Neuroradiologie Scan 2021; 11(01): 33-57
DOI: 10.1055/a-1133-1824
CME-Fortbildung

Akute Kopfschmerzen in der Notaufnahme

Acute headache in the emergency setting
Melike Guryildirim
,
Marinos Kontzialis
,
Merve Ozen
,
Mehmet Kocak

Viele Patienten werden mit Kopfschmerzen in der Notaufnahme vorstellig. Radiologen spielen im Hinblick auf die frühzeitige Diagnose und Therapieentscheidung eine zentrale Rolle. Die Vertrautheit mit subtilen Bildgebungsbefunden, die wegweisend für die Diagnose sein können, ist daher wichtig. Dieser Artikel gibt einen Überblick über die Ätiologie von akuten Kopfschmerzen in der Notaufnahme und die jeweils typischen Bildgebungsbefunde.

Abstract

Acute headache is a common symptom and is reported by approximately 2 % – 4 % of patients who present to the emergency department. Many abnormalities manifest with headache as the first symptom, and it is crucial to obtain a patient’s complete clinical history for correct diagnosis. Headache onset, duration, and severity; risk factors such as hypertension, immunosuppression, or malignancy; and the presence of focal neurologic deficits or systemic symptoms may aid the radiologist in deciding whether imaging is appropriate and which modality to choose. Imaging findings are more likely to be abnormal in patients with a “thunderclap” headache than in those with headaches of lesser severity. The causes of headache in the emergency setting are various. They may manifest at imaging as subarachnoid hemorrhage (ruptured aneurysm, reversible vasoconstriction syndrome, or pituitary apoplexy), parenchymal hemorrhage (hypertension, ruptured arteriovenous malformation, cerebral amyloid angiopathy, dural arteriovenous fistula, or sinus thrombosis), or parenchymal edema (posterior reversible encephalopathy syndrome, reversible cerebral vasoconstriction syndrome, sinus thrombosis, or encephalitis). Alterations in intracranial pressure that are related to idiopathic intracranial hypertension or spontaneous intracranial hypotension and prior lumbar puncture or epidural injection may manifest with specific imaging findings. With accumulating knowledge of disease pathophysiology, radiologists have started to play a more central role in making the correct diagnosis. This article reviews multiple causes of acute headache and their characteristic appearances at multimodality imaging and familiarizes the reader with current concepts in imaging.

Kernaussagen
  • Eine Subarachnoidalblutung im Bereich der Hirnkonvexität ist die früheste Komplikation eines reversiblen zerebralen Vasokonstriktionssyndroms, liegt jedoch lediglich in 20 – 25 % der Fälle vor.

  • Angiografische Untersuchungen einschließlich der MR-Angiografie, der CT-Angiografie und der Katheterangiografie können in der ersten Woche nach der klinischen Manifestation eines reversiblen zerebralen Vasokonstriktionssyndroms unauffällig sein. Dies liegt wahrscheinlich am zentripetalen Verlauf der zerebralen Vasokonstriktion, die in kleinen peripheren Arteriolen auftritt und zentral zu den mittelgroßen und großen zerebralen Arterien fortschreitet.

  • Die 2-D-Time-of-Flight-MR-Venografie ist die am häufigsten eingesetzte Technik zur Beurteilung einer zerebralen Venenthrombose und verhält sich am sensitivsten gegenüber dem Fluss senkrecht zur Akquisitionsebene.

  • Kopfschmerzen sind das früheste Symptom und werden von 68 % der Patienten mit einer spontanen Dissektion der A. carotis interna und von 69 % der Patienten mit einer spontanen Vertebralisdissektion berichtet.

  • Bei mehr als 90 % der Patienten mit idiopathischer intrakranieller Hypertonie wurde eine Stenose des Sinus transversus nachgewiesen. Damit kommt als zugrundeliegender pathophysiologischer Mechanismus u. a. eine venöse Abflussobstruktion infrage.



