Nuklearmedizin 2020; 59(05): 381-386
DOI: 10.1055/a-1103-1661
Original Article

Relationship of Renal Function in Mice to Strain, Sex and 177Lutetium-Somatostatin Receptor Ligand Treatment

Nierenfunktion bei Mäusen in Abhängigkeit von Stamm, Geschlecht und 177Lutetium-Somatostatin-Rezeptor-Liganden-Therapie
Ajay-Mohan Mohan
1   Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
,
Mathias Lukas
1   Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
,
Jakob Albrecht
1   Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
2   German Cancer Consortium (DKTK), partner site Berlin, Germany
,
Viktoria Dorau-Rutke
1   Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
3   Department of Internal Medicine, Military Hospital Hamburg, Germany
,
Eva J. Koziolek
1   Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
2   German Cancer Consortium (DKTK), partner site Berlin, Germany
4   German Cancer Research Center (DKFZ) Heidelberg, Germany
,
Kai Huang
1   Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
,
Sonal Prasad
1   Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
5   Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Germany
,
Winfried Brenner
1   Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
2   German Cancer Consortium (DKTK), partner site Berlin, Germany
,
Nicola Beindorff
5   Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Germany
› Author Affiliations

Abstract

Aim Aim of the study was to establish parameters for 99mTc-MAG3 SPECT renal uptake kinetics in healthy SCID mice as a function of mouse strain and sex and to evaluate the feasibility of this method for detecting 177Lu-somatostatin receptor ligand (177Lu-SRL) treatment effects on kidney function.

Materials and Methods Dynamic semi-stationary SPECT acquisitions (68 frames, total duration 35 min) was started prior to i. v. injection of 99mTc-MAG3 in 12 female and 12 male SCID mice. Additionally, 6 female SCID mice with neuroendocrine tumors were imaged 1–5 months after 177Lu-SRL (5 DOTATOC, 1 DOTA-JR11) treatment. Kidney function is expressed as maximum time to peak (Tmax), T50 and T25 in minutes (median [interquartile range]). Differences between groups were tested using the Mann-Whitney-U test, and SCID mouse parameters were compared with data for C57BL/6N mice from a recent publication.

Results Significant sex-based differences in Tmax between strains were observed (females: C57BL/6N 1.6 [1.4–1.7], SCID 1.4 [1.3–1.5], p = 0.05; males: C57BL/6N 1.4 [1.3–1.4], SCID 1.6 [1.4–1.7], p = 0.04). In C57BL/6N mice, females showed a later Tmax (p < 0.01) than males. SCID mice showed no difference (p = 0.14). Treated SCID mice showed no significant delay in Tmax (2.0 [1.4–2.7], p = 0.15) but a significant delay in T50 (p = 0.02) and T25 (p = 0.01) compared to healthy untreated mice.

Conclusion This study demonstrated significant sex-related differences between SCID and C57BL/6N mouse strains in kidney function. Establishment of normal values for different strains and sexes therefore is important for experimental therapy studies. Renal SPECT imaging with 99mTc-MAG3 was sufficiently sensitive to detect 177Lu-SRL treatment toxic effects on kidney function in SCID mice.

Zusammenfassung

Ziel Ziel dieser Studie war es, Werte für die Nieren-Uptake-Kinetik von 99mTc-MAG3-SPECT bei gesunden SCID-Mäusen in Abhängigkeit von Mausstamm und Geschlecht zu erheben sowie zu untersuchen, inwieweit mit dieser Methode Therapieeffekte von 177Lutetium-Somatostatin-Rezeptor-Liganden (177Lu-SRL) auf die Nierenfunktion messbar sind.

Methoden Bei 12 weiblichen und 12 männlichen SCID-Mäusen wurden unmittelbar vor intravenöser Injektion von 99mTc-MAG3 dynamische semistationäre SPECT-Aufnahmen (68 Frames, insgesamt 35 min Dauer) gestartet. Zusätzlich wurden 6 weibliche SCID-Mäuse mit neuroendokrinen Tumoren 1–5 Monate nach 177Lu-SRL-Therapie (5 DOTATOC, 1 DOTA-JR11) untersucht. Die Nierenfunktion ist als Zeit bis zum Maximum (Tmax), T50 und T25 in Minuten (Median [Interquartilabstand]) aufgeführt. Gruppenunterschiede wurden mit dem Mann-Whitney-U-Test untersucht, und die Parameter der SCID-Mäuse wurden mit kürzlich publizierten Daten für C57BL/6N-Mäuse verglichen.

