CC BY-NC-ND 4.0 · Geburtshilfe Frauenheilkd 2020; 80(02): 161-171
DOI: 10.1055/a-1081-2036
GebFra Science
Georg Thieme Verlag KG Stuttgart · New York

Exploration of the Relationship Between Gut Microbiota and Polycystic Ovary Syndrome (PCOS): a Review

Erforschung der Beziehung zwischen intestinaler Mikrobiota und polyzystischem Ovarsyndrom (PCOS): eine Überblicksdarstellung
Xiaoxuan Zhao
1   Department of Heilongjiang University of Chinese Medicine, Harbin 150040, China
Yuepeng Jiang
2   Department of Zhejiang Chinese Medical University, Hangzhou 310053, China
Hongyan Xi
1   Department of Heilongjiang University of Chinese Medicine, Harbin 150040, China
Lu Chen
3   Department of First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
Xiaoling Feng
3   Department of First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
› Author Affiliations
Further Information

Publication History

received 16 October 2019
revised 10 December 2019

accepted 11 December 2019

Publication Date:
21 February 2020 (online)


Polycystic ovary syndrome (PCOS) is an endocrine and metabolic syndrome (MS) with a complex etiology, and its pathogenesis is not yet clear. In recent years, the correlation between gut microbiota (GM) and metabolic disease has become a hot topic in research, leading to a number of new ideas about the etiology and pathological mechanisms of PCOS. The literature shows that GM can cause insulin resistance, hyperandrogenism, chronic inflammation and metabolic syndrome (obesity, diabetes) and may contribute to the development of PCOS by influencing energy absorption, the pathways of short chain fatty acids (SCFA), lipopolysaccharides, choline and bile acids, intestinal permeability and the brain–gut axis. As part of the treatment of PCOS, fecal microbiota transplantation, supplementation with prebiotics and traditional Chinese medicine can be used to regulate GM and treat disorders. This article reviews possible mechanisms and treatment options for PCOS, based on methods which target the GM, and offers new ideas for the treatment of PCOS.


Das polyzystische Ovarsyndrom (PCOS) ist ein endokrines und metabolisches Syndrom (MS) mit einer komplexen Ätiologie. Die Pathogenese von PCOS ist noch immer ungeklärt. In den letzten Jahren hat sich die Forschung verstärkt auf die Interaktion zwischen intestinaler Mikrobiota und Stoffwechselerkrankungen konzentriert, was zu einigen neuen Ideen über die Ätiologie und die pathologischen Mechanismen von PCOS führte. In der Literatur wird berichtet, dass die intestinale Mikroflora Insulinresistenz, Hyperandrogenämie, chronische Entzündungen und metabolisches Syndrom (Adipositas, Diabetes) verursachen kann und durch ihre Auswirkungen auf Energieaufnahme, kurzkettige Fettsäuren, Lipopolysaccharide, Cholin und Gallensäuren, die Permeabilität der Darmschleimhaut sowie die Darm-Hirn-Achse möglicherweise zur Entwicklung von PCOS beitragen kann. Für die Behandlung von PCOS können fäkale Mikrobiomtransfers, eine Supplementierung mit Präbiotika und traditionelle chinesische Medizin zur Regulierung der Darmflora und Behandlung von Störungen eingesetzt werden. Dieser Artikel gibt eine Überblicksdarstellung möglicher Mechanismen und Behandlungsoptionen für PCOS, basierend auf Methoden, die auf eine Änderung der intestinalen Mikrobiota abzielen, und bietet neue Ideen für die Behandlung von PCOS.

