Tierarztl Prax Ausg K Kleintiere Heimtiere 2020; 48(04): 233-244
DOI: 10.1055/a-1186-8051
Originalartikel

Meningoenzephalitis und Meningitis beim Hund: retrospektive Analyse einer Klinikpopulation

Canine meningoencephalitis and meningitis: retrospective analysis of a veterinary hospital population
Gesine Buhmann
1   Medizinische Kleintierklinik, Zentrum für Klinische Tiermedizin der Ludwig-Maximilians-Universität München
,
Franziska Wielaender
1   Medizinische Kleintierklinik, Zentrum für Klinische Tiermedizin der Ludwig-Maximilians-Universität München
,
Marco Rosati
2   Sektion für Klinische und Vergleichende Neuropathologie, Zentrum für Klinische Tiermedizin der Ludwig-Maximilians-Universität München
,
Kaspar Matiasek
2   Sektion für Klinische und Vergleichende Neuropathologie, Zentrum für Klinische Tiermedizin der Ludwig-Maximilians-Universität München
,
Katrin Hartmann
1   Medizinische Kleintierklinik, Zentrum für Klinische Tiermedizin der Ludwig-Maximilians-Universität München
,
Andrea Fischer
1   Medizinische Kleintierklinik, Zentrum für Klinische Tiermedizin der Ludwig-Maximilians-Universität München
› Author Affiliations

Zusammenfassung

Gegenstand und Ziel Charakterisierung der Ätiologie von Meningoenzephalitis und Meningitis beim Hund in einer Klinikpopulation.

Material und Methoden Retrospektive Studie (2011–2016) mit Auswertung der klinischen und diagnostischen Daten von Hunden mit einer Liquorpleozytose (> 15/3 µl). Einschlusskriterien waren vorliegende Befunde einer zytologischen Liquoruntersuchung oder einer histopathologischen Untersuchung des ZNS. Beurteilt wurde, ob im Liquorzellbild oder bei den routinemäßig durchgeführten Untersuchungen auf Infektionskrankheiten Hinweise auf eine infektiöse Ätiologie vorlagen.

Ergebnisse Insgesamt 62 Hunde erfüllten die Einschlusskriterien. Bei 14,5 % (n = 9) der Hunde lag eine reaktive Liquorpleozytose aufgrund einer anderen strukturellen Erkrankung des Gehirns wie ein Tumor oder Infarkt vor. Bei 56,5 % (n = 35) wurde eine Meningoenzephalitis oder Meningitis unbekannter Ursache diagnostiziert. Bei 29,0 % (n = 18) der Hunde bestand aufgrund der Diagnostik bezüglich Infektionskrankheiten oder durch Nachweis von Bakterien im Liquorzellbild (n = 5) der Verdacht auf eine infektiöse Meningoenzephalitis oder Meningitis. Bei 6 (9,7 %) diese Hunden war die Diagnose eindeutig, bei 9 (14,5 %) Hunden konnte nur ein Verdacht auf eine infektiöse Meningoenzephalitis oder Meningitis erhoben werden und bei 3 (4,8 %) Hunden lagen Befunde unklarer Bedeutung vor.

Schlussfolgerung Die häufigste Ursache für eine Liquorpleozytose war eine Meningoenzephalitis oder Meningitis unbekannter Ursache. Dennoch gab es bei 29 % der Hunde Hinweise auf eine mögliche infektiöse Ätiologie. Daher ist es für eine sichere Diagnose wichtig, den Liquor zytologisch zu beurteilen und Untersuchungen auf Infektionskrankheiten durchzuführen.

Klinische Relevanz Die Meningoenzephalitis/Meningitis unbekannter Ursache erfordert eine immunsuppressive Therapie. Für den Ausschluss einer infektiösen Meningoenzephalitis oder Meningitis haben Liquorzytologie und Untersuchungen auf Infektionskrankheiten eine besondere Bedeutung.

Abstract

Objective Characterization of the etiology of meningoencephalitis and meningitis in dogs through an analysis of a veterinary hospital population.

Material and methods Retrospective study (2011–2016) with evaluation of clinical and diagnostic data of dogs with cerebrospinal fluid (CSF) pleocytosis (> 5/µl). Only dogs with cytological evaluation of CSF or pathological examination of CNS were included. Results of CSF cytology and examination for infectious diseases were reviewed.

