Hamostaseologie 2020; 40(05): 594-604
DOI: 10.1055/a-1162-3905
Review Article

Pathophysiology of the Venous Thromboembolism Risk in Preeclampsia

Sarah Kelliher
1   Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
2   Irish Network for VTE Research (INViTE), Dublin, Ireland
Patricia B. Maguire
2   Irish Network for VTE Research (INViTE), Dublin, Ireland
3   UCD Conway SPHERE Research Group, Dublin, Ireland
4   School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
Paulina B. Szklanna
3   UCD Conway SPHERE Research Group, Dublin, Ireland
4   School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
Luisa Weiss
3   UCD Conway SPHERE Research Group, Dublin, Ireland
4   School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
Karl Ewins
1   Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
2   Irish Network for VTE Research (INViTE), Dublin, Ireland
5   Department of Haematology, Rotunda Hospital, Dublin, Ireland
Roseann O'Doherty
1   Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
Daniel Angelov
1   Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
Fionnuala Ní Áinle
1   Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
2   Irish Network for VTE Research (INViTE), Dublin, Ireland
3   UCD Conway SPHERE Research Group, Dublin, Ireland
5   Department of Haematology, Rotunda Hospital, Dublin, Ireland
6   School of Medicine, University College Dublin (UCD), Dublin, Ireland
Barry Kevane
1   Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
2   Irish Network for VTE Research (INViTE), Dublin, Ireland
3   UCD Conway SPHERE Research Group, Dublin, Ireland
6   School of Medicine, University College Dublin (UCD), Dublin, Ireland
› Author Affiliations
Funding This study was funded by the Health Research Board of Ireland (R1379).


Preeclampsia complicates up to 8% of pregnancies and is a leading cause of fetomaternal morbidity andmortality. Treatment options are limited, with supportive care and delivery of the placenta representing the cornerstone of current management strategies. Derangements in blood coagulation are wellrecognised in this disorder and appear to favour an increased risk of venous thromboembolism among affected women. This risk appears to be most significant in the postpartum period. The mechanisms underlying this increased thrombosis risk remain to be fully elucidated although increased expression of procoagulant factors, endothelial dysfunction, attenuation of endogenous anticoagulant activity and increased platelet activity have been implicated in the prothrombotic tendency. Preeclampsia is also occasionally complicated by life-threatening haemorrhagic events and current evidence suggests that in some severe manifestations of this disease a coagulopathy with a clinical bleeding tendency may be the predominant haemostatic abnormality. Identifying affected women at significant risk of thrombosis and managing the competing thrombotic and haemorrhagic risks continue to be a significant clinical challenge. Derangements in blood coagulation are also implicated in the pathogenesis of preeclampsia; however, the role of antiplatelet or anticoagulant drugs in the prevention and treatment of this disorder remains a source of considerable debate. In addition, the potential role of specific haemostatic markers as diagnostic or screening tools for preeclampsia has also yet to be determined. Further characterisation of the underlying molecular mechanisms would likely be of major translational relevance and could provide insights into the pathogenesis of this disease as well as the associated haemostatic dysfunction.