Publication History

Article published online:
07 April 2021

© 2021. Thieme. All rights reserved.

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Ramirez-Lassepas M, Espinosa CE, Cicero JJ. et al. Predictors of intracranial pathologic findings in patients who seek emergency care because of headache. Arch Neurol 1997; 54 (12) 1506-1509
  • 2 Torelli P, Campana V, Cervellin G. et al. Management of primary headaches in adult Emergency Departments: a literature review, the Parma ED experience and a therapy flow chart proposal. Neurol Sci 2010; 31: 545-553
  • 3 Goldstein JN, Camargo Jr. CA, Pelletier AJ. et al. Headache in United States emergency departments: demographics, work-up and frequency of pathological diagnoses. Cephalalgia 2006; 26: 684-690
  • 4 Locker T, Mason S, Rigby A. Headache management: Are we doing enough? An observational study of patients presenting with headache to the emergency department. Emerg Med J 2004; 21: 327-332
  • 5 Linn FH, Wijdicks EF, van der Graaf Y. et al. Prospective study of sentinel headache in aneurysmal subarachnoid haemorrhage. Lancet 1994; 344: 590-593
  • 6 Douglas AC, Wippold 2nd FJ, Broderick DF. et al. ACR Appropriateness Criteria Headache. J Am Coll Radiol 2014; 11: 657-667
  • 7 Bø SH, Davidsen EM, Gulbrandsen P. et al. Acute headache: a prospective diagnostic work-up of patients admitted to a general hospital. Eur J Neurol 2008; 15: 1293-1299
  • 8 Ducros A, Bousser MG. Thunderclap headache. BMJ 2013; 346: e8557
  • 9 Rizk B, Platon A, Tasu JP. et al. The role of unenhanced CT alone for the management of headache in an emergency department. A feasibility study. J Neuroradiol 2013; 40: 335-341
  • 10 Taylor RA, Singh GillH, Marcolini EG. et al. Determination of a testing threshold for lumbar puncture in the diagnosis of subarachnoid hemorrhage after a negative head computed tomography: a decision analysis. Acad Emerg Med 2016; 23: 1119-1127
  • 11 Gill HS, Marcolini EG, Barber D. et al. The utility of lumbar puncture after a negative head CT in the emergency department evaluation of subarachnoid hemorrhage. Yale J Biol Med 2018; 91: 3-11
  • 12 Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med 2006; 355: 928-939
  • 13 Carpenter CR, Hussain AM, Ward MJ. et al. Spontaneous subarachnoid hemorrhage: a systematic review and meta-analysis describing the diagnostic accuracy of history, physical examination, imaging, and lumbar puncture with an exploration of test thresholds. Acad Emerg Med 2016; 23: 963-1003
  • 14 Policeni B, Corey AS. Expert Panel on Neurologic Imaging. et al. ACR Appropriateness Criteria® Cranial Neuropathy. J Am Coll Radiol 2017; 14: S406-S420
  • 15 Kirsch CFE, Bykowski J. Expert Panel on Neurologic Imaging. et al. ACR Appropriateness Criteria® Sinonasal Disease. J Am Coll Radiol 2017; 14: S550-S559
  • 16 Whitehead MT, Cardenas AM, Corey AS. ACR Appropriateness Criteria® Headache. Revised 2019. https://acsearch.acr.org/docs/69482/Narrative/ Im Internet (Stand 21.09.2020):
  • 17 Salmela MB, Mortazavi S. Expert Panel on Neurologic Imaging. et al. ACR Appropriateness Criteria® Cerebrovascular Disease. J Am Coll Radiol 2017; 14: S34-S61
  • 18 Marder CP, Narla V, Fink JR. et al. Subarachnoid hemorrhage: beyond aneurysms. AJR Am J Roentgenol 2014; 202: 25-37
