Hamostaseologie 2020; 40(03): 337-347
DOI: 10.1055/a-1175-6783
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Role of Platelet Cytoskeleton in Platelet Biomechanics: Current and Emerging Methodologies and Their Potential Relevance for the Investigation of Inherited Platelet Disorders

Carlo Zaninetti
1   Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
2   Department of Internal Medicine, University of Pavia and IRCCS Policlinico San Matteo Foundation, Pavia, Italy
3   PhD Course of Experimental Medicine, University of Pavia, Pavia, Italy
,
Laura Sachs
1   Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
,
Raghavendra Palankar
1   Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
› Author Affiliations
Further Information

Publication History

12 February 2020

11 May 2020

Publication Date:
29 July 2020 (online)

Abstract

Cytoskeleton is composed of more than 100 proteins and represents a dynamic network of the cellular cytoplasm. Cytoskeletal functions include spatial organization of cellular components, structural connection of the cell with external environment, and biomechanical force generation. Cytoskeleton takes part, at different levels, in all phases of platelet biogenesis: megakaryocyte (MK) differentiation, MK maturation, and platelet formation. In addition, it also plays a major role in each stage of platelet function. Inherited platelet disorders (IPDs) are a group of rare diseases featured by low platelet count and/or impaired platelet function. Over the past decade, the investigation of platelet biomechanics has become a major and highly relevant theme of research due to its implications at every stage of development of human life. The initial use of diverse biophysical techniques (e.g., micropipette aspiration, atomic force and scanning ion conductance microscopy, real-time deformability cytometry) started unraveling biomechanical features of platelets that are expected to provide new explanations for physiological and pathological mechanisms. Although the impact of cytoskeletal alterations has been largely elucidated in various IPDs' pathogenesis, the understanding of their impact on biomechanical properties of platelets represents an unmet need. Regarding IPDs, improving biomechanical studies seems promising for diagnostic and prognostic implications. Potentially, these characteristics of platelets may also be used for the prediction of bleeding risk. This review addresses the current available methods for biophysical investigations of platelets and the possible implementations in the field of IPDs.

Contributions

CZ, LS and RP wrote the paper. LS and RP performed CLSM, SEM, AFM and RT-DC experiments, analyzed and interpretaed the data and prepared figures.