  • References

  • 1 Azziz R, Carmina E, Chen Z. et al. Polycystic ovary syndrome. Nat Rev Dis Primers 2016; 2: 16057
  • 2 Li R, Zhang Q, Yang D. et al. Prevalence of polycystic ovary syndrome in women in China: a large community-based study. Hum Reprod 2013; 28: 2562-2569
  • 3 Teede HJ, Misso ML, Costello MF. et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome [J]. Hum Reprod 2019; 34: 388 doi:10.1093/humrep/dey363
  • 4 Luque-Ramírez M, Escobar-Morreale HF. Polycystic ovary syndrome as a paradigm for prehypertension, prediabetes, and preobesity. Curr Hypertens Rep 2014; 16: 500
  • 5 Randeva HS, Tan BK, Weickert MO. et al. Cardiometabolic aspects of the polycystic ovary syndrome. Endocr Rev 2012; 33: 812-841
  • 6 Johnson T, Kaplan L, Ouyang P. et al. National Institutes of Health evidence-based Methodology Workshop on polycystic Ovary Syndrome (PCOS). NIH Eb MW report[C]. Bethesda: National Institutes of Health; 2012
  • 7 Legro RS, Arslanian SA, Ehrmann DA. et al. Diagnosis and treatment of polycystic ovary syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2013; 98: 4565-4592
  • 8 He Q, Li X, Liu C. et al. Dysbiosis of the fecal microbiota in the TNBS-induced Crohnʼs disease mouse model. Appl Microbiol Biotechnol 2016; 100: 4485-4494
  • 9 Turnbaugh PJ, Backhed F, Fulton L. et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008; 3: 213-223
  • 10 Chen J, Wang R, Li XF. et al. Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Br J Nutr 2012; 107: 1429-1434 doi:10.1017/S0007114511004491
  • 11 Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science 2015; 350: 663-666
  • 12 Pickard JM, Chervonsky AV. Intestinal fucose as a mediator of host-microbe symbiosis. J Immunol 2015; 194: 5588-5593
  • 13 Macfarlane GT, Macfarlane S. Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scand J Gastroenterol Suppl 1997; 222: 3-9
  • 14 Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207-214
  • 15 Kant R, de Vos WM, Palva A. et al. Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease. J Med Microbiol 2014; 63 (Pt 2): 293
  • 16 Sun L, Hu W, Liu Q. et al. Metabonomics Reveals Plasma Metabolic Changes and Inflammatory Marker in Polycystic Ovary Syndrome Patients. J Proteome Res 2012; 11: 2937-2946
  • 17 Zhang D, Zhang L, Yue F. et al. Serum zonulin is elevated in women with polycystic ovary syndrome and correlates with insulin resistance and severity of anovulation. Eur J Endocrinol 2015; 172: 29-36
  • 18 Gill SR, Pop M, De Boy RT. et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312: 1355-1359
  • 19 Ouyang S, Liu J, Jones KM. et al. The map-based sequence of the rice genome. Nature 2005; 436: 793-800
  • 20 Human Microbiome Project Consortium. A framework for human microbiome research OPEN [J]. Nature 2012; 486: 215-221 doi:10.1038/nature11209
  • 21 Hellman AB. Gut bacteria gene complement dwarfs human genome [J]. Nature 2010; 464: 59-65
  • 22 Grenham S, Clarke G, Cryan JF. et al. Brain-gut-microbe communication in health and disease. Front Physiol 2011; 2: 94
  • 23 Faith JJ, Guruge JL, Charbonneau M. et al. The long-term stability of the human gut microbiota. Science 2013; 341: 1237439
  • 24 Lozupone CA, Stombaugh JI, Gordon JI. et al. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489: 220-230
  • 25 Clemente JC, Ursell LK, Parfrey LW. et al. The impact of the gut microbiota on human health: an integrative view. Cell 2012; 148: 1258-1270
  • 26 Vaiserman AM, Koliada AK, Marotta F. Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Res Rev 2017; 35: 36-45
  • 27 Zhang C, Zhang M, Pang X. et al. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J 2012; 6: 1848-1857
  • 28 Li T, Wu K, You L. et al. Common variant rs9939609 in gene FTO confers risk to polycystic ovary syndrome. PLoS One 2013; 8: e66250
  • 29 Torres PJ, Siakowska M, Banaszewska B. et al. Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. J Clin Endocrinol Metab 2018; 103: 1502-1511
  • 30 Qi X, Yun C, Sun L. et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome [J]. Nat Med 2019; 25: 1225-1233
