Horm Metab Res 2020; 52(05): 280-288
DOI: 10.1055/a-1142-8815
Review
© Georg Thieme Verlag KG Stuttgart · New York

Research Progress on lncRNA Functions and Mechanisms in Pituitary Adenomas

Qiu Du
1   Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
2   Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
,
De-shan Yao
3   Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
,
You-wei Wang
1   Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
,
Cheng Cheng
1   Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
› Author Affiliations
Funding: National Natural Science Foundation of China; Grant No. 81702479.
Further Information

Publication History

received 31 July 2019

accepted 10 March 2020

Publication Date:
13 May 2020 (online)

Abstract

Despite being the most common human neuroendocrine tumor, the pathogenesis of pituitary adenomas (PAs) is still unclear. Long non-coding RNA (lncRNA) is involved in a variety of physiological and pathological processes, and has been shown to play a key role in the process of tumor instigation and development by affecting the proliferation, migration, invasiveness, and metastasis of tumor cells. Therefore, lncRNAs may be used as diagnostic and prognostic markers of tumors. In this paper, the effect of lncRNA on the onset and progression of PAs is reviewed so as to provide a profound understanding of its pathogenesis and clinical reference for the early diagnosis of PAs.

 
  • References

  • 1 Molitch ME. Nonfunctioning pituitary tumors. Handb Clin Neurol 2014; 124: 167-184
  • 2 Fernandez A, Karavitaki N, Wass JA. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf) 2010; 72: 377-382
  • 3 Fontana E, Gaillard R. [Epidemiology of pituitary adenoma: results of the first Swiss study]. Rev Med Suisse 2009; 5: 2172-2174
  • 4 Daly AF, Rixhon M, Adam C. et al. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab 2006; 91: 4769-4775
  • 5 Ammirati M, Wei L, Ciric I. Short-term outcome of endoscopic versus microscopic pituitary adenoma surgery: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2013; 84: 843-849
  • 6 Lloyd RV, Osamura RY, Kloppel G. et al. WHO classification of tumours of endocrine organs[Z]. 4th edn. Lyon: International Agency for Research on Cancer (IARC) Press; 2017: 11-64
  • 7 Reincke M, Sbiera S, Hayakawa A. et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet 2015; 47: 31-38
  • 8 Ma ZY, Song ZJ, Chen JH. et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res 2015; 25: 306-317
  • 9 Song ZJ, Reitman ZJ, Ma ZY. et al. The genome-wide mutational landscape of pituitary adenomas. Cell Res 2016; 26: 1255-1259
  • 10 Molitch ME. Diagnosis and treatment of pituitary adenomas: A Review. JAMA 2017; 317: 516-524
  • 11 Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell 2011; 145: 178-181
  • 12 Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov 2011; 1: 391-407
  • 13 Zhang E, He X, Zhang C. et al. A novel long noncoding RNA HOXC-AS3 mediates tumorigenesis of gastric cancer by binding to YBX1. Genome Biol 2018; 19: 154
  • 14 Kim J, Piao HL, Kim BJ. et al. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet 2018; 50: 1705-1715
  • 15 Chen Z, Li JL, Lin S. et al. cAMP/CREB-regulated LINC00473 marks LKB1-inactivated lung cancer and mediates tumor growth. J Clin Invest 2016; 126: 2267-2279
  • 16 Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10: 155-159
  • 17 Wahlestedt C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov 2013; 12: 433-446