 
  • References

  • 1 Wickstead B, Gull K. The evolution of the cytoskeleton. J Cell Biol 2011; 194 (04) 513-525
  • 2 Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature 2010; 463 (7280): 485-492
  • 3 Flitney EW, Kuczmarski ER, Adam SA, Goldman RD. Insights into the mechanical properties of epithelial cells: the effects of shear stress on the assembly and remodeling of keratin intermediate filaments. FASEB J 2009; 23 (07) 2110-2119
  • 4 Harris AR, Jreij P, Fletcher DA. Mechanotransduction by the actin cytoskeleton: converting mechanical stimuli into biochemical signals. Annu Rev Biophys 2018; 47: 617-631
  • 5 Klingler-Hoffmann M, Mittal P, Hoffmann P. The emerging role of cytoskeletal proteins as reliable biomarkers. Proteomics 2019; 19 (21–22): e1800483
  • 6 Guck J. Some thoughts on the future of cell mechanics. Biophys Rev 2019; 11 (05) 667-670
  • 7 Giganti A, Friederich E. The actin cytoskeleton as a therapeutic target: state of the art and future directions. Prog Cell Cycle Res 2003; 5: 511-525
  • 8 Van Vuren A, van der Zwaag B, Huisjes R. , et al. The complexity of genotype-phenotype correlations in hereditary spherocytosis: a cohort of 95 patients. Hemasphere 2019; 3: e276 . https://pubmed.ncbi.nlm.nih.gov/31723846/
  • 9 Tesson F, Saj M, Uvaize MM, Nicolas H, Płoski R, Bilińska Z. Lamin A/C mutations in dilated cardiomyopathy. Cardiol J 2014; 21 (04) 331-342
  • 10 Fu Y, Eisen HJ. Genetics of dilated cardiomyopathy. CurrCardiol Rep 2018; 20 (11) 121
  • 11 Machlus KR, Italiano Jr JE. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol 2013; 201 (06) 785-796
  • 12 Thon JN, Montalvo A, Patel-Hett S. , et al. Cytoskeletal mechanics of proplatelet maturation and platelet release. J Cell Biol 2010; 191 (04) 861-874
  • 13 Bender M, Stritt S, Nurden P. , et al. Megakaryocyte-specific profilin1-deficiency alters microtubule stability and causes a Wiskott-Aldrich syndrome-like platelet defect. Nat Commun 2014; 5: 4746
  • 14 Feghhi S, Munday AD, Tooley WW. , et al. Glycoprotein Ib-IX-V complex transmits cytoskeletal forces that enhance platelet adhesion. Biophys J 2016; 111 (03) 601-608
  • 15 Sanjuan-Pla A, Macaulay IC, Jensen CT. , et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 2013; 502 (7470): 232-236
  • 16 Italiano Jr JE, Lecine P, Shivdasani RA, Hartwig JH. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 1999; 147 (06) 1299-1312
  • 17 Schwertz H, Köster S, Kahr WHA. , et al. Anucleate platelets generate progeny. Blood 2010; 115 (18) 3801-3809
  • 18 Richardson JL, Shivdasani RA, Boers C, Hartwig JH, Italiano Jr JE. Mechanisms of organelle transport and capture along proplatelets during platelet production. Blood 2005; 106 (13) 4066-4075
  • 19 Thon JN, Macleod H, Begonja AJ. , et al. Microtubule and cortical forces determine platelet size during vascular platelet production. Nat Commun 2012; 3: 852
  • 20 Gieger C, Radhakrishnan A, Cvejic A. , et al. New gene functions in megakaryopoiesis and platelet formation. Nature 2011; 480 (7376): 201-208
  • 21 Weyrich AS, Zimmerman GA. Platelets: signaling cells in the immune continuum. Trends Immunol 2004; 25 (09) 489-495
  • 22 Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11 (02) 123-134
  • 23 Gaertner F, Massberg S. Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat Rev Immunol 2019; 19 (12) 747-760
  • 24 Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood 2015; 126 (05) 582-588
  • 25 Palankar R, Kohler TP, Krauel K, Wesche J, Hammerschmidt S, Greinacher A. Platelets kill bacteria by bridging innate and adaptive immunity via platelet factor 4 and FcγRIIA. J ThrombHaemost 2018; 16 (06) 1187-1197
  • 26 Wolff M, Handtke S, Palankar R. , et al. Activated platelets kill Staphylococcus aureus, but not Streptococcus pneumoniae-the role of FcγRIIa and platelet factor 4/heparinantibodies. J ThrombHaemost 2020; 18: 1459-1468 . https://doi.org/10.1111/jth.14814
  • 27 Sorrentino S, Studt J-D, Medalia O, TanujSapra K. Roll, adhere, spread and contract: structural mechanics of platelet function. Eur J Cell Biol 2015; 94 (3–4): 129-138
  • 28 White JG, Rao GH. Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape. Am J Pathol 1998; 152 (02) 597-609
  • 29 Springer TA, Dustin ML. Integrin inside-out signaling and the immunological synapse. CurrOpin Cell Biol 2012; 24 (01) 107-115
  • 30 Tadokoro S, Shattil SJ, Eto K. , et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 2003; 302 (5642): 103-106
  • 31 Liu S, Calderwood DA, Ginsberg MH. Integrin cytoplasmic domain-binding proteins. J Cell Sci 2000; 113 (Pt 20): 3563-3571