Publication History

Received: 20 December 2019

Accepted: 02 April 2020

Article published online:
25 May 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 English FA, Kenny LC, McCarthy FP. Risk factors and effective management of preeclampsia. Integr Blood Press Control 2015; 8: 7-12
  • 2 Kevane B, Donnelly J, D'Alton M, Cooley S, Preston RJ, Ní Ainle F. Risk factors for pregnancy-associated venous thromboembolism: a review. J Perinat Med 2014; 42 (04) 417-425
  • 3 Egan K, Kevane B, Ní Áinle F. Elevated venous thromboembolism risk in preeclampsia: molecular mechanisms and clinical impact. Biochem Soc Trans 2015; 43 (04) 696-701
  • 4 Ornaghi S, Paidas MJ. Novel therapy for the treatment of early-onset preeclampsia. Clin Obstet Gynecol 2017; 60 (01) 169-182
  • 5 Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol 2019; 15 (05) 275-289
  • 6 Fisher SJ. Why is placentation abnormal in preeclampsia?. Am J ObstetGynecol 2015; 213 (4, Suppl): S115-S122
  • 7 Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res 2019; 124 (07) 1094-1112
  • 8 Williams PJ, Broughton Pipkin F. The genetics of pre-eclampsia and other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol 2011; 25 (04) 405-417
  • 9 Saito S, Shiozaki A, Nakashima A, Sakai M, Sasaki Y. The role of the immune system in preeclampsia. Mol Aspects Med 2007; 28 (02) 192-209
  • 10 Huppertz B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension 2008; 51 (04) 970-975
  • 11 Jia R, Li J, Rui C. et al. Comparative proteomic profile of the human umbilical cord blood exosomes between normal and preeclampsia pregnancies with high-resolution mass spectrometry. Cell Physiol Biochem 2015; 36 (06) 2299-2306
  • 12 Textoris J, Ivorra D, Ben Amara A. et al. Evaluation of current and new biomarkers in severe preeclampsia: a microarray approach reveals the VSIG4 gene as a potential blood biomarker. PLoS One 2013; 8 (12) e82638
  • 13 Nevalainen J, Skarp S, Savolainen ER, Ryynänen M, Järvenpää J. Intrauterine growth restriction and placental gene expression in severe preeclampsia, comparing early-onset and late-onset forms. J Perinat Med 2017; 45 (07) 869-877
  • 14 Murphy MS, Bytautiene E, Saade G, Smith GN. Alterations to the maternal circulating proteome after preeclampsia. Am J Obstet Gynecol 2015; 213 (06) 853.e1-853.e9
  • 15 Levine RJ, Lam C, Qian C. et al; CPEP Study Group. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 2006; 355 (10) 992-1005
  • 16 Lecarpentier E, Tsatsaris V. Angiogenic balance (sFlt-1/PlGF) and preeclampsia. Ann Endocrinol (Paris) 2016; 77 (02) 97-100
  • 17 Venkatesha S, Toporsian M, Lam C. et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006; 12 (06) 642-649
  • 18 Schmella MJ, Roberts JM, Conley YP. et al. Endoglin pathway genetic variation in preeclampsia: a validation study in Norwegian and Latina cohorts. Pregnancy Hypertens 2018; 12: 144-149
  • 19 Chau K, Hennessy A, Makris A. Placental growth factor and pre-eclampsia. J Hum Hypertens 2017; 31 (12) 782-786
  • 20 Pinheiro MB, Martins-Filho OA, Mota AP. et al. Severe preeclampsia goes along with a cytokine network disturbance towards a systemic inflammatory state. Cytokine 2013; 62 (01) 165-173
  • 21 Regal JF, Burwick RM, Fleming SD. The complement system and preeclampsia. Curr Hypertens Rep 2017; 19 (11) 87
  • 22 Eddy AC, Bidwell III GL, George EM. Pro-angiogenic therapeutics for preeclampsia. Biol Sex Differ 2018; 9 (01) 36
  • 23 Lockwood CJ, Yen CF, Basar M. et al. Preeclampsia-related inflammatory cytokines regulate interleukin-6 expression in human decidual cells. Am J Pathol 2008; 172 (06) 1571-1579