  • 31 Lindheim L, Bashir M, Münzker J. et al. Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): a pilot study. PLoS One 2017; 12: e0168390
  • 32 Kelley ST, Skarra DV, Rivera AJ. et al. The gut microbiome is altered in a letrozole-induced mouse model of polycystic ovary syndrome. PLoS One 2016; 11: e0146509
  • 33 Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord 2014; 15: 189-196
  • 34 Cani PD, Delzenne NM, Amar J. et al. Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding [J]. Pathologie Biologie 2008; 56: 305-309
  • 35 Karaki S, Mitsui R, Hayashi H. et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine [J]. Cell Tissue Res 2006; 324: 353-360
  • 36 Karra E, Chandarana K, Batterharm RL. The role of peptide YY in appetite regulation and obesity. J Physiol 2009; 587 (Pt 1): 19-25
  • 37 Turnbaugh PJ, Ley RE, Mahowald MA. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027-1031
  • 38 Lindheim L, Bashir M, Münzker J. et al. Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS): A Pilot Study. PloS One 2017; 12: e0168390
  • 39 Liu R, Zhang C, Shi Y. et al. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome [J]. Front Microbiol 2017; 8: 324 eCollection 2017 doi:10.3389/fmicb.2017.00324
  • 40 Torres PJ, Siakowska M, Banaszewska B. et al. Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism [J]. J Clin Endocrinol Metab 2018; 103: 1502-1511 doi:10.1210/jc.2017-02153
  • 41 Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 2014; 588: 4223-4233
  • 42 Tilman D. Diversity and Productivity in a Long-Term Grassland Experiment. Science 2001; 294: 843-845
  • 43 Insenser M, Murri M, Del Campo R. et al. Gut microbiota and the polycystic ovary syndrome: influence of sex, sex hormones, and obesity. J Clin Endocrinol Metab 2018; 103: 2552-2562 doi:10.1210/jc.2017-02799
  • 44 den Besten G, Lange K, Havinga R. et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol 2013; 305: G900-G910
  • 45 Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda) 2016; 31: 283-293
  • 46 Mollica MP, Mattace RG, Cavaliere G. et al. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes 2017; 66: 1405-1418
  • 47 Zheng Y, Li Y, Qi Q. et al. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int J Epidemiol 2016; 45: 1482-1492
  • 48 Lotta LA, Scott RA, Sharp SJ. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a mendelian randomisation analysis. PLoS Med 2016; 13: e1002179
  • 49 Neis EP, Dejong CH, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients 2015; 7: 2930-2946
  • 50 Pedersen HK, Gudmundsdottir V, Nielsen HB. et al. Human gut microbes impact host serum metabolome and insulin sensitivity [J]. Nature 2016; 535: 376-381
  • 51 Engelstoft MS, Schwartz TW. Opposite regulation of ghrelin and glucagon-like peptide-1 by metabolite g-protein-coupled receptors. Trends Endocrinol Metab 2016; 27: 665-675
  • 52 Koh A, De Vadder F, Kovatcheva-Datchary P. et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016; 165: 1332-1345
  • 53 Au CMC, Docanto MM, Zahid H. et al. Des-acyl ghrelin inhibits the capacity of macrophages to stimulate the expression of aromatase in breast adipose stromal cells [J]. J Steroid Biochem Mol Biol 2017; 170: 49-53
  • 54 Novelle MG, Vázquez MJ, Martinello KD. et al. Neonatal events, such as androgenization and postnatal overfeeding, modify the response to ghrelin [J]. Sci Rep 2014; 4: 4855
  • 55 Gao T, Wu L, Chang F. et al. Low circulating ghrelin levels in women with polycystic ovary syndrome: a systematic review and meta-analysis. Endocr J 2016; 63: 93-100
  • 56 Kelley ST, Skarra DV, Rivera AJ. et al. The gut microbiome is altered in a letrozole-induced mouse model of polycystic ovary syndrome. PLoS One 2016; 11: e0146509
  • 57 Moreno-Indias I, Sanchez-Alcoholado L, Sanchez-Garrido MA. et al. Neonatal androgen exposure causes persistent gut microbiota dysbiosis related to metabolic disease in adult female rats. Endocrinology 2016; 157: 4888-4898