  • 32 Bennett JS, Berger BW, Billings PC. The structure and function of platelet integrins. J ThrombHaemost 2009; 7 (Suppl. 01) 200-205
  • 33 Lickert S, Sorrentino S, Studt J-D, Medalia O, Vogel V, Schoen I. Morphometric analysis of spread platelets identifies integrin αIIbβ3-specific contractile phenotype. Sci Rep 2018; 8 (01) 5428
  • 34 Ciciliano JC, Tran R, Sakurai Y, Lam WA. The platelet and the biophysical microenvironment: lessons from cellular mechanics. Thromb Res 2014; 133 (04) 532-537
  • 35 Italiano Jr JE, Bergmeier W, Tiwari S. , et al. Mechanisms and implications of platelet discoid shape. Blood 2003; 101 (12) 4789-4796
  • 36 Hartwig JH. Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol 1992; 118 (06) 1421-1442
  • 37 Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003; 112 (04) 453-465
  • 38 Calaminus SDJ, Auger JM, McCarty OJT, Wakelam MJ, Machesky LM, Watson SP. MyosinIIa contractility is required for maintenance of platelet structure during spreading on collagen and contributes to thrombus stability. J ThrombHaemost 2007; 5 (10) 2136-2145
  • 39 Feghhi S, Tooley WW, Sniadecki NJ. Nonmusclemyosin IIA regulates platelet contractile forces through Rho kinase and myosin light-chain kinase. J BiomechEng 2016; 138 (10) 1045061-1045064
  • 40 Johnson GJ, Leis LA, Krumwiede MD, White JG. The critical role of myosin IIA in platelet internal contraction. J ThrombHaemost 2007; 5 (07) 1516-1529
  • 41 Flaumenhaft R, Dilks JR, Rozenvayn N, Monahan-Earley RA, Feng D, Dvorak AM. The actin cytoskeleton differentially regulates platelet α-granule and dense-granule secretion. Blood 2005; 105 (10) 3879-3887
  • 42 Lam WA, Chaudhuri O, Crow A. , et al. Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat Mater 2011; 10 (01) 61-66
  • 43 Hansen CE, Qiu Y, McCarty OJT, Lam WA. Platelet mechanotransduction. Annu Rev Biomed Eng 2018; 20: 253-275
  • 44 Oshinowo OT, Lam AW, Brainard B. , et al. Platelet contraction cytometry: a biophysical, high-throughput research-enabling and diagnostic platform. Blood 2017; 130: 2301
  • 45 Scheller I, Stritt S, Beck S. , et al. Coactosin-like 1 integrates signaling critical for shear-dependent thrombus formation in mouse platelets. Haematologica 2020; 105 (06) 1667-1676 . DOI: 10.3324/haematol.2019.225516
  • 46 Sachs L, Denker C, Greinacher A, Palankar R. Quantifying single-platelet biomechanics: An outsider's guide to biophysical methods and recent advances. Res PractThrombHaemost 2020; 4 (03) 386-401
  • 47 Lickert S, Selcuk K, Kenny M. , et al. Platelets exploit fibrillar adhesions to assemble fibronectin matrix revealing new force-regulated thrombus remodeling mechanisms. bioRxiv 2020; DOI: 10.1101/2020.04.20.050708.
  • 48 Myers DR, Qiu Y, Fay ME. , et al. Single-platelet nanomechanics measured by high-throughput cytometry. Nat Mater 2017; 16 (02) 230-235
  • 49 Zhang Y, Qiu Y, Blanchard AT. , et al. Platelet integrins exhibit anisotropic mechanosensing and harness piconewton forces to mediate platelet aggregation. Proc Natl Acad Sci U S A 2018; 115 (02) 325-330
  • 50 González-Bermúdez B, Guinea GV, Plaza GR. Advances in micropipette aspiration: applications in cell biomechanics, models, and extended studies. Biophys J 2019; 116 (04) 587-594
  • 51 White JG, Burris SM, Tukey D, Smith II C, Clawson CC. Micropipette aspiration of human platelets: influence of microtubules and actin filaments on deformability. Blood 1984; 64 (01) 210-214
  • 52 White JG, Burris SM, Hasegawa D, Johnson M. Micropipette aspiration of human blood platelets: a defect in Bernard-Soulier's syndrome. Blood 1984; 63 (05) 1249-1252
  • 53 Burris SM, Smith II CM, Rao GH, White JG. Aspirin treatment reduces platelet resistance to deformation. Arteriosclerosis 1987; 7 (04) 385-388
  • 54 Burris SM, Smith II CM, Tukey DT, Clawson CC, White JG. Micropipette aspiration of human platelets after exposure to aggregating agents. Arteriosclerosis 1986; 6 (03) 321-325
  • 55 Ando T. Directly watching biomolecules in action by high-speed atomic force microscopy. Biophys Rev 2017; 9 (04) 421-429
  • 56 Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 1996; 70 (01) 556-567
  • 57 Nguyen TH, Palankar R, Bui VC, Medvedev N, Greinacher A, Delcea M. Rupture forces among human blood platelets at different degrees of activation. Sci Rep 2016; 6: 25402
  • 58 Hansma PK, Drake B, Marti O, Gould SA, Prater CB. The scanning ion-conductance microscope. Science 1989; 243 (4891): 641-643
  • 59 Happel P, Thatenhorst D, Dietzel ID. Scanning ion conductance microscopy for studying biological samples. Sensors (Basel) 2012; 12 (11) 14983-15008
  • 60 Rheinlaender J, Vogel S, Seifert J. , et al. Imaging the elastic modulus of human platelets during thrombin-induced activation using scanning ion conductance microscopy. ThrombHaemost 2015; 113 (02) 305-311