  • 24 Chatterjee P, Chiasson VL, Kopriva SE. et al. Interleukin 10 deficiency exacerbates toll-like receptor 3-induced preeclampsia-like symptoms in mice. Hypertension 2011; 58 (03) 489-496
  • 25 Cubro H, Kashyap S, Nath MC, Ackerman AW, Garovic VD. The role of interleukin-10 in the pathophysiology of preeclampsia. Curr Hypertens Rep 2018; 20 (04) 36
  • 26 Buurma A, Cohen D, Veraar K. et al. Preeclampsia is characterized by placental complement dysregulation. Hypertension 2012; 60 (05) 1332-1337
  • 27 Denny KJ, Coulthard LG, Finnell RH, Callaway LK, Taylor SM, Woodruff TM. Elevated complement factor C5a in maternal and umbilical cord plasma in preeclampsia. J Reprod Immunol 2013; 97 (02) 211-216
  • 28 Qing X, Redecha PB, Burmeister MA. et al. Targeted inhibition of complement activation prevents features of preeclampsia in mice. Kidney Int 2011; 79 (03) 331-339
  • 29 Elabd H, Elkholi M, Steinberg L, Acharya A. Eculizumab, a novel potential treatment for acute kidney injury associated with preeclampsia/HELLP syndrome. BMJ Case Rep 2019; 12 (09) e228709
  • 30 Burwick RM, Feinberg BB. Eculizumab for the treatment of preeclampsia/HELLP syndrome. Placenta 2013; 34 (02) 201-203
  • 31 Murray EKI, Murphy MSQ, Smith GN, Graham CH, Othman M. Thromboelastographic analysis of haemostasis in preeclamptic and normotensive pregnant women. Blood Coagul Fibrinolysis 2018; 29 (06) 567-572
  • 32 Dusse LM, Godoi LC, Gomes KB, Carvalho Md, Lwaleed BA. Tissue factor-dependent pathway in severe preeclampsia revisited: a Brazilian cohort study. Blood Coagul Fibrinolysis 2016; 27 (04) 436-440
  • 33 Shamshirsaz AA, Paidas M, Krikun G. Preeclampsia, hypoxia, thrombosis, and inflammation. J Pregnancy 2012; 2012: 374047
  • 34 Lisonkova S, Joseph KS. Incidence of preeclampsia: risk factors and outcomes associated with early- versus late-onset disease. Am J Obstet Gynecol 2013; 209 (06) 544.e1-544.e12
  • 35 Raymond D, Peterson E. A critical review of early-onset and late-onset preeclampsia. Obstet Gynecol Surv 2011; 66 (08) 497-506
  • 36 Tranquilli AL, Brown MA, Zeeman GG, Dekker G, Sibai BM. Statements from the International Society for the Study of Hypertension in Pregnancy (ISSHP). The definition of severe and early-onset preeclampsia. Pregnancy Hypertens 2013; 3 (01) 44-47
  • 37 Raia-Barjat T, Prieux C, Gris JC, Chapelle C, Laporte S, Chauleur C. Angiogenic factors for prediction of preeclampsia and intrauterine growth restriction onset in high-risk women: AngioPred study. J Matern Fetal Neonatal Med 2019; 32 (02) 248-257
  • 38 Tardif C, Dumontet E, Caillon H. et al. Angiogenic factors sFlt-1 and PlGF in preeclampsia: prediction of risk and prognosis in a high-risk obstetric population. J Gynecol Obstet Hum Reprod 2018; 47 (01) 17-21
  • 39 Graupner O, Karge A, Flechsenhar S. et al. Role of sFlt-1/PlGF ratio and feto-maternal Doppler for the prediction of adverse perinatal outcome in late-onset pre-eclampsia. Arch Gynecol Obstet 2020; 301 (02) 375-385
  • 40 Egan K, O'Connor H, Kevane B. et al. Elevated plasma TFPI activity causes attenuated TF-dependent thrombin generation in early onset preeclampsia. Thromb Haemost 2017; 117 (08) 1549-1557
  • 41 Monteith C, Egan K, O'Connor H. et al. Early onset preeclampsia is associated with an elevated mean platelet volume (MPV) and a greater rise in MPV from time of booking compared with pregnant controls: results of the CAPE study. J Perinat Med 2018; 46 (09) 1010-1015