Results A total of 62 dogs met the inclusion criteria. 14.5 % (n = 9) were classified as reactive CSF pleocytosis due to other structural CNS disease, such as neoplasia or infarct. Meningoencephalitis or meningitis of unknown origin was diagnosed in 56.5 % (n = 35). In 29.0 % (n = 18), investigations for infectious diseases or presence of bacteria in CSF cytology (n = 5) indicated an infectious etiology. This infectious etiology appeared reliable in 6 dogs (9.7 %) based on the examination findings, in 9 dogs (14.5 %), there was only a suspicion of infectious meningoencephalitis or meningitis and in 3 dogs (4.8 %), the findings were of uncertain significance.

Conclusion The most common cause of CSF pleocytosis was meningoencephalitis or meningitis of unknown origin. Nevertheless, there was evidence of a possible infectious etiology in 29 % of the dogs. For a reliable diagnosis, it is important to assess the CSF cytology and to conduct investigations for infectious diseases.

Clinical relevance Meningoencephalitis or meningitis of unknown origin requires immunosuppressive therapy. Therefore, CSF cytology and investigations for infectious diseases are important for an exclusion of infectious meningoencephalitis or meningitis.



Publication History

Received: 18 September 2019

Accepted: 01 April 2020

Article published online:
21 August 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Lowrie M, Smith PM, Garosi L. Meningoencephalitis of unknown origin: investigation of prognostic factors and outcome using a standard treatment protocol. Vet Rec 2013; 172 (20) 527
  • 2 Coates JR, Jeffery ND. Perspectives on meningoencephalomyelitis of unknown origin. Vet Clin North Am Small Anim Pract 2014; 44: 1157-1185
  • 3 Granger N, Smith PM, Jeffery ND. Clinical findings and treatment of non-infectious meningoencephalomyelitis in dogs: A systematic review of 457 published cases from 1962 to 2008. Vet J 2010; 184 (03) 290-297
  • 4 Cornelis I, Van Ham L, Gielen I. et al. Clinical presentation, diagnostic findings, prognostic factors, treatment and outcome in dogs with meningoencephalomyelitis of unknown origin: A review. Vet J 2018; 244: 37-44
  • 5 Talarico LR, Schatzberg SJ. Idiopathic granulomatous and necrotising inflammatory disorders of the canine central nervous system: A review and future perspectives. J Small Anim Pract 2010; 51 (03) 138-149
  • 6 Charalambous M, Danourdis T, Hatzis A. et al. An update on meningoencephalomyelitis of unknown aetiology in dogs. J Hell Vet Med Soc 2013; 64 (02) 131-144
  • 7 Uchida K, Park E, Tsuboi M. et al. Pathological and immunological features of canine necrotising meningoencephalitis and granulomatous meningoencephalitis. Vet J 2016; 213: 72-77
  • 8 Flegel T, Boettcher IC, Matiasek K. et al. Comparison of oral administration of lomustine and prednisolone or prednisolone alone as treatment for granulomatous or necrotizing encephalitis in dogs. J Am Vet Med Assoc 2011; 238 (03) 337-345
  • 9 Barber RM, Schatzberg SJ, Corneveaux JJ. et al. Identification of risk loci for necrotizing meningoencephalitis in Pug dogs. J Hered 2011; 102 (01) 40-46
  • 10 Schrauwen I, Barber RM, Schatzberg SJ. et al. Identification of novel genetic risk loci in maltese dogs with necrotizing meningoencephalitis and evidence of a shared genetic risk across toy dog breeds. PLoS One 2014; 9 (11) 1-7
  • 11 Gregory CR, Stewart A, Sturges B. et al. Leflunomide effectively treats naturally occurring immune-mediated and inflammatory diseases of dogs that are unresponsive to conventional therapy. Transplant Proc 1998; 30 (08) 4143-4148
  • 12 Wong M, Hopkins A, Meeks J. et al. Evaluation of treatment with a combination of azathioprine and prednisone in dogs with meningoencephalomyelitis of undetermined etiology: 40 cases (2000–2007). J Am Vet Med Assoc 2010; 237 (08) 929-935
  • 13 Tipold A, Schatzberg SJ. An update on steroid responsive meningitis-arteriitis. J Small Anim Pract 2010; 51: 150-154