  • 19 Hacein-Bey L, Provenzale JM. Current imaging assessment and treatment of intracranial aneurysms. AJR Am J Roentgenol 2011; 196: 32-44
  • 20 Kontzialis M, Wasserman BA. Intracranial vessel wall imaging: current applications and clinical implications. Neurovasc Imaging 2016; 2 DOI: 10.1186/s40809-016-0014-5.
  • 21 Kataoka K, Taneda M, Asai T. et al. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 1999; 30: 1396-1401
  • 22 Matouk CC, Mandell DM, Günel M. et al. Vessel wall magnetic resonance imaging identifies the site of rupture in patients with multiple intracranial aneurysms: proof of principle. Neurosurgery 2013; 72: 492-496 discussion 496
  • 23 Lee WK, Mossop PJ, Little AF. et al. Infected (mycotic) aneurysms: spectrum of imaging appearances and management. RadioGraphics 2008; 28: 1853-1868
  • 24 van Asch CJ, Luitse MJ, Rinkel GJ. et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 2010; 9: 167-176
  • 25 Broderick J, Connolly S, Feldmann E. et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Circulation 2007; 116: e391-e413
  • 26 Hemphill 3rd JC, Greenberg SM, Anderson CS. et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2015; 46: 2032-2060
  • 27 Kamel H, Navi BB, Hemphill 3rd JC. A rule to identify patients who require magnetic resonance imaging after intracerebral hemorrhage. Neurocrit Care 2013; 18: 59-63
  • 28 Haller S, Vernooij MW, Kuijer JPA. et al. Cerebral microbleeds: imaging and clinical significance. Radiology 2018; 287: 11-28
  • 29 Greenberg SM, Eng JA, Ning M. et al. Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke 2004; 35: 1415-1420
  • 30 Rutledge WC, Ko NU, Lawton MT. et al. Hemorrhage rates and risk factors in the natural history course of brain arteriovenous malformations. Transl Stroke Res 2014; 5: 538-542
  • 31 Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg 1986; 65: 476-483
  • 32 Tranvinh E, Heit JJ, Hacein-Bey L. et al. Contemporary imaging of cerebral arteriovenous malformations. AJR Am J Roentgenol 2017; 208: 1320-1330
  • 33 Newton TH, Cronqvist S. Involvement of dural arteries in intracranial arteriovenous malformations. Radiology 1969; 93: 1071-1078
  • 34 Gandhi D, Chen J, Pearl M. et al. Intracranial dural arteriovenous fistulas: classification, imaging findings, and treatment. AJNR Am J Neuroradiol 2012; 33: 1007-1013
  • 35 Geibprasert S, Pongpech S, Jiarakongmun P. et al. Radiologic assessment of brain arteriovenous malformations: what clinicians need to know. RadioGraphics 2010; 30: 483-501
  • 36 Ayberk G, Ozveren MF, Aslan S. et al. Subarachnoid, subdural and interdural spaces at the clival region: an anatomical study. Turk Neurosurg 2011; 21: 372-377
  • 37 Calabrese LH, Dodick DW, Schwedt TJ. et al. Narrative review: reversible cerebral vasoconstriction syndromes. Ann Intern Med 2007; 146: 34-44
  • 38 Paliwal PR, Teoh HL, Sharma VK. Association between reversible cerebral vasoconstriction syndrome and thrombotic thrombocytopenic purpura. J Neurol Sci 2014; 338: 223-225
  • 39 de Boysson H, Parienti JJ, Mawet J. et al. Primary angiitis of the CNS and reversible cerebral vasoconstriction syndrome: a comparative study. Neurology 2018; 91: e1468-e1478