  • 58 González F. Inflammation in polycystic ovary syndrome: underpinning of insulin resistance and ovarian dysfunction. Steroids 2012; 77: 300-305
  • 59 Chassaing B, Ley RE, Gewirtz AT. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology 2014; 147: 1363-1377.e17
  • 60 Cani PD, Amar J, Iglesias MA. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761-1772
  • 61 Fruzzetti F, Perini D, Russo M. et al. Comparison of two insulin sensitizers, metformin and myo-inositol, in women with polycystic ovary syndrome (PCOS). Gynecol Endocrinol 2016; 33: 1-4
  • 62 Polak K, Czyzyk A, Simoncini T. et al. New markers of insulin resistance in polycystic ovary syndrome [J]. J Endocrinol Invest 2017; 40: 1-8
  • 63 Belani M, Deo A, Shah P. et al. Differential insulin and steroidogenic signaling in insulin resistant and non- insulin resistant human luteinized granulosa cells – a study in PCOS patients. J Steroid Biochem Mol Biol 2018; 178: 283-292
  • 64 Glintborg D, Petersen MH, Ravn P. et al. Comparison of regional fat mass measurement by whole body DXA scans and anthropometric measures to predict insulin resistance in women with polycystic ovary syndrome and controls [J]. Acta Obstet Gynecol Scand 2016; 95: 1235-1243
  • 65 Su C, Chen M, Huang H. et al. Testosterone enhances lipopolysaccharide-induced interleukin-6 and macrophage chemotactic protein-1 expression by activating the extracellular signal-regulated kinase 1/2/nuclear factor-κB signalling pathways in 3 T3-L1 adipocytes. Mol Med Rep 2015; 12: 696-704
  • 66 Zhu Q, Zhou H, Zhang A. et al. Serum LBP is associated with insulin resistance in women with PCOS. PLoS One 2016; 11: e0145337
  • 67 Ali AT. Polycystic ovary syndrome and metabolic syndrome. Ceska Gynekol 2015; 80: 279
  • 68 Zhao L, Zhu Z, Lou H. et al. Polycystic ovary syndrome (PCOS) and the risk of coronary heart disease (CHD): a meta-analysis [J]. Oncotarget 2016; 7: 33715
  • 69 Koeth RA, Wang Z, Levison BS. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19: 576-585
  • 70 Bickerton AST, Clark N, Meeking D. et al. Cardiovascular risk in women with polycystic ovarian syndrome (PCOS) [J]. J Clin Pathol 2005; 58: 151-154
  • 71 Sayin SI, Wahlström A, Felin J. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17: 225-235
  • 72 Zhang J, Fan P, Liu H. et al. Apolipoprotein A–I and B levels, dyslipidemia and metabolic syndrome in south-west Chinese women with PCOS. Hum Reprod 2012; 27: 2484-2493
  • 73 Cullberg G, Hamberger L, Mattsson L. et al. Lipid metabolic studies in women with a polycystic ovary syndrome during treatment with a low-dose desogestrel–ethinylestradiol combination. Acta Obstet Gynecol Scand 2011; 64: 203-207
  • 74 Li S, Chu Q, Ma J. et al. Discovery of novel lipid profiles in PCOS: Do insulin and androgen oppositely regulate bioactive lipid production?. J Clin Endocrinol Metab 2017; 102: 810-821
  • 75 Shindo K, Machida M, Fukumura M. et al. Omeprazole induces altered bile acid metabolism. Gut 1998; 42: 266-271
  • 76 Fujisaka S, Ussar S, Clish C. et al. Antibiotic effects on gut microbiota and metabolism are host dependent. J Clin Invest 2016; 126: 4430-4443
  • 77 Terry S, Nie M, Matter K. et al. Rho signaling and tight junction functions. Physiology (Bethesda) 2010; 25: 16-26
  • 78 Assimakopoulos SF, Tsamandas AC, Louvros E. et al. Intestinal epithelial cell proliferation, apoptosis and expression of tight junction proteins in patients with obstructive jaundice. Eur J Clin Invest 2011; 41: 117-125
  • 79 Patrick DM, Leone AK, Shellenberger JJ. et al. Proinfl ammatory cytokines tumor necrosis factor-alpha and interferon-gamma modulate epithelial barrier function in Madin-Darby canine kidney cells through mitogen activated protein kinase signaling. BMC Physiol 2006; 6: 2
  • 80 Tremellen K, Pearce K. Dysbiosis of gut microbiota (DOGMA): a novel theory for the development of polycystic ovarian syndrome. Med Hypotheses 2012; 79: 104-112
  • 81 Lam YY, Ha CW, Campbell CR. et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One 2012; 7: e34233