  • 42 Haire G, Egan K, Parmar K. et al. Alterations in fibrin formation and fibrinolysis in early onset-preeclampsia: association with disease severity. Eur J Obstet Gynecol Reprod Biol 2019; 241: 19-23
  • 43 Skeith L, Rodger M. Anticoagulants to prevent recurrent placenta-mediated pregnancy complications: is it time to put the needles away?. Thromb Res 2017; 151 (Suppl. 01) S38-S42
  • 44 Rolnik DL, Wright D, Poon LC. et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med 2017; 377 (07) 613-622
  • 45 Roberge S, Bujold E, Nicolaides KH. Meta-analysis on the effect of aspirin use for prevention of preeclampsia on placental abruption and antepartum hemorrhage. Am J Obstet Gynecol 2018; 218 (05) 483-489
  • 46 Duley L, Meher S, Hunter KE, Seidler AL, Askie LM. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev 2019; 2019 (10) 1-286
  • 47 von Schmidt auf Altenstadt JF, Hukkelhoven CW, van Roosmalen J, Bloemenkamp KW. Pre-eclampsia increases the risk of postpartum haemorrhage: a nationwide cohort study in the Netherlands. PLoS One 2013; 8 (12) e81959
  • 48 Eskild A, Vatten LJ. Abnormal bleeding associated with preeclampsia: a population study of 315,085 pregnancies. Acta Obstet Gynecol Scand 2009; 88 (02) 154-158
  • 49 McDermott M, Miller EC, Rundek T, Hurn PD, Bushnell CD. Preeclampsia: association with posterior reversible encephalopathy syndrome and stroke. Stroke 2018; 49 (03) 524-530
  • 50 Dart IV BW, Cockerham WT, Torres C, Kipikasa JH, Maxwell RA. A novel use of recombinant factor VIIa in HELLP syndrome associated with spontaneous hepatic rupture and abdominal compartment syndrome. J Trauma 2004; 57 (01) 171-174
  • 51 Vinnars MT, Wijnaendts LC, Westgren M, Bolte AC, Papadogiannakis N, Nasiell J. Severe preeclampsia with and without HELLP differ with regard to placental pathology. Hypertension 2008; 51 (05) 1295-1299
  • 52 Jacobsen AF, Skjeldestad FE, Sandset PM. Ante- and postnatal risk factors of venous thrombosis: a hospital-based case-control study. J Thromb Haemost 2008; 6 (06) 905-912
  • 53 Lindqvist P, Dahlbäck B, Marŝál K. Thrombotic risk during pregnancy: a population study. Obstet Gynecol 1999; 94 (04) 595-599
  • 54 Chunilal SD, Bates SM. Venous thromboembolism in pregnancy: diagnosis, management and prevention. Thromb Haemost 2009; 101 (03) 428-438
  • 55 James AH. Venous thromboembolism in pregnancy. Arterioscler Thromb Vasc Biol 2009; 29 (03) 326-331
  • 56 Shennan AH, Green M, Chappell LC. Maternal deaths in the UK: pre-eclampsia deaths are avoidable. Lancet 2017; 389 (10069): 582-584
  • 57 Knight M, Tuffnell D. A view from the UK: the UK and Ireland confidential enquiry into maternal deaths and morbidity. ClinObstetGynecol 2018; 61 (02) 347-358
  • 58 Winter MP, Schernthaner GH, Lang IM. Chronic complications of venous thromboembolism. J Thromb Haemost 2017; 15 (08) 1531-1540
  • 59 RCOG. Reducing the risk of venous thromboembolism during pregnancy and the puerperium. Royal College of Obstetricians and Gynaecologists; Green-top Guideline No37a. 2015. Accessed April 16, 2020 at: https://www.rcog.org.uk/globalassets/documents/guidelines/gtg-37a.pdf
  • 60 O'Shaughnessy F, Donnelly JC, Bennett K, Damkier P, Áinle FN, Cleary BJ. Prevalence of postpartum venous thromboembolism risk factors in an Irish urban obstetric population. J Thromb Haemost 2019; 17 (11) 1875-1885
  • 61 Jacobsen AF, Skjeldestad FE, Sandset PM. Incidence and risk patterns of venous thromboembolism in pregnancy and puerperium--a register-based case-control study. Am J Obstet Gynecol 2008; 198 (02) 233.e1-233.e7