  • 40 Miller TR, Shivashankar R, Mossa-Basha M. et al. Reversible cerebral vasoconstriction syndrome, Part 2: Diagnostic work-up, imaging evaluation, and differential diagnosis. AJNR Am J Neuroradiol 2015; 36: 1580-1588
  • 41 Hinchey J, Chaves C, Appignani B. et al. A reversible posterior leukoencephalopathy syndrome. N Engl J Med 1996; 334: 494-500
  • 42 McKinney AM, Short J, Truwit CL. et al. Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR Am J Roentgenol 2007; 189: 904-912
  • 43 Kontzialis M, Huisman TAGM. Toxic-metabolic neurologic disorders in children: a neuroimaging review. J Neuroimaging 2018; 28: 587-595
  • 44 Fugate JE, Rabinstein AA. Posterior reversible encephalopathy syndrome: clinical and radiological manifestations, pathophysiology, and outstanding questions. Lancet Neurol 2015; 14: 914-925
  • 45 Stevens CJ, Heran MK. The many faces of posterior reversible encephalopathy syndrome. Br J Radiol 2012; 85: 1566-1575
  • 46 Fugate JE, Claassen DO, Cloft HJ. et al. Posterior reversible encephalopathy syndrome: associated clinical and radiologic findings. Mayo Clin Proc 2010; 85: 427-432
  • 47 Karia SJ, Rykken JB, McKinney ZJ. et al. Utility and significance of gadolinium-based contrast enhancement in posterior reversible encephalopathy syndrome. AJNR Am J Neuroradiol 2016; 37: 415-422
  • 48 Botta R, Donirpathi S, Yadav R. et al. Headache patterns in cerebral venous sinus thrombosis. J Neurosci Rural Pract 2017; 8: S72-S77
  • 49 Alvis-Miranda HR, Milena Castellar-Leones S, Alcala-Cerra G. et al. Cerebral sinus venous thrombosis. J Neurosci Rural Pract 2013; 4: 427-438
  • 50 Chiewvit P, Piyapittayanan S, Poungvarin N. Cerebral venous thrombosis: diagnosis dilemma. Neurol Int 2011; 3: e13
  • 51 Black DF, Rad AE, Gray LA. et al. Cerebral venous sinus density on noncontrast CT correlates with hematocrit. AJNR Am J Neuroradiol 2011; 32: 1354-1357
  • 52 Buyck PJ, De Keyzer F, Vanneste D. et al. CT density measurement and H:H ratio are useful in diagnosing acute cerebral venous sinus thrombosis. AJNR Am J Neuroradiol 2013; 34: 1568-1572
  • 53 Avsenik J, Oblak JP, Popovic KS. Non-contrast computed tomography in the diagnosis of cerebral venous sinus thrombosis. Radiol Oncol 2016; 50: 263-268
  • 54 de la Vega Muns G, Quencer R, Ezuddin NS. et al. Utility of Hounsfield unit and hematocrit values in the diagnosis of acute venous sinus thrombosis in unenhanced brain CTs in the pediatric population. Pediatr Radiol 2019; 49: 234-239
  • 55 Leach JL, Fortuna RB, Jones BV. et al. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. RadioGraphics 2006; 26 (Suppl. 01) S19-S41 discussion S42-S43
  • 56 Rodallec MH, Krainik A, Feydy A. et al. Cerebral venous thrombosis and multidetector CT angiography: tips and tricks. RadioGraphics 2006; 26 (Suppl. 01) S5-S18 discussion S42–S43
  • 57 Silbert PL, Mokri B, Schievink WI. Headache and neck pain in spontaneous internal carotid and vertebral artery dissections. Neurology 1995; 45: 1517-1522
  • 58 Arnold M, Cumurciuc R, Stapf C. et al. Pain as the only symptom of cervical artery dissection. J Neurol Neurosurg Psychiatry 2006; 77: 1021-1024
  • 59 von Babo M, De Marchis GM, Sarikaya H. et al. Differences and similarities between spontaneous dissections of the internal carotid artery and the vertebral artery. Stroke 2013; 44: 1537-1542
