208-215 DOI: 10.1097/MPH.0000000000001112
  • 47 Parry TL, Hayward R. Exercise training does not affect anthracycline antitumor efficacy while attenuating cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol. 2015 309. R675-R683 DOI: 10.1152/ajpregu.00185.2015
  • 48 Scott JM, Nilsen TS, Gupta D. et al. Exercise therapy and cardiovascular toxicity in cancer. Circulation. 2018 137. 1176-1191 DOI: 10.1161/CIRCULATIONAHA.117.024671