  • 62 O'Shaughnessy F, Donnelly JC, Cooley SM. et al. Thrombocalc: implementation and uptake of personalized postpartum venous thromboembolism risk assessment in a high-throughput obstetric environment. Acta Obstet Gynecol Scand 2017; 96 (11) 1382-1390
  • 63 Sultan AA, Tata LJ, West J. et al. Risk factors for first venous thromboembolism around pregnancy: a population-based cohort study from the United Kingdom. Blood 2013; 121 (19) 3953-3961
  • 64 Abdul Sultan A, Grainge MJ, West J, Fleming KM, Nelson-Piercy C, Tata LJ. Impact of risk factors on the timing of first postpartum venous thromboembolism: a population-based cohort study from England. Blood 2014; 124 (18) 2872-2880
  • 65 Zhou ZH, Chen Y, Zhao BH, Jiang Y, Luo Q. Early postpartum venous thromboembolism: risk factors and predictive index. Clin Appl Thromb Hemost 2019; 25: 1076029618818777
  • 66 Thilaganathan B, Kalafat E. Cardiovascular system in preeclampsia and beyond. Hypertension 2019; 73 (03) 522-531
  • 67 Benschop L, Duvekot JJ, Roeters van Lennep JE. Future risk of cardiovascular disease risk factors and events in women after a hypertensive disorder of pregnancy. Heart 2019; 105 (16) 1273-1278
  • 68 Leon LJ, McCarthy FP, Direk K. et al. Preeclampsia and cardiovascular disease in a large UK pregnancy cohort of linked electronic health records: a CALIBER study. Circulation 2019; 140 (13) 1050-1060
  • 69 Alsnes IV, Vatten LJ, Fraser A. et al. Hypertension in pregnancy and offspring cardiovascular risk in young adulthood: prospective and sibling studies in the HUNT study (Nord-Trøndelag Health Study) in Norway. Hypertension 2017; 69 (04) 591-598
  • 70 Craici I, Wagner S, Garovic VD. Preeclampsia and future cardiovascular risk: formal risk factor or failed stress test?. Ther Adv Cardiovasc Dis 2008; 2 (04) 249-259
  • 71 Wang M, Hao H, Leeper NJ, Zhu L. Early Career Committee. Thrombotic regulation from the endothelial cell perspectives. Arterioscler Thromb Vasc Biol 2018; 38 (06) e90-e95
  • 72 Weissgerber TL, Garcia-Valencia O, Milic NM. et al. Early onset preeclampsia is associated with glycocalyx degradation and reduced microvascular perfusion. J Am Heart Assoc 2019; 8 (04) e010647
  • 73 Lamarca B. Endothelial dysfunction. An important mediator in the pathophysiology of hypertension during pre-eclampsia. Minerva Ginecol 2012; 64 (04) 309-320
  • 74 Sánchez-Aranguren LC, Prada CE, Riaño-Medina CE, Lopez M. Endothelial dysfunction and preeclampsia: role of oxidative stress. Front Physiol 2014; 5: 372
  • 75 Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation 2011; 123 (24) 2856-2869
  • 76 Martin FA, Murphy RP, Cummins PM. Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. Am J Physiol Heart Circ Physiol 2013; 304 (12) H1585-H1597
  • 77 Boffa MC, Valsecchi L, Fausto A. et al. Predictive value of plasma thrombomodulin in preeclampsia and gestational hypertension. Thromb Haemost 1998; 79 (06) 1092-1095
  • 78 Boffa MC, Karmochkine M. Thrombomodulin: an overview and potential implications in vascular disorders. Lupus 1998; 7 (Suppl. 02) S120-S125
  • 79 Rousseau A, Favier R, Van Dreden P. Elevated circulating soluble thrombomodulin activity, tissue factor activity and circulating procoagulant phospholipids: new and useful markers for pre-eclampsia?. Eur J Obstet Gynecol Reprod Biol 2009; 146 (01) 46-49
  • 80 Ohlin AK, Larsson K, Hansson M. Soluble thrombomodulin activity and soluble thrombomodulin antigen in plasma. J Thromb Haemost 2005; 3 (05) 976-982
  • 81 Saposnik B, Peynaud-Debayle E, Stepanian A. et al. Elevated soluble endothelial cell protein C receptor (sEPCR) levels in women with preeclampsia: a marker of endothelial activation/damage?. Thromb Res 2012; 129 (02) 152-157
