veterinär spiegel 2020; 30(03): 107-115
DOI: 10.1055/a-1194-8518
Nutztiere & Pferde

Enzootische Bronchopneumonie im Kälberbestand – Ansätze zur Problemlösung

Martin Kaske

Eine enzootische Bronchopneumonie ist kein „einfacher, kleiner“ Infekt, der rasch abheilt, sondern unter Umständen ein ernstzunehmendes Bestandsproblem bei Kälbern, das nur durch ein konsequentes und systematisches Management gelöst werden kann.



Publication History

Article published online:
15 September 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Holland BP, Burciaga-Robles LO, van Overbeke DL. et al. Effect of bovine respiratory disease during preconditioning on subsequent feedlot performance, carcass characteristics, and beef attributes. J Anim Sci 2010; 88: 2486-2499
  • 2 Veit H, Farrell RL. The anatomy and physiology of the bovine respiratory system relating to pulmonary disease. Cornell Vet 1978; 68: 555-581
  • 3 Reinhold P. Grundlagen und Besonderheiten der Lungenfunktion beim Rind. Tierärztl Umsch 1997; 52: 584-592
  • 4 Caswell JL, Bateman KG, Cai HY. et al. Mycoplasma bovis in respiratory disease of feedlot cattle. Vet Clin N Am Food Anim Pract 2010; 26: 365-379
  • 5 Murray GM, OʼNeill RG, More SJ. et al. Evolving views on bovine respiratory disease: an appraisal of selected key pathogens. Vet. J 2016; 217: 95-102
  • 6 Buczinski S, Pardon B. Bovine respiratory disease diagnosis: what progress has been made in clinical diagnosis?. Vet Clin N Am Food Anim Pract 2020; 36: 399-423
  • 7 Pardon B, Buczinski S, Deprez PR. Accuracy and inter-rater reliability of lung auscultation by bovine practitioners when compared with ultrasonographic findings. Vet Rec 2019; 185: 1-4
  • 8 Theurer M, Larson RL, Brad W. Systematic review and meta-analysis of the effec-tiveness of commercially available vaccines against bovine herpesvirus, Bovine viral diarrhea virus, Bovine respiratory syncytial virus, and parainfluenza type 3 virus for mitigation of bovine respiratory disease complex in cattle. J Am Vet Med Assoc 2015; 246: 126-142
  • 9 Smith RA, Step DL, Woolums AR. Bovine Respiratory Disease: looking back and looking forward – what do we see?. Vet Clin North Am Food Anim Pract 2020; 36: 239-251
  • 10 Svensson EC, Lundborg GK, Emanuelson U. et al. Morbidity in Swedish dairy calves from birth to 90 days of age and individual calf-level risk factors for infectious diseases. Prev Vet Med 2003; 58: 179-197
  • 11 Lundborg GK, Svensson EC, Oltenacu PA. Herd-level risk factors for infectious diseases in Swedish dairy calves aged 0–90 days. Prev Vet Med 2005; 68: 123-143
  • 12 Lava M, Pardon B, Schüpbach-Regula G. et al. Effect of calf purchase and other herd-level risk factors on mortality, unwanted early slaugther, and use of antimicrobial group treatments in Swiss veal calf operations. Prev Vet Med 2016; 126: 81-88
  • 13 Reschke C, Schelling E, Michel A. et al. Factors associated with colostrum quality and effects on serum gamma globulin concentrations of calves in Swiss dairy herds. J Vet Intern Med 2017; 31: 1563-1571
  • 14 Kaske M, Leister T, Smolka K. et al. Die neonatale Diarrhoe des Kalbes. IV. Mitteilung: Kälberdurchfall als Bestandsproblem: die Bedeutung der Kolostrumversorgung. Prakt Tierarzt 2009; 90: 756-767
  • 15 Maccari P, Wiedemann S, Kunz HJ. et al. Effects of two different rearing protocols for Holstein bull calves in the first 3 weeks of life on health status, metabolism and subsequent performance. J Anim Physiol Anim Nutr 2015; 99: 737-746
  • 16 Knowles TG. A review of post transport mortality among younger calves. Vet Rec 1995; 137: 406-407