  • 18 Engreitz JM, Haines JE, Perez EM. et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 2016; 539: 452-455
  • 19 Mattick JS. RNA regulation: a new genetics?. Nat Rev Genet 2004; 5: 316-323
  • 20 Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43: 904-914
  • 21 Bhat SA, Ahmad SM, Mumtaz PT. et al. Long non-coding RNAs: Mechanism of action and functional utility. Noncoding RNA Res 2016; 1: 43-50
  • 22 Xing W, Qi Z, Huang C. et al. Genome-wide identification of lncRNAs and mRNAs differentially expressed in non-functioning pituitary adenoma and construction of an lncRNA-mRNA co-expression network. Biol Open 2019; 8: bio037127 10.1242/bio.037127
  • 23 Zhu H, Guo J, Shen Y. et al. Functions and mechanisms of tumor necrosis factor-alpha and noncoding RNAs in bone-invasive pituitary adenomas. Clin Cancer Res 2018; 24: 5757-5766
  • 24 D’Angelo D, Mussnich P, Sepe R. et al. RPSAP52 lncRNA is overexpressed in pituitary tumors and promotes cell proliferation by acting as miRNA sponge for HMGA proteins. J Mol Med (Berl) 2019; 97: 1019-1032
  • 25 Li J, Li C, Wang J. et al. Genome-wide analysis of differentially expressed lncRNAs and mRNAs in primary gonadotrophin adenomas by RNA-seq. Oncotarget 2017; 8: 4585-4606
  • 26 Miyoshi N, Wagatsuma H, Wakana S. et al. Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 2000; 5: 211-220
  • 27 Zhang X, Zhou Y, Mehta KR. et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 2003; 88: 5119-5126
  • 28 Chunharojrith P, Nakayama Y, Jiang X. et al. Tumor suppression by MEG3 lncRNA in a human pituitary tumor derived cell line. Mol Cell Endocrinol 2015; 416: 27-35
  • 29 Zhang Y, Wu J, Jing H. et al. Long noncoding RNA MEG3 inhibits breast cancer growth via upregulating endoplasmic reticulum stress and activating NF-kappaB and p53. J Cell Biochem 2019; 120: 6789-6797
  • 30 Zheng Q, Lin Z, Xu J. et al. Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting beta-catenin by activating PKM2 and inactivating PTEN. Cell Death Dis 2018; 9: 253
  • 31 Xu DH, Chi GN, Zhao CH. et al. Long noncoding RNA MEG3 inhibits proliferation and migration but induces autophagy by regulation of Sirt7 and PI3K/AKT/mTOR pathway in glioma cells. J Cell Biochem. 2018 doi: 10.1002/jcb.28026 [Epub ahead of print]
  • 32 Li H, Wang J, Lv S. et al. Long noncoding RNA MEG3 plays a promoting role in the proliferation, invasion, and angiogenesis of lung adenocarcinoma cells through the AKT pathway. J Cell Biochem 2019; 120: 16143-16152
  • 33 Zhang X, Rice K, Wang Y. et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 2010; 151: 939-947
  • 34 Zhou Y, Zhang X, Klibanski A. MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 2012; 48: R45-R53
  • 35 Li Z, Li C, Liu C. et al. Expression of the long non-coding RNAs MEG3, HOTAIR, and MALAT-1 in non-functioning pituitary adenomas and their relationship to tumor behavior. Pituitary 2015; 18: 42-47
  • 36 Tang C, Zhong C, Cong Z. et al. MEG3 is associated with gsp oncogene regulation of growth hormone hypersecretion, proliferation and invasiveness of human GH-secreting adenomas. Oncol Lett 2019; 17: 3495-3502
  • 37 Zhao J, Dahle D, Zhou Y. et al. Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 2005; 90: 2179-2186
  • 38 Zhang X, Gejman R, Mahta A. et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 2010; 70: 2350-2358
  • 39 Braconi C, Kogure T, Valeri N. et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 2011; 30: 4750-4756