  • 82 Turner RJ, Bloemenkamp KW, Bruijn JA, Baelde HJ. Loss of thrombomodulin in placental dysfunction in preeclampsia. Arterioscler Thromb Vasc Biol 2016; 36 (04) 728-735
  • 83 Austgulen R, Lien E, Vince G, Redman CW. Increased maternal plasma levels of soluble adhesion molecules (ICAM-1, VCAM-1, E-selectin) in preeclampsia. Eur J Obstet Gynecol Reprod Biol 1997; 71 (01) 53-58
  • 84 Tannetta D, Masliukaite I, Vatish M, Redman C, Sargent I. Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and preeclampsia. J Reprod Immunol 2017; 119: 98-106
  • 85 Słomka A, Urban SK, Lukacs-Kornek V, Żekanowska E, Kornek M. Large extracellular vesicles: have we found the holy grail of inflammation?. Front Immunol 2018; 9: 2723
  • 86 Vajen T, Benedikter BJ, Heinzmann ACA. et al. Platelet extracellular vesicles induce a pro-inflammatory smooth muscle cell phenotype. J Extracell Vesicles 2017; 6 (01) 1322454
  • 87 Grande R, Dovizio M, Marcone S. et al. Platelet-derived microparticles from obese individuals: characterization of number, size, proteomics, and crosstalk with cancer and endothelial cells. Front Pharmacol 2019; 10: 7
  • 88 Szklanna PB, Parsons ME, Wynne K. et al. The platelet releasate is altered in human pregnancy. Proteomics Clin Appl 2019; 13 (03) e1800162
  • 89 Parsons MEM, McParland D, Szklanna PB. et al. A protocol for improved precision and increased confidence in nanoparticle tracking analysis concentration measurements between 50 and 120 nm in biological fluids. Front Cardiovasc Med 2017; 4: 68
  • 90 Aliotta JM, Pereira M, Amaral A. et al. Induction of pulmonary hypertensive changes by extracellular vesicles from monocrotaline-treated mice. Cardiovasc Res 2013; 100 (03) 354-362
  • 91 Amabile N, Heiss C, Real WM. et al. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med 2008; 177 (11) 1268-1275
  • 92 Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol 2018; 15 (10) 617-638
  • 93 Tannetta DS, Dragovic RA, Gardiner C, Redman CW, Sargent IL. Characterisation of syncytiotrophoblast vesicles in normal pregnancy and pre-eclampsia: expression of Flt-1 and endoglin. PLoS One 2013; 8 (02) e56754
  • 94 Yae Hu RY, Zhang C. et al. HMGB1 from hypoxic trophoblasts promotes endothelial microparticle production and thrombophilia in preeclampsia. Arterioscler Thromb Vasc Biol 2018; 38 (06) 1381-1391
  • 95 Hu Y, Li H, Yan R. et al. Increased neutrophil activation and plasma DNA levels in patients with pre-eclampsia. Thromb Haemost 2018; 118 (12) 2064-2073
  • 96 Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol 2012; 189 (06) 2689-2695
  • 97 Mackman N. The role of tissue factor and factor VIIa in hemostasis. Anesth Analg 2009; 108 (05) 1447-1452
  • 98 Erez O, Romero R, Vaisbuch E. et al. Tissue factor activity in women with preeclampsia or SGA: a potential explanation for the excessive thrombin generation in these syndromes. J Matern Fetal Neonatal Med 2018; 31 (12) 1568-1577
  • 99 Erez O, Romero R, Vaisbuch E. et al. The pattern and magnitude of “in vivo thrombin generation” differ in women with preeclampsia and in those with SGA fetuses without preeclampsia. J Matern Fetal Neonatal Med 2018; 31 (13) 1671-1680
  • 100 Gardiner C, Tannetta DS, Simms CA, Harrison P, Redman CW, Sargent IL. Syncytiotrophoblast microvesicles released from pre-eclampsia placentae exhibit increased tissue factor activity. PLoS One 2011; 6 (10) e26313