  • 14 Han JI, Chang DW, Na KJ. A multiplex quantitative real-time polymerase chain reaction panel for detecting neurologic pathogens in dogs with meningoencephalitis. J Vet Sci 2015; 16 (03) 341-347
  • 15 Read RW, Rodriguez DB, Summers BA. West Nile virus encephalitis in a dog. Vet Pathol 2005; 42 (02) 219-222
  • 16 Kotnik T, Suhadolc S, Juntes P. et al. Case report of a pseudorabies (Aujeszky’s disease) in a bitch. Slov Vet Res 2006; 43 (03) 143-145
  • 17 Barnes HL, Chrisman CL, Farina L. et al. Clinical evaluation of rabies virus meningoencephalomyelitis in a dog. J Am Anim Hosp Assoc 2003; 39 (06) 547-550
  • 18 Radaelli ST, Platt SR. Bacterial meningoencephalomyelitis in dogs: a retrospective study of 23 cases (1990–1999). J Vet Intern Med 2002; 16 (02) 159-163
  • 19 Garosi L, Dawson A, Couturier J. et al. Necrotizing cerebellitis and cerebellar atrophy caused by Neospora caninum infection: Magnetic resonance imaging and clinicopathologic findings in seven dogs. J Vet Intern Med 2010; 24 (03) 571-578
  • 20 Lunn JA, Lee R, Smaller J. et al. Twenty two cases of canine neural angiostronglyosis in eastern Australia (2002–2005) and a review of the literature. Parasit Vectors 2012; 5 (01) 70
  • 21 Lavely J, Lipsitz D. Fungal infections of the central nervous system in the dog and cat. Clin Tech Small Anim Pract 2005; 20 (04) 212-219
  • 22 Márquez M, Ródenas S, Molin J. et al. Protothecal pyogranulomatous meningoencephalitis in a dog without evidence of disseminated infection. Vet Rec 2012; 171 (04) 100
  • 23 Dennis MM, Pearce LK, Norrdin RW. et al. Bacterial meningoencephalitis and ventriculitis due to migrating plant foreign bodies in three dogs. Vet Pathol 2005; 42 (06) 840-844
  • 24 Eberts MD, Vissotto de Paiva Diniz PP, Beall MJ. et al. Typical and atypical manifestations of Anaplasma phagocytophilum infection in dogs. J Am Anim Hosp Assoc 2011; 47 (06) 86-94
  • 25 Jäderlund KH, Bergström K, Egenvall A. et al. Cerebrospinal fluid PCR and antibody concentrations against Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in dogs with neurological signs. J Vet Intern Med 2009; 23 (03) 669-672
  • 26 Da Costa Oliveira V, Boechat VC, Mendes AAV. et al. Occurrence of Leishmania infantum in the central nervous system of naturally infected dogs: Parasite load, viability, co-infections and histological alterations. PLoS One 2017; 12 (04) 1-15
  • 27 Marchetti V, Lubas G, Baneth G. et al. Hepatozoonosis in a dog with skeletal involvement and meningoencephalomyelitis. Vet Clin Pathol 2009; 38 (01) 121-125
  • 28 Barber R, Li Q, Diniz P. et al. Evaluation of brain tissue or cerebrospinal fluid with broadly reactive polymerase chain reaction for Ehrlichia, Anaplasma, spotted fever group Rickettsia, Bartonella, and Borrelia species in canine neurological diseases (109 cases). J Vet Intern Med 2010; 24 (02) 372-378
  • 29 Doyle C, Solano-Gallego L. Cytologic interpretation of canine cerebrospinal fluid samples with low total nucleated cell concentration, with and without blood contamination. Vet Clin Pathol 2009; 38 (03) 392-396
  • 30 Long SN, Anderson TJ, Long FHA. et al. Evaluation of rapid staining techniques for cytologic diagnosis of intracranial lesions. Am J Vet Res 2002; 63 (03) 381-386
  • 31 Lowrie M, Thomson S, Smith P. et al. Effect of a constant rate infusion of cytosine arabinoside on mortality in dogs with meningoencephalitis of unknown origin. Vet J 2016; 213: 1-5
  • 32 Cornelis I, Volk HA, Van Ham L. et al. Clinical presentation, diagnostic findings and outcome in dogs diagnosed with presumptive spinal-only meningoencephalomyelitis of unknown origin. J Small Anim Pract 2017; 58: 174-182
  • 33 Mariani CL, Nye CJ, Tokarz DA. et al. Cerebrospinal fluid lactate in dogs with inflammatory central nervous system disorders. J Vet Intern Med 2019; 33: 2701-2708
  • 34 Griffin JF, Levine JM, Levine GJ. et al. Meningomyelitis in dogs: A retrospective review of 28 cases (1999 to 2007). J Small Anim Pract 2008; 49 (10) 509-517