  • 40 Zhou Y, Zhong Y, Wang Y. et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem 2007; 282: 24731-24742
  • 41 Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005; 24: 2899-2908
  • 42 Wang P, Ren Z, Sun P. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 2012; 113: 1868-1874
  • 43 El-Deiry WS, Tokino T, Velculescu VE. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817-825
  • 44 Gordon FE, Nutt CL, Cheunsuchon P. et al. Increased expression of angiogenic genes in the brains of mouse meg3-null embryos. Endocrinology 2010; 151: 2443-2452
  • 45 Byun HM, Wong HL, Birnstein EA. et al. Examination of IGF2 and H19 loss of imprinting in bladder cancer. Cancer Res 2007; 67: 10753-10758
  • 46 Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays 2010; 32: 473-480
  • 47 Gao Y, Wu F, Zhou J. et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res 2014; 42: 13799-13811
  • 48 Wu ZR, Yan L, Liu YT. et al. Inhibition of mTORC1 by lncRNA H19 via disrupting 4E-BP1/Raptor interaction in pituitary tumours. Nat Commun 2018; 9: 4624
  • 49 Lu T, Yu C, Ni H. et al. Expression of the long non-coding RNA H19 and MALAT-1 in growth hormone-secreting pituitary adenomas and its relationship to tumor behavior. Int J Dev Neurosci 2018; 67: 46-50
  • 50 Grier DG, Thompson A, Kwasniewska A. et al. The pathophysiology of HOX genes and their role in cancer. J Pathol 2005; 205: 154-171
  • 51 Rinn JL, Kertesz M, Wang JK. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129: 1311-1323
  • 52 Gupta RA, Shah N, Wang KC. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464: 1071-1076
  • 53 Kim K, Jutooru I, Chadalapaka G. et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 2013; 32: 1616-1625
  • 54 Nakagawa T, Endo H, EYokoyama M. et al. Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochem Biophys Res Commun 2013; 436: 319-324
  • 55 Sorensen KP, Thomassen M, Tan Q. et al. Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res Treat 2013; 142: 529-536
  • 56 Li Z, Li C, Liu C. et al. Expression of the long non-coding RNAs MEG3, HOTAIR, and MALAT-1 in non-functioning pituitary adenomas and their relationship to tumor behavior. Pituitary 2015; 18: 42-47
  • 57 Cheng G, Song CM, Li JZ. Effects of lncRNA HOTAIR on invasion and hormone secretion of pituitary growth hormone adenoma. Shandong Med J 2018; 58: 37-41
  • 58 Li JZ, Zhang YQ, Zhao QC. et al. Silencing of HOTAIR expression inhibits the temozolomide-induced apoptosis in pituitary tumor cells. BMU J 2016; 39: 165-168
  • 59 Ji P, Diederichs S, Wang W. et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003; 22: 8031-8041
  • 60 Tripathi V, Ellis JD, Shen Z. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39: 925-938
  • 61 Li S, Mei Z, Hu HB. et al. The lncRNA MALAT1 contributes to non-small cell lung cancer development via modulating miR-124/STAT3 axis. J Cell Physiol 2018; 233: 6679-6688
  • 62 Malakar P, Shilo A, Mogilevsky A. et al. Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation. Cancer Res 2017; 77: 1155-1167
  • 63 Yi Ren H, Ying Cong Y, Sunwu Y. et al. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol Cancer 2017; 16: 174
  • 64 Jin Y, Feng SJ, Qiu S. et al. LncRNA MALAT1 promotes proliferation and metastasis in epithelial ovarian cancer via the PI3K-AKT pathway. Eur Rev Med Pharmacol Sci 2017; 21: 3176-3184
  • 65 Zuo Y, Li Y, Zhou Z. et al. Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomed Pharmacother 2017; 95: 922-928