  • 61 Seifert J, Rheinlaender J, Lang F, Gawaz M, Schäffer TE. Thrombin-induced cytoskeleton dynamics in spread human platelets observed with fast scanning ion conductance microscopy. Sci Rep 2017; 7 (01) 4810
  • 62 Sachs L, Denker C, Greinacher A, Palankar R. Quantifying single platelet biomechanics: an outsider's guide to biophysical methods and recent advances. Res Pract Thromb Haemost 2020; 4 (03) 386-401 . https://doi.org/10.1002/rth2.12313
  • 63 Otto O, Rosendahl P, Mietke A. , et al. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat Methods 2015; 12 (03) 199-202 , 4, 202
  • 64 Mietke A, Otto O, Girardo S. , et al. Extracting cell stiffness from real-time deformability cytometry: theory and experiment. Biophys J 2015; 109 (10) 2023-2036
  • 65 Toepfner N, Herold C, Otto O. , et al. Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood. eLife 2018; 7: e29213
  • 66 Rosendahl P, Plak K, Jacobi A. , et al. Real-time fluorescence and deformability cytometry. Nat Methods 2018; 15 (05) 355-358
  • 67 Noris P, Pecci A. Hereditary thrombocytopenias: a growing list of disorders. Hematology (Am Soc Hematol Educ Program) 2017; 2017 (01) 385-399
  • 68 Balduini CL, Melazzini F, Pecci A. Inherited thrombocytopenias-recent advances in clinical and molecular aspects. Platelets 2017; 28 (01) 3-13
  • 69 Pecci A, Balduini CL. Lessons in platelet production from inherited thrombocytopenias. Br J Haematol 2014; 165 (02) 179-192
  • 70 Balduini A, Raslova H, Di Buduo CA. , et al. Clinic, pathogenic mechanisms and drug testing of two inherited thrombocytopenias, ANKRD26-related thrombocytopenia and MYH9-related diseases. Eur J Med Genet 2018; 61 (11) 715-722
  • 71 Johnson B, Fletcher SJ, Morgan NV. Inherited thrombocytopenia: novel insights into megakaryocyte maturation, proplatelet formation and platelet lifespan. Platelets 2016; 27 (06) 519-525
  • 72 Pecci A. Pathogenesis and management of inherited thrombocytopenias: rationale for the use of thrombopoietin-receptor agonists. Int J Hematol 2013; 98 (01) 34-47
  • 73 Seri M, Pecci A, Di Bari F. , et al. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore) 2003; 82 (03) 203-215
  • 74 Chen Z, Naveiras O, Balduini A. , et al. The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway. Blood 2007; 110 (01) 171-179
  • 75 Pecci A, Malara A, Badalucco S. , et al. Megakaryocytes of patients with MYH9-related thrombocytopenia present an altered proplatelet formation. ThrombHaemost 2009; 102 (01) 90-96
  • 76 Savoia A, De Rocco D, Panza E. , et al. Heavy chain myosin 9-related disease (MYH9 -RD): neutrophil inclusions of myosin-9 as a pathognomonic sign of the disorder. ThrombHaemost 2010; 103 (04) 826-832
  • 77 Massaad MJ, Ramesh N, Geha RS. Wiskott-Aldrich syndrome: a comprehensive review. Ann N Y Acad Sci 2013; 1285: 26-43
  • 78 Sabri S, Foudi A, Boukour S. , et al. Deficiency in the Wiskott-Aldrich protein induces premature proplatelet formation and platelet production in the bone marrow compartment. Blood 2006; 108 (01) 134-140
  • 79 Greinacher A, Pecci A, Kunishima S. , et al. Diagnosis of inherited platelet disorders on a blood smear: a tool to facilitate worldwide diagnosis of platelet disorders. J ThrombHaemost 2017; 15 (07) 1511-1521
  • 80 Kunishima S, Okuno Y, Yoshida K. , et al. ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet 2013; 92 (03) 431-438
  • 81 Nurden P, Debili N, Coupry I. , et al. Thrombocytopenia resulting from mutations in filamin A can be expressed as an isolated syndrome. Blood 2011; 118 (22) 5928-5937
  • 82 Kunishima S, Kobayashi R, Itoh TJ, Hamaguchi M, Saito H. Mutation of the β1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood 2009; 113 (02) 458-461
  • 83 Kunishima S, Nishimura S, Suzuki H, Imaizumi M, Saito H. TUBB1 mutation disrupting microtubule assembly impairs proplatelet formation and results in congenital macrothrombocytopenia. Eur J Haematol 2014; 92 (04) 276-282
  • 84 Balduini A, Malara A, Pecci A. , et al. Proplatelet formation in heterozygous Bernard-Soulier syndrome type Bolzano. J ThrombHaemost 2009; 7 (03) 478-484
  • 85 Bury L, Falcinelli E, Chiasserini D, Springer TA, Italiano Jr JE, Gresele P. Cytoskeletal perturbation leads to platelet dysfunction and thrombocytopenia in variant forms of Glanzmann thrombasthenia. Haematologica 2016; 101 (01) 46-56
  • 86 Gresele P, Orsini S, Noris P. , et al. Validation of the ISTH/SSC bleeding assessment tool for inherited platelet disorders: a communication from the Platelet Physiology SSC. J ThrombHaemost 2020; 18 (03) 732-739