  • 82 Muccioli GG, Naslain D, Backhed F. et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 2010; 6: 392
  • 83 Mayer EA. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci 2011; 12: 453-466
  • 84 Katherine GC, Iris G, Montserrat P. et al. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr Res Rev 2016; 29: 234-248
  • 85 Dong CZ, Choi S, Shahi PK. et al. Inhibition of pacemaker activity in interstitial cells of Cajal by LPS via NF-κB and MAP kinase. World J Gastroenterol 2013; 19: 1210-1218
  • 86 Lach G, Schellekens H, Dinan TG. et al. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics 2017; 15: 1-24
  • 87 Aydin K, Arusoglu G, Koksal G. et al. Fasting and post-prandialglucagon like peptide 1 and oral contraception in polycystic ovary syndrome. Clin Endocrinol (Oxf) 2014; 81: 588-592
  • 88 Sun L, Ji C, Jin L. et al. Effects of Exenatide on Metabolic Changes, Sexual Hormones, Inflammatory Cytokines, Adipokines, and Weight Change in a DHEA-Treated Rat Model. Reprod Sci 2016; 23: 1242-1249
  • 89 Kohlné Papp I. Psychosocial approach of polycystic ovary syndrome. Orv Hetil 2014; 155: 1867-1871
  • 90 Gershon MD, Tack J. The serotonin signaling system: From basic understanding to drug development for functional GI disorders. Gastroenterology 2007; 132: 397-414
  • 91 Chaudhari NK, Nampoothiri LP. Neurotransmitter alteration in a testosterone propionate- induced polycystic ovarian syndrome rat model. Horm Mol Biol Clin Investig 2017; 29: 71-77
  • 92 Riaz T, Sollid LM, Olsen I. et al. Quantitative Proteomics of Gut-Derived Th1 and Th1/Th17 Clones Reveal the Presence of CD28+ NKG2D- Th1 Cytotoxic CD4+ T cells. Mol Cell Proteomics 2016; 15: 1007-1016
  • 93 Lang Q, Xu W, Li X. et al. Differential expression profile of immunological cytokines in local ovary in patients with polycystic ovarian syndrome: analysis by flow cytometry. Eur J Obstet Gynecol 2016; 197: 136-141
  • 94 Kim CH, Jeongho P, Myunghoo K. Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation. Immune Netw 2014; 14: 277-282
  • 95 Turnbaugh PJ, Ridaura VK, Faith JJ. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 2009; 1: 6799-6806
  • 96 Fava F, Gitau R, Griffin BA. et al. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes (Lond) 2013; 37: 216-223
  • 97 Jakubowicz D, Barnea M, Wainstein J. et al. Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome. Clin Sci (Lond) 2013; 125: 423-432
  • 98 Moran LJ, Ko H, Misso M. et al. Dietary composition in the treatment of polycystic ovary syndrome: a systematic review to inform evidence-based guidelines [J]. J Acad Nutr Diet 2013; 113: 520-545
  • 99 Haqq L, Mc Farlane J, Dieberg G. et al. Effect of lifestyle intervention on the reproductive endocrine profile in women with polycystic ovarian syndrome: a systematic review and meta-analysis. Endocr Connect 2013; 3: 36-46
  • 100 Clarke SF, Murphy EF, OʼSullivan O. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014; 63: 1913-1920
  • 101 Mika A, Van Treuren W, González A. et al. Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats. PLoS One 2015; 10: e125889
  • 102 Harrison CL, Lombard CB, Moran LJ. et al. Exercise therapy in polycystic ovary syndrome: a systematic review. Hum Reprod Update 2011; 17: 171-183
  • 103 Hart R. Polycystic ovarian syndrome–prognosis and treatment outcomes. Curr Opin Obstet Gynecol 2007; 19: 529-535
  • 104 Teede HJ, Misso ML, Deeks AA. et al. Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Med J Aust 2011; 195: S65
  • 105 El Hayek S, Bitar L, Hamdar LH. et al. Poly cystic ovarian syndrome: an updated overview [J]. Front Physiol 2016; 7: 124
  • 106 Abdollahi L, Mirghafourvand M, Babapour JK. et al. Effectiveness of cognitive-behavioral therapy (CBT) in improving the quality of life and psychological fatigue in women with polycystic ovarian syndrome: a randomized controlled clinical trial [J]. J Psychosom Obstet Gynaecol 2019; 40: 283-293
  • 107 Moore T, Rodriguez A, Bakken JS. Fecal microbiota transplantation. J Neurogastroenterol Motil 2015; 21: 294-295