  • 60 Rodallec MH, Marteau V, Gerber S. et al. Craniocervical arterial dissection: spectrum of imaging findings and differential diagnosis. RadioGraphics 2008; 28: 1711-1728
  • 61 Provenzale JM, Sarikaya B. Comparison of test performance characteristics of MRI, MR angiography, and CT angiography in the diagnosis of carotid and vertebral artery dissection: a review of the medical literature. AJR Am J Roentgenol 2009; 193: 1167-1174
  • 62 Lippman HH, Sundt Jr. TM, Holman CB. The poststenotic carotid slim sign: spurious internal carotid hypolasia. Mayo Clin Proc 1970; 45: 762-767
  • 63 Pappas JN. The angiographic string sign. Radiology 2002; 222: 237-238
  • 64 Lum C, Chakraborty S, Schlossmacher M. et al. Vertebral artery dissection with a normal-appearing lumen at multisection CT angiography: the importance of identifying wall hematoma. AJNR Am J Neuroradiol 2009; 30: 787-792
  • 65 Dorsett M, Liang SY. Diagnosis and treatment of central nervous system infections in the emergency department. Emerg Med Clin North Am 2016; 34: 917-942 published correction appeared in Emerg Med Clin North Am 2017; 35 (2): xix. doi:org/10.1016/j.emc.2016.06.013
  • 66 Pedroso JL, de Aquino CC, Abrahão A. et al. Gradenigo’s syndrome: beyond the classical triad of diplopia, Facial pain and otorrhea. Case Rep Neurol 2011; 3: 45-47
  • 67 Taklalsingh N, Falcone F, Velayudhan V. Gradenigo’s syndrome in a patient with chronic suppurative otitis media, petrous apicitis, and meningitis. Am J Case Rep 2017; 18: 1039-1043
  • 68 Forsyth PA, Posner JB. Headaches in patients with brain tumors: a study of 111 patients. Neurology 1993; 43: 1678-1683
  • 69 Vázquez-Barquero A, Ibáñez FJ, Herrera S. et al. Isolated headache as the presenting clinical manifestation of intracranial tumors: a prospective study. Cephalalgia 1994; 14: 270-272
  • 70 Suwanwela N, Phanthumchinda K, Kaoropthum S. Headache in brain tumor: a cross-sectional study. Headache 1994; 34: 435-438
  • 71 Armao D, Castillo M, Chen H. et al. Colloid cyst of the third ventricle: imaging-pathologic correlation. AJNR Am J Neuroradiol 2000; 21: 1470-1477
  • 72 Friedman DI, Liu GT, Digre KB. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology 2013; 81: 1159-1165
  • 73 Bialer OY, Rueda MP, Bruce BB. et al. Meningoceles in idiopathic intracranial hypertension. AJR Am J Roentgenol 2014; 202: 608-613
  • 74 Pérez MA, Bialer OY, Bruce BB. et al. Primary spontaneous cerebrospinal fluid leaks and idiopathic intracranial hypertension. J Neuroophthalmol 2013; 33: 330-337
  • 75 Yang Z, Wang B, Wang C. et al. Primary spontaneous cerebrospinal fluid rhinorrhea: a symptom of idiopathic intracranial hypertension?. J Neurosurg 2011; 115: 165-170
  • 76 O’Connell BP, Yawn RJ, Hunter JB. et al. Bilateral petrous apex cephaloceles and skull base attenuation in setting of idiopathic intracranial hypertension. Otol Neurotol 2016; 37: e256-e257
  • 77 Schievink WI. Spontaneous spinal cerebrospinal fluid leaks and intracranial hypotension. JAMA 2006; 295: 2286-2296
  • 78 Schievink WI, Gordon OK, Tourje J. Connective tissue disorders with spontaneous spinal cerebrospinal fluid leaks and intracranial hypotension: a prospective study. Neurosurgery 2004; 54: 65-70 discussion 70-71