  • 17 Grigor PN, Cockram MS, Steele WB. et al. Effects of space allowance during transport and duration of mid-journey lairage period on the physiological, behavioural and immunological responses of young calves during and after transport. Anim Sci 2001; 73: 341-360
  • 18 Marcato F, van den Brand H, Kemp B. et al. Effects of pretransport diet, transport duration, and type of vehicle on physiological status of young veal calves. J Dairy Sci 2020; 103: 3505-3520
  • 19 Baumann U. Physiologische Infektanfälligkeit oder Immundefekt?. Pädiatrie 2014; 26 (Suppl. 01) 56-61
  • 20 Bähler C, Steiner A, Luginbühl A. et al. Risk factors for death and unwanted early slaughter in Swiss veal calves kept at a specific animal welfare standard. Res Vet Sci 2010; 92: 162-168
  • 21 Hilton WM. Management of preconditioned calves and impacts of preconditioning. Vet Clin N Am Food Anim Pract 2015; 31: 197-207
  • 22 Wilson BK, Richards CJ, Step DL. et al. Best management practices for newly weaned calves for improved health and well-being. J Anim Sci 2017; 95: 2170-2182
  • 23 van Leenen K, Jouret J, Demeyer P. et al. Associations of barn air quality parameters with ultrasonographic lung lesions, airway inflammation and infection in group-housed calves. Prev Vet Med 2020; 181: 105056
  • 24 Reinhold P, Elmer S. Die Auswirkungen kurzzeitiger Schwankungen der Umgebungstemperatur auf den Kälberorganismus. 2. Mitteilung: Auswirkung auf die Tiergesundheit bis drei Wochen post expositionem. Dtsch Tierärztl Wschr 2002; 109: 193-200
  • 25 Lago A, McGuirk SM, Bennett TB. et al. Calf respiratory disease and pen microenvironments in naturally ventilated calf barns in winter. J Dairy Sci 2006; 89: 4014-4025
  • 26 Slifka MK, Amanna IJ. How advances in immunology provide insight into improving vac-cine efficacy. Vaccine 2014; 32: 2948-2957
  • 27 Aaby P, Benn CS, Flanagan KL. et al. The non-specific and sex-differential effects of vaccines. Nature Rev Immunol 2020; 10
  • 28 Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity 2017; 46: 562-576
  • 29 Valdez Y, Brown EM, Finlay BB. Influence of the microbiota on vaccine effectiveness. Trends Immun 2014; 35: 526-537
  • 30 Khalifeh MS, Amawi MM, Abu-Basha EA. et al. Assessment of humoral and cellular-mediated immune response in chickens treated with tilmicosin, florfenicol, or enrofloxacin at the time of Newcastle disease vaccination. Poultry Sci 2009; 88: 2118-2124
  • 31 Lynn MA, Tumes DJ, Mei Choo J. et al. Early-life antibiotic-driven dysbiosis leads to dysregulated vaccine immune responses in mice. Cell Host & Microbe 2018; 23: 653-660
  • 32 Parker AM, Sheehy PA, Hazelton MS. et al. A review of mycoplasma diagnostics in cattle. J Vet Intern Med 2018; 32: 1241-1252
  • 33 Heuvelink A, Reugebrink C, Mars J. Antimicrobial susceptibility of Mycoplasma bovis isolates from veal calves and dairy cattle in the Netherlands. Vet Microbiol 2016; 189: 1-7
  • 34 Ozdemir U, Turkyilmaz MA, Nicholas RAJ. Antibiotic sensitivity of Mycoplasma bovis and other respiratory pathogens isolated from pneumonic lung samples in a calf rearing unit in Turkey. Anim Husb Dairy Vet Sci 2019; 3: 1-5
  • 35 Blanchard A, Crabb DM, Dybvig K. et al. Rapid detection of tetM in Mycoplasma hominis and Ureaplasma urealyticum by PCR: tetM confers resistance to tetracycline but not necessarily to doxycycline. FEMS Microbiol Lett 1992; 74: 277-281
  • 36 Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracy-clines including glycylcyclines. J Antimicrob Chemother 2006; 58: 256-265