Ergebnisse Für Tmax konnten signifikant geschlechtsabhängige Unterschiede zwischen den Mausstämmen beobachtet werden (Weibchen: C57BL/6N 1,6 [1,4–1,7], SCID 1,4 [1,3–1,5]; p = 0,05; Männchen: C57BL/6N 1,4 [1,3–1,4], SCID 1,6 [1,4–1,7]; p = 0,04). Tmax trat bei weiblichen C57BL/6N später als bei männlichen Mäusen auf (p < 0,01). Dahingegen zeigten SCID-Mäuse keinen Unterschied (p = 0,14). Verglichen mit gesunden Mäusen zeigten therapierte Mäuse keine signifikante Veränderung von Tmax (2,0 [1,4–2,7]; p = 0,15), jedoch erfolgten T50 (p = 0,02) und T25 (p = 0,01) signifikant später.

Schlussfolgerung Diese Studie zeigte signifikante geschlechtsabhängige Unterschiede in der Nierenfunktion zwischen SCID- und C57BL/6N-Mausstämmen. Für experimentelle Therapiestudien ist daher die Etablierung von Normwerten in Abhängigkeit von Mausstamm und Geschlecht wichtig. Die 99mTc-MAG3-Nierenszintigrafie war zudem eine ausreichend sensitive Methode zum Nachweis toxischer Einflüsse von 177Lu-SRL auf die Nierenfunktion bei SCID-Mäusen.