  • 79 Schievink WI, Meyer FB, Atkinson JL. et al. Spontaneous spinal cerebrospinal fluid leaks and intracranial hypotension. J Neurosurg 1996; 84: 598-605
  • 80 Schievink WI, Morreale VM, Atkinson JL. et al. Surgical treatment of spontaneous spinal cerebrospinal fluid leaks. J Neurosurg 1998; 88: 243-246
  • 81 Schievink WI, Reimer R, Folger WN. Surgical treatment of spontaneous intracranial hypotension associated with a spinal arachnoid diverticulum. Case report. J Neurosurg 1994; 80: 736-739
  • 82 Schrijver I, Schievink WI, Godfrey M. et al. Spontaneous spinal cerebrospinal fluid leaks and minor skeletal features of Marfan syndrome: a microfibrillopathy. J Neurosurg 2002; 96: 483-489
  • 83 Mokri B, Maher CO, Sencakova D. Spontaneous CSF leaks: underlying disorder of connective tissue. Neurology 2002; 58: 814-816
  • 84 Shah LM, McLean LA, Heilbrun ME. et al. Intracranial hypotension: improved MRI detection with diagnostic intracranial angles. AJR Am J Roentgenol 2013; 200: 400-407
  • 85 Farb RI, Nicholson PJ, Peng PW. et al. Spontaneous intracranial hypotension: a systematic imaging approach for CSF leak localization and management based on MRI and digital subtraction myelography. AJNR Am J Neuroradiol 2019; 40: 745-753
  • 86 Dobrocky T, Mosimann PJ, Zibold F. et al. Cryptogenic cerebrospinal fluid leaks in spontaneous intracranial hypotension: role of dynamic CT myelography. Radiology 2018; 289: 766-772
  • 87 Aida S, Taga K, Yamakura T. et al. Headache after attempted epidural block: the role of intrathecal air. Anesthesiology 1998; 88: 76-81
  • 88 Somri M, Teszler CB, Vaida SJ. et al. Postdural puncture headache: an imaging-guided management protocol. Anesth Analg 2003; 96: 1809-1812
  • 89 Dubuisson AS, Beckers A, Stevenaert A. Classical pituitary tumour apoplexy: clinical features, management and outcomes in a series of 24 patients. Clin Neurol Neurosurg 2007; 109: 63-70
  • 90 Sheehan HL. Post-partum necrosis of the anterior pituitary. Ir J Med Sci 1948; 270: 241-255
  • 91 Ju YE, Schwedt TJ. Abrupt-onset severe headaches. Semin Neurol 2010; 30: 192-200
  • 92 Goyal P, Utz M, Gupta N. et al. Clinical and imaging features of pituitary apoplexy and role of imaging in differentiation of clinical mimics. Quant Imaging Med Surg 2018; 8: 219-231
  • 93 Semple PL, Jane JA, Lopes MB. et al. Pituitary apoplexy: correlation between magnetic resonance imaging and histopathological results. J Neurosurg 2008; 108: 909-915
  • 94 Waqar M, McCreary R, Kearney T. et al. Sphenoid sinus mucosal thickening in the acute phase of pituitary apoplexy. Pituitary 2017; 20: 441-449
  • 95 Zorbalar N, Yesilaras M, Aksay E. Carbon monoxide poisoning in patients presenting to the emergency department with a headache in winter months. Emerg Med J 2014; 31: e66-e70
  • 96 Beppu T. The role of MR imaging in assessment of brain damage from carbon monoxide poisoning: a review of the literature. AJNR Am J Neuroradiol 2014; 35: 625-631
  • 97 Lo CP, Chen SY, Lee KW. et al. Brain injury after acute carbon monoxide poisoning: early and late complications. AJR Am J Roentgenol 2007; 189: W205-W211
  • 98 Kim DM, Lee IH, Park JY. et al. Acute carbon monoxide poisoning: MR imaging findings with clinical correlation. Diagn Interv Imaging 2017; 98: 299-306