  • 66 Li ZY, Gui SB, Li CZ. et al. MEG3 and MALAT-1 lncRNA are associated with the development and invasion of GHPAs. Guangdong Med J 2017; 38: 410-413
  • 67 Li D, Liu X, Zhou J. et al. Long noncoding RNA HULC modulates the phosphorylation of YB-1 through serving as a scaffold of extracellular signal-regulated kinase and YB-1 to enhance hepatocarcinogenesis. Hepatology 2017; 65: 1612-1627
  • 68 Sun XH, Yang LB, Geng XL. et al. Increased expression of lncRNA HULC indicates a poor prognosis and promotes cell metastasis in osteosarcoma. Int J Clin Exp Pathol 2015; 8: 2994-3000
  • 69 Wang J, Ma W, Liu Y. Long non-coding RNA HULC promotes bladder cancer cells proliferation but inhibits apoptosis via regulation of ZIC2 and PI3K/AKT signaling pathway. Cancer Biomark 2017; 20: 425-434
  • 70 Yan H, Tian R, Zhang M. et al. High expression of long noncoding RNA HULC is a poor predictor of prognosis and regulates cell proliferation in glioma. Onco Targets Ther 2017; 10: 113-120
  • 71 Shi F, Xiao F, Ding P. et al. Long noncoding RNA highly up-regulated in liver cancer predicts unfavorable outcome and regulates metastasis by MMPs in triple-negative breast cancer. Arch Med Res 2016; 47: 446-453
  • 72 Lu Y, Li Y, Chai X. et al. Long noncoding RNA HULC promotes cell proliferation by regulating PI3K/AKT signaling pathway in chronic myeloid leukemia. Gene 2017; 607: 41-46
  • 73 Xie H, Ma H, Zhou D. Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. Biomed Res Int. 2013 136106.
  • 74 Rui QH, Ma JB, Liao YF. et al. Effect of lncRNA HULC knockdown on rat secreting pituitary adenoma GH3 cells. Braz J Med Biol Res 2019; 52: e7728
  • 75 Ling H, Spizzo R, Atlasi Y. et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res 2013; 23: 1446-1461
  • 76 Yu Y, Nangia-Makker P, Farhana L. et al. A novel mechanism of lncRNA and miRNA interaction: CCAT2 regulates miR-145 expression by suppressing its maturation process in colon cancer cells. Mol Cancer 2017; 16: 155
  • 77 Wu ZJ, Li Y, Wu YZ. et al. Long non-coding RNA CCAT2 promotes the breast cancer growth and metastasis by regulating TGF-beta signaling pathway. Eur Rev Med Pharmacol Sci 2017; 21: 706-714
  • 78 Chen F, Bai G, Li Y. et al. A positive feedback loop of long noncoding RNA CCAT2 and FOXM1 promotes hepatocellular carcinoma growth. Am J Cancer Res 2017; 7: 1423-1434
  • 79 Fu D, Zhang Y, Cui H. Long noncoding RNA CCAT2 is activated by E2F1 and exerts oncogenic properties by interacting with PTTG1 in pituitary adenomas. Am J Cancer Res 2018; 8: 245-255
  • 80 Wei G, Luo H, Sun Y. et al. Transcriptome profiling of esophageal squamous cell carcinoma reveals a long noncoding RNA acting as a tumor suppressor. Oncotarget 2015; 6: 17065-17080
  • 81 Feng L, Houck JR, Lohavanichbutr P. et al. Transcriptome analysis reveals differentially expressed lncRNAs between oral squamous cell carcinoma and healthy oral mucosa. Oncotarget 2017; 8: 31521-31531
  • 82 Lu T, Liu H, You G. Long non-coding RNA C5orf66-AS1 prevents oral squamous cell carcinoma through inhibiting cell growth and metastasis. Int J Mol Med 2018; 42: 3291-3299
  • 83 Guo W, Lv P, Liu S. et al. Aberrant methylation-mediated downregulation of long noncoding RNA C5orf66-AS1 promotes the development of gastric cardia adenocarcinoma. Mol Carcinog 2018; 57: 854-865
  • 84 Rui X, Xu Y, Jiang X. et al. Long non-coding RNA C5orf66-AS1 promotes cell proliferation in cervical cancer by targeting miR-637/RING1 axis. Cell Death Dis 2018; 9: 1175