  • 101 Oladosu-Olayiwola O, Olawumi H, Babatunde A. et al. Fibrinolytic proteins of normal pregnancy and pre-eclamptic patients in North West Nigeria. Afr Health Sci 2018; 18 (03) 576-583
  • 102 Chen Y, Lin L. Potential value of coagulation parameters for suggesting preeclampsia during the third trimester of pregnancy. Am J Med Sci 2017; 354 (01) 39-43
  • 103 Ebina Y, Ieko M, Naito S. et al. Low levels of plasma protein S, protein C and coagulation factor XII during early pregnancy and adverse pregnancy outcome. Thromb Haemost 2015; 114 (01) 65-69
  • 104 Pinheiro MB, Gomes KB, Dusse LM. Fibrinolytic system in preeclampsia. Clin Chim Acta 2013; 416: 67-71
  • 105 Clemetson KJ. Platelets and primary haemostasis. Thromb Res 2012; 129 (03) 220-224
  • 106 Kevane B, Allen S, Walsh K. et al. Dual endothelin-1 receptor antagonism attenuates platelet-mediated derangements of blood coagulation in Eisenmenger syndrome. J Thromb Haemost 2018
  • 107 Meikle CK, Kelly CA, Garg P, Wuescher LM, Ali RA, Worth RG. Cancer and thrombosis: the platelet perspective. Front Cell Dev Biol 2017; 4: 147
  • 108 Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood 2014; 123 (18) 2759-2767
  • 109 Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost 2015; 114 (03) 449-458
  • 110 Reinhart WH. Platelets in vascular disease. Clin Hemorheol Microcirc 2013; 53 (1-2): 71-79
  • 111 Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 2018; 11 (01) 125
  • 112 Thalor N, Singh K, Pujani M, Chauhan V, Agarwal C, Ahuja R. A correlation between platelet indices and preeclampsia. Hematol Transfus Cell Ther 2019; 41 (02) 129-133
  • 113 Socol ML, Weiner CP, Louis G, Rehnberg K, Rossi EC. Platelet activation in preeclampsia. Am J Obstet Gynecol 1985; 151 (04) 494-497
  • 114 Jakobsen C, Larsen JB, Fuglsang J, Hvas AM. Platelet function in preeclampsia - a systematic review and meta-analysis. Platelets 2019; 30 (05) 549-562
  • 115 Sahin S, Ozakpinar OB, Eroglu M. et al. The impact of platelet functions and inflammatory status on the severity of preeclampsia. J Matern Fetal Neonatal Med 2015; 28 (06) 643-648
  • 116 Tannetta DS, Hunt K, Jones CI. et al. Syncytiotrophoblast extracellular vesicles from pre-eclampsia placentas differentially affect platelet function. PLoS One 2015; 10 (11) e0142538
  • 117 Lok CA, Nieuwland R, Sturk A. et al. Microparticle-associated P-selectin reflects platelet activation in preeclampsia. Platelets 2007; 18 (01) 68-72
  • 118 Salem M, Kamal S, El Sherbiny W, Abdel Aal AA. Flow cytometric assessment of endothelial and platelet microparticles in preeclampsia and their relation to disease severity and Doppler parameters. Hematology 2015; 20 (03) 154-159
  • 119 Gilani SI, Weissgerber TL, Garovic VD, Jayachandran M. Preeclampsia and extracellular vesicles. Curr Hypertens Rep 2016; 18 (09) 68
  • 120 Kohli S, Ranjan S, Hoffmann J. et al. Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts. Blood 2016; 128 (17) 2153-2164
  • 121 Wang M, Hu Z, Cheng QX, Xu J, Liang C. The ability of thromboelastography parameters to predict severe pre-eclampsia when measured during early pregnancy. Int J Gynaecol Obstet 2019; 145 (02) 170-175
  • 122 Han L, Liu X, Li H. et al. Blood coagulation parameters and platelet indices: changes in normal and preeclamptic pregnancies and predictive values for preeclampsia. PLoS One 2014; 9 (12) e114488
  • 123 Kongwattanakul K, Saksiriwuttho P, Chaiyarach S, Thepsuthammarat K. Incidence, characteristics, maternal complications, and perinatal outcomes associated with preeclampsia with severe features and HELLP syndrome. Int J Womens Health 2018; 10: 371-377