Publication History

Article published online:
19 February 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Achong DM, Tenorio LE. Abnormal MAG3 renal scintigraphy resulting from dehydration. Clin Nucl Med 2003; 28 (08) 683-684
  • 2 Bares R, Muller-Schauenburg W. Nuclear medicine diagnosis of the kidneys. Radiologe 2000; 40 (10) 938-945
  • 3 Boyd JD, Morgan LA, Blum A. The use of radioisotopes in the clinical study of renal function. South Med J 1959; 52 (01) 1-6
  • 4 Esteves FP, Halkar RK, Issa MM. et al. Comparison of camera-based 99mTc-MAG3 and 24-hour creatinine clearances for evaluation of kidney function. Am J Roentgenol 2006; 187 (03) W316-W319
  • 5 Esteves FP, Taylor A, Manatunga A. et al. 99mTc-MAG3 renography: normal values for MAG3 clearance and curve parameters, excretory parameters, and residual urine volume. Am J Roentgenol 2006; 187 (06) W610-W617
  • 6 Farmelant MH, Burrows BA. The renogram: physiologic basis and current clinical use. Semin Nucl Med 1974; 4 (01) 61-73
  • 7 Gupta SK, Singla S, Bal C. Renal and hematological toxicity in patients of neuroendocrine tumors after peptide receptor radionuclide therapy with 177Lu-DOTATATE. Cancer Biother Radiopharm 2012; 27 (09) 593-599
  • 8 Hackbarth H, Baunack E, Winn M. Strain differences in kidney function of inbred rats: 1. Glomerular filtration rate and renal plasma flow. Lab Anim 1981; 15 (02) 125-128
  • 9 Hackbarth H, Hackbarth D. Genetic analysis of renal function in mice. 1. Glomerular filtration rate and its correlation with body and kidney weight. Lab Anim 1981; 15 (03) 267-272
  • 10 Hackbarth H, Hackbarth D. Genetic analysis of renal function in mice. 2. Strain differences in clearances of sodium, potassium, osmolar and free water, and their correlations with body and kidney weight. Lab Anim 1982; 16 (01) 27-32
  • 11 Halkar R, Taylor A, Manatunga A. et al. Monitoring renal function: a prospective study comparing camera-based technetium-99m mercaptoacetyltriglycine clearance and creatinine clearance. Urology 2007; 69 (03) 426-430
  • 12 Huang K, Lukas M, Steffen IG. et al. Normal Values of Renal Function measured with 99mTechnetium Mercaptoacetyltriglycine SPECT in Mice with Respect to Age, Sex and Circadian Rhythm. Nuklearmedizin 2018; 57 (06) 224-233
  • 13 Itoh K. 99mTc-MAG3: review of pharmacokinetics, clinical application to renal diseases and quantification of renal function. Ann Nucl Med 2001; 15 (03) 179-190
  • 14 Jafri RA, Britton KE, Nimmon CC. et al. Technetium-99m MAG3, a comparison with iodine-123 and iodine-131 orthoiodohippurate, in patients with renal disorders. J Nucl Med 1988; 29 (02) 147-158
  • 15 Jia JB, Lall C, Tirkes T. et al. Chemotherapy-related complications in the kidneys and collecting system: an imaging perspective. Insights Imaging 2015; 6 (04) 479-487
  • 16 Jung HS, Chung YA, Kim EN. et al. Influence of hydration status in normal subjects: fractional analysis of parameters of Tc-99m DTPA and Tc-99m MAG3 renography. Ann Nucl Med 2005; 19 (01) 1-7
  • 17 Kade H, Meredith Jr OM, Taplin GV. et al. The radioisotope renogram: an external test for individual kidney function and upper urinary tract patency. J Lab Clin Med 1956; 48 (06) 886-901
  • 18 Klingensmith 3rd WC, Briggs DE, Smith WI. Technetium-99m-MAG3 renal studies: normal range and reproducibility of physiologic parameters as a function of age and sex. J Nucl Med 1994; 35 (10) 1612-1617
  • 19 Kunikowska J, Krolicki L, Sowa-Staszczak A. et al. Nephrotoxicity after PRRT – still a serious clinical problem? Renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATATE and 90Y/177Lu-DOTATATE. Endokrynol Pol 2013; 64 (01) 13-20
  • 20 Kunin CM. Nephrotoxicity of antibiotics. JAMA 1967; 202 (03) 204-208
  • 21 Melis M, de Swart J, de Visser M. et al. Dynamic and static small-animal SPECT in rats for monitoring renal function after 177Lu-labeled Tyr3-octreotate radionuclide therapy. J Nucl Med 2010; 51 (12) 1962-1968
  • 22 Newman DJ, Thakkar H, Edwards RG. et al. Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int 1995; 47 (01) 312-318
  • 23 Pasino DA, Miura K, Goldstein RS. et al. Cephaloridine nephrotoxicity: strain and sex differences in mice. Fundam Appl Toxicol 1985; 5 (06) 1153-1160
  • 24 Rabe M, Schaefer F. Non-Transgenic Mouse Models of Kidney Disease. Nephron 2016; 133 (01) 53-61
  • 25 Sakemi T, Toyoshima H, Morito F. Testosterone eliminates the attenuating effect of castration on the progressive glomerular injury in hypercholesterolemic male Imai rats. Nephron 1994; 67 (04) 469-476
  • 26 Silbiger S, Neugarten J. Gender and human chronic renal disease. Gend Med 2008; 5: S3-S10
  • 27 Svensson J, Berg G, Wangberg B. et al. Renal function affects absorbed dose to the kidneys and haematological toxicity during 177Lu-DOTATATE treatment. Eur J Nucl Med Mol Imaging 2015; 42 (06) 947-955
  • 28 Swedko PJ, Clark HD, Paramsothy K. et al. Serum creatinine is an inadequate screening test for renal failure in elderly patients. Arch Intern Med 2003; 163 (03) 356-360
  • 29 Tanaka-Kagawa T, Suzuki M, Naganuma A. et al. Strain difference in sensitivity of mice to renal toxicity of inorganic mercury. J Pharmacol Exp Ther 1998; 285 (01) 335-341
  • 30 Taylor A. Radionuclide renography: a personal approach. Semin Nucl Med 1999; 29 (02) 102-127
  • 31 Taylor AT. Radionuclides in nephrourology, part 1: Radiopharmaceuticals, quality control, and quantitative indices. J Nucl Med 2014; 55 (04) 608-615
  • 32 Traynor J, Mactier R, Geddes CC. et al. How to measure renal function in clinical practice. BMJ 2006; 333: 733-737
  • 33 Valkema R, Pauwels SA, Kvols LK. et al. Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0, Tyr3-octreotide and 177Lu-DOTA0, Tyr3-octreotate. J Nucl Med 2005; 46 (Suppl. 01) 83S-91S
  • 34 Vegt E, de Jong M, Wetzels JF. et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med 2010; 51 (07) 1049-1058
  • 35 Vegt E, Melis M, Eek A. et al. Renal uptake of different radiolabelled peptides is mediated by megalin: SPECT and biodistribution studies in megalin-deficient mice. Eur J Nucl Med Mol Imaging 2011; 38 (04) 623-63
  • 36 Yin J, Wang J. Renal drug transporters and their significance in drug-drug interactions. Acta Pharm Sin B 2016; 6 (05) 363-373
  • 37 Zhang JJ, Schuchardt C, Kulkarni H. et al. Dosimetry and safety of Lu-177-PSMA radioligand therapy among patients with a single kidney as compared to patients with both kidneys with or without baseline renal insufficiency (RI). Journal of Nuclear Medicine 2019; 60 (01) 269