  • 85 Yu G, Li C, Xie W. et al. Long non-coding RNA C5orf66-AS1 is downregulated in pituitary null cell adenomas and is associated with their invasiveness. Oncol Rep 2017; 38: 1140-1148
  • 86 Takenobu M, Osaki M, Fujiwara K. et al. PITX1 is a novel predictor of the response to chemotherapy in head and neck squamous cell carcinoma. Mol Clin Oncol 2016; 5: 89-94
  • 87 Shen Y, Liu S, Fan J. et al. Nuclear retention of the lncRNA SNHG1 by doxorubicin attenuates hnRNPC-p53 protein interactions. EMBO Rep 2017; 18: 536-548
  • 88 Sun X, Wang Z, Yuan W. Down-regulated long non-coding RNA SNHG1 inhibits tumor genesis of colorectal carcinoma. Cancer Biomark 2017; 20: 67-73
  • 89 Hu Y, Ma Z, He Y. et al. LncRNA-SNHG1 contributes to gastric cancer cell proliferation by regulating DNMT1. Biochem Biophys Res Commun 2017; 491: 926-931
  • 90 Wang Q, Li Q, Zhou P. et al. Upregulation of the long non-coding RNA SNHG1 predicts poor prognosis, promotes cell proliferation and invasion, and reduces apoptosis in glioma. Biomed Pharmacother 2017; 91: 906-911
  • 91 Zhang M, Wang W, Li T. et al. Long noncoding RNA SNHG1 predicts a poor prognosis and promotes hepatocellular carcinoma tumorigenesis. Biomed Pharmacother 2016; 80: 73-79
  • 92 Liu Y, Yang Y, Li L. et al. LncRNA SNHG1 enhances cell proliferation, migration, and invasion in cervical cancer. Biochem Cell Biol 2018; 96: 38-43
  • 93 Wang H, Wang G, Gao Y. et al. Lnc-SNHG1 Activates the TGFBR2/SMAD3 and RAB11A/Wnt/beta-catenin pathway by sponging MiR-302/372/373/520 in invasive pituitary tumors. Cell Physiol Biochem 2018; 48: 1291-1303
  • 94 Vigneau S, Levillayer F, Crespeau H. et al. Homology between a 173-kb region from mouse chromosome 10, telomeric to the Ifng locus, and human chromosome 12q15. Genomics 2001; 78: 206-213
  • 95 Li H, Hao Y, Zhang D. et al. Aberrant expression of long noncoding RNA TMEVPG1 in patients with primary immune thrombocytopenia. Autoimmunity 2016; 49: 496-502
  • 96 Padua D, Mahurkar-Joshi S, Law IK. et al. A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. Am J Physiol Gastrointest Liver Physiol 2016; 311: G446-G457
  • 97 Wang J, Peng H, Tian J. et al. Upregulation of long noncoding RNA TMEVPG1 enhances T helper type 1 cell response in patients with Sjogren syndrome. Immunol Res 2016; 64: 489-496
  • 98 Lu G, Duan J, Zhou D. Long-noncoding RNA IFNG-AS1 exerts oncogenic properties by interacting with epithelial splicing regulatory protein 2 (ESRP2) in pituitary adenomas. Pathol Res Pract 2018; 214: 2054-2061
  • 99 Qin AY, Zhang XW, Liu L. et al. MiR-205 in cancer: an angel or a devil?. Eur J Cell Biol 2013; 92: 54-60
  • 100 Di Agostino S, Valenti F, Sacconi A. et al. Long non-coding MIR205HG depletes Hsa-miR-590-3p leading to unrestrained proliferation in head and neck squamous cell carcinoma. Theranostics 2018; 8: 1850-1868
  • 101 Li Y, Wang H, Huang H. Long non-coding RNA MIR205HG function as a ceRNA to accelerate tumor growth and progression via sponging miR-122-5p in cervical cancer. Biochem Biophys Res Commun 2019; 514: 78-85
  • 102 Du Q, Hoover AR, Dozmorov I. et al. MIR205HG is a long noncoding RNA that regulates growth hormone and prolactin production in the anterior pituitary. Dev Cell 2019; 49: 618-631
  • 103 Huang JZ, Chen M. Chen et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell 2017; 68: 171-184
  • 104 Zhang M, Zhao K, Xu X. et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun 2018; 9: 4475
  • 105 Huang D, Chen J, Yang L. et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat Immunol 2018; 19: 1112-1125