  • 108 Kociolek LK, Gerding DN. Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat Rev Gastroenterol Hepatol 2016; 13: 150-160
  • 109 van Beurden YH, de Groot PF, van Nood E. et al. Complications, effectiveness, and long term follow-up of fecal microbiota transfer by nasoduodenal tube for treatment of recurrent Clostridium difficile infection. United European Gastroenterol J 2017; 5: 868-879
  • 110 Panchal P, Budree S, Scheeler A. et al. Scaling safe access to fecal microbiota transplantation: past, present, and future. Curr Gastroenterol Rep 2018; 20: 28
  • 111 Vrieze A, Van Nood E, Holleman F. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913-916
  • 112 Guo Y, Qi Y, Yang X. et al. Association between Polycystic Ovary Syndrome and Gut Microbiota [J]. PLoS One 2016; 11: e0153196 eCollection 2016 doi:10.1371/journal.pone.0153196
  • 113 Hotel ACP, Cordoba A. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria [J]. Prevention 2001; 5: 1-10
  • 114 Hsieh FC, Lee CL, Chai CY. et al. Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr Metab 2013; 10: 35
  • 115 Liang YJ, Lin CL, Zhang YP. et al. Probiotic mixture of Lactobacillus and Bifdobacterium alleviates systemic adiposity and infammation in non-alcoholic fatty liver disease rats through Gpr109a and the commensal metabolite butyrate. Inflammopharmacology 2018; 26: 1051-1055
  • 116 Bäckhed F, Ding H, Wang T. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci 2004; 101: 15718-15723
  • 117 Ahmadi S, Jamilian M, Karamali M. et al. Probiotic supplementation and the effects on weight loss, glycaemia and lipid profiles in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial [J]. Hum Fertil (Camb) 2017; 20: 254-261
  • 118 Karamali M, Eghbalpour S, Rajabi S. et al. Effects of Probiotic Supplementation on Hormonal Profiles, Biomarkers of Inflammation and Oxidative Stress in Women With Polycystic Ovary Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Arch Iran Med 2018; 21: 1-7
  • 119 Zhang H, Wen W, Shen J. et al. Effect of microecological preparation supplementation on woman with polycystic ovary syndrome: A meta-analysis protocol [J]. Medicine (Baltimore) 2018; 97: e13040
  • 120 Gibson GR, Scott KP, Rastall RA. et al. Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 2010; 7: 1-19
  • 121 Nilsson AC, Ostman EM, Holst JJ. et al. Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast. J Nutr 2008; 138: 732-739
  • 122 Urías-Silvas JE, Cani PD, Delmée E. et al. Physiological effects of dietary fructans extracted from Agave tequilana Gto and Dasylirion spp. Br J Nutr 2008; 99: 254-261
  • 123 Zhang Q, Yu H, Xiao X. et al. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats [J]. PeerJ 2018; 6: e4446
  • 124 Xue J, Li X, Liu P. et al. Inulin and metformin ameliorate polycystic ovary syndrome via anti-inflammation and modulating gut microbiota in mice [J]. Endocr J 2019; 66: 859-870
  • 125 Etxeberria U, Arias N, Boqué N. et al. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem 2015; 26: 651
  • 126 Chen H, Xu Y, Wang J. et al. Baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation and oxidative stress in rat. Int J Clin Exp Pathol 2015; 8: 10139-10147
  • 127 Wang K, Feng X, Chai L. et al. The metabolism of berberine and its contribution to the pharmacological effects [J]. Drug Metab Rev 2017; 49: 139-157
  • 128 Zhang X, Zhao Y, Xu J. et al. Modulation of gut microbiota byberberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci Rep 2015; 5: 14405
  • 129 Shi LL, Li Y, Wang Y. et al. MDG-1, an Ophiopogon polysaccharide, regulate gut microbiota in high-fat diet-induced obese C57BL/6 mice [J]. Int J Biol Macromol 2015; 81: 576-583 doi:10.1016/j.ijbiomac.2015.08.057
  • 130 Ming L, Yue-Fei W, Guan-Wei F. et al. Balancing Herbal Medicine and Functional Food for Prevention and Treatment of Cardiometabolic Diseases through Modulating Gut Microbiota [J]. Frontiers in Microbiology 2017; 8: 2146
  • 131 Chang CJ, Lin CS, Lu CC. et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota [J]. Nature Communications 2015; 6: 7489