  • 35 Vitale S, Foss K. Immune-Mediated Central Nervous System Disease – Current Knowledge and Recommendations. Top Companion Anim Med 2019; 34: 22-29
  • 36 Coelho AM, Cherubini G, Stefani A De. et al. Serological prevalence of toxoplasmosis and neosporosis in dogs diagnosed with suspected meningoencephalitis in the UK. J Small Anim 2018; 60: 44-50
  • 37 Flegel T, Oevermann A, Oechtering G. et al. Diagnostic yield and adverse effects of MRI-guided free-hand brain biopsies through a mini-burr hole in dogs with encephalitis. J Vet Intern Med 2012; 26 (04) 969-976
  • 38 Koblik PD, LeCouteur RA, Higgins RJ. et al. CT-guided brain biopsy using a modified Pelorus Mark III stereotactic system: experience with 50 dogs. Vet Radiol Ultrasound 1999; 40 (04) 434-440
  • 39 Hoon-Hanks LL, Tyler KL, Owen C. et al. Metagenomic investigation of idiopathic meningoencephalomyelitis in dogs. J Vet Intern Med 2018; 32: 324-330
  • 40 Bartner LR, Mcgrath S, Drury A. et al. Testing for Bartonella ssp. DNA in cerebrospinal fluid of dogs with inflammatory central nervous system disease. J Vet Intern Med 2018; 32: 1983-1988
  • 41 Schatzberg SJ, Haley NJ, Barr SC. et al. Polymerase chain reaction screening for DNA viruses in paraffin-embedded brains from dogs with necrotizing meningoencephalitis, necrotizing leukoencephalitis, and granulomatous meningoencephalitis. J Vet Intern Med 2005; 19 (04) 553-559
  • 42 Barber RM, Porter BF, Li Q. et al. Broadly reactive polymerase chain reaction for pathogen detection in canine granulomatous meningoencephalomyelitis and necrotizing meningoencephalitis. J Vet Intern Med 2012; 26 (04) 962-968
  • 43 Daly P, Drudy D, Chalmers WSK. et al. Greyhound meningoencephalitis: PCR-based detection methods highlight an absence of the most likely primary inducing agents. Vet Microbiol 2006; 118 (03/04) 189-200
  • 44 Forward AK, Plessas IN, Guilherme S. et al. Retrospective evaluation of the clinical presentation, magnetic resonance imaging findings, and outcome of dogs diagnosed with intracranial empyema (2008–2015): 9 cases. J Vet Emerg Crit Care 2019; 29 (04) 431-438
  • 45 Messer JS, Wagner SO, Baumwart RD. et al. A case of canine streptococcal meningoencephalitis diagnosed using universal bacterial polymerase chain reaction sssay. J Am Anim Hosp Assoc 2008; 44 (04) 205-209
  • 46 Beckmann K, Steffen F, Ohlerth S. et al. Three tesla magnetic resonance imaging findings in 12 cases of canine central European tick-borne meningoencephalomyelitis. Vet Radiol Ultrasound 2016; 57 (01) 41-48
  • 47 Pfeffer M, Dobler G. Tick-borne encephalitis virus in dogs – is this an issue?. Parasit Vectors 2011; 4: 59
  • 48 Leschnik MW, Kirtz GC, Thalhammer JG. Tick-borne encephalitis (TBE) in dogs. Int J Med Microbiol 2002; 291 (33) 66-69
  • 49 Greene CE, Carmichael LE. Toxoplasmosis and Neosporosis. In: Sykes J, Greene C. eds. Infectious Diseases of the Dog and Cat. 4th ed.. St. Louis: Elsevier Saunders; 2015: 754-775
  • 50 Tipold A, Vandevelde M, Jaggy A. Neurological manifestations of canine distemper virus infection. J Small Anim Pract 1992; 33: 466-470
  • 51 Conboy GA. Canine angiostrongylosis: The French heartworm: An emerging threat in North America. Vet Parasitol 2011; 176 (04) 382-389
  • 52 Breitschwerdt EB, Sontakke S, Hopkins S. Neurological manifestations of Bartonellosis in immunocompetent patients: A composite of reports from 2005–2012. J Neuroparasitol 2012; 3: 1-15
  • 53 Gerber J, Johnson J, Scott M. et al. Fatal Meningitis and Encephalitis due to Bartonella henselae bacteria. J Forensic Sci 2002; 47 (03) 640-644
  • 54 Breitschwerdt EB, Blann KR, Stebbins ME. et al. Clinicopathological abnormalities and treatment response in 24 dogs seroreactive to Bartonella vinsonii (berkhoffii) antigens. J Am Anim Hosp Assoc 2004; 40 (02) 92-101
  • 55 Kohn B, Silaghi C, Galke D. et al. Infections with Anaplasma phagocytophilum in dogs in Germany. Res Vet Sci 2011; 91 (01) 71-76