Osteologie 2020; 29(03): 207-214
DOI: 10.1055/a-1204-1795

Frakturreduktion durch körperliches Training – Welches Training für wen? Eine evidenzbasierte Übersicht über Trainingsstrategien bei Osteoporose

Fracture reduction through physical training – Which training for whom? An evidence-based overview of training strategies for osteoporosis
Simon von Stengel
1   Osteoporose-Forschungszentrum (OFZ), Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg
Wolfgang Kemmler
1   Osteoporose-Forschungszentrum (OFZ), Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg
› Author Affiliations


Osteoporotische Frakturen sind ein hochrelevantes Problem unserer überalterten Gesellschaft. Die zentralen Zielparameter, welche in diesem Zusammenhang im Rahmen eines körperlichen Trainings angesteuert werden können, sind die Bereiche „Sturzhäufigkeit“ und „Knochenfestigkeit“ als wesentliche Determinanten des Frakturrisikos. Die Konzeption und Durchführung eines frakturwirksamen Trainings ist aus trainingswissenschaftlicher Sicht allerdings äußerst komplex und verlangt eine auf die anvisierte Zielsetzung und Personengruppe abgestimmte Komposition von Trainingsinhalten und Belastungsnormativen. Zur Senkung des Sturzrisikos sind neben einem gezielten Gleichgewichtstraining insbesondere multimodale Bewegungsprogramme, welche Gleichgewichts- und Kraftübungen beinhalten, geeignet. Für ein knochenwirksames Training können intensive osteogene Reize am Knochen über Muskelzüge im Rahmen eines Krafttrainings oder durch axiale Belastungen im Rahmen von gewichtstragenden High-impact-Übungen generiert werden. Ziel dieses Übersichtsartikels ist es, basierend auf der aktuellen Evidenz, Grundlagen und Strategien zur effektiven Frakturprophylaxe durch Sturzreduktion und positive Beeinflussung der Knochendichte durch körperliches Training herauszuarbeiten.


Osteoporotic fractures are a highly relevant problem of our ageing society. The central goals of physical training are (1) ‘fall reduction’ and (2) ‘increasing bone strength’ as main determinants of osteoporotic fractures. Even though both paths should always be considered, bone density is the primary focus for ‘younger’ collectives, whereas falls should be adressed in older, functionally limited collectives at high risk for falls. From a training science perspective the design and implementation of effective anti-fracture training is complex and requires a combination of training contents and exercise parameters tailored to the training objective and target group.

In order to increase bone strength, intensive osteogenic stimuli can be generated on bones via muscle traction and the resulting joint reaction forces or via axial loading leading to ground reaction forces. Accordingly, resistance exercise and weight-bearing high-impact exercises are the training contents of choice. Resistance exercise should be practiced intensity-based, whereby it should be progressively increased and periodized in accordance with the principles of competitive sports. Additionally power training can be considered for intensity progression to stimulate bone adaptation after an initial familiarization phase. High impact weight-bearing exercises, such as multidirectional jumps, are a second possibility to apply osteogenic stimuli to the bone. However, those exercises involve certain risks for injury and overload. Thus, the implementation of this training content should always be considered on a case by case basis. While resistance exercise has significant effects on lumbar and hip bone density similar to combined programs, combined programs are more effective than pure impact loads in terms of lumbar BMD. For persons that are not able or willing to perform conventional training whole-body vibration training is an effective and time saving alternative with impact on BMD and leg strength. Training that focuses on falls does not require high intensities and can easily be carried out with older functionally impaired people. In addition to balance training, functional training and, in particular, multimodal training programs including balance and resistance exercises have proven to be effective in reducing the number of falls or the fall risk. In view of the multimorbidity of many patients and a holistic development of the targeted components of motor performance, it is recommended that multifunctional programs combining resistance, coordination and endurance training are implemented, thus focusing on several health-oriented training goals.

Publication History

Article published online:
12 August 2020

© Georg Thieme Verlag KG
Stuttgart · New York

  • Literatur

  • 1 Kemmler W, von Stengel S. Exercise and osteoporosis-related fractures: perspectives and recommendations of the sports and exercise scientist. Physician Sportmed 2011; 39: 142-157
  • 2 Costa AG, Wyman A, Siris ES. et al. When, where and how osteoporosis-associated fractures occur: An analysis from the Global Longitudinal Study of Osteoporosis in Women (GLOW). PLoS One 2013; 8: e83306
  • 3 Groen BE, Weerdesteyn V, Duysens J. Martial arts fall techniques decrease the impact forces at the hip during sideways falling. J Biomech 2007; 40: 458-462
  • 4 Kemmler W, Haberle L, von Stengel S. Effects of exercise on fracture reduction in older adults: A systematic review and meta-analysis. Osteoporos Int 2013; 24: 1937-1950
  • 5 Kemmler W, Kohl M, von Stengel S. Long-term effects of exercise in postmenopausal women: 16-year results of the Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Menopause 2017; 24: 45-51
  • 6 Kanis JA, Harvey NC, Johansson H. et al. FRAX and fracture prediction without bone mineral density. Climacteric 2015; 18 (Suppl 2): 2-9
  • 7 Sherrington C, Fairhall N, Wallbank G. et al. Exercise for preventing falls in older people living in the community: an abridged Cochrane systematic Review. Br J Sports Med 2019 DOI: 10.1136/bjsports-2019-101512
  • 8 Moreland J, Richardson J, Chan DH. et al. Evidence-based guidelines for the secondary prevention of falls in older adults. Gerontology 2003; 49: 93-116
  • 9 Thomas S, Mackintosh S, Halbert J. Does the ‘Otago exercise programme’ reduce mortality and falls in older adults?: A systematic review and meta-analysis. Age Ageing 2010; 39: 681-687
  • 10 Kyrdalen IL, Moen K, Røysland AS. et al. The Otago exercise program performed as group training versus home training in fall‐prone older people: a randomized controlled trial. Physiother Res Int 2014; 19: 108-116
  • 11 Cameron ID, Dyer SM, Panagoda CE. et al. Interventions for preventing falls in older people in care facilities and hospitals. Cochrane Database Syst Rev 2018; 9: CD005465.
  • 12 Yavropoulou M, Yovos J. The molecular basis of bone mechanotransduction. J Musculoskelet Neuronal Interact 2016; 16: 221
  • 13 Jarvinen TL, Kannus P, Sievanen H. et al. Randomized controlled study of effects of sudden impact loading on rat femur. J Bone Miner Res 1998; 13: 1475-1482
  • 14 Shojaa N, von Stengel S, Schoene D. et al. Effect of exercise training on bone mineral density in postmenopausal women: a systematic review and meta-analysis of intervention studies. Front Physiol. 2020 ; in press.
  • 15 Ma D, Wu L, He Z. Effects of walking on the preservation of bone mineral density in perimenopausal and postmenopausal women: a systematic review and meta-analysis. Menopause 2013; 20: 1216-1226
  • 16 von Stengel S, Kemmler W. Steigerung der Knochenfestigkeit durch Ganzkörpervibrationstraining. Osteologie 2015; 24: 30-41
  • 17 Kemmler W, Bebenek M, von Stengel S. et al. Effect of block-periodized exercise training on bone and coronary heart disease risk factors in early post-menopausal women: A randomized controlled study. Scand J Med Sci Sports 2013; 23: 121-129
  • 18 Kemmler W, von Stengel S, Kohl M. Exercise frequency and bone mineral density development in exercising postmenopausal osteopenic women. Is there a critical dose of exercise for affecting bone? Results of the Erlangen fitness and Osteoporosis prevention study. Bone 2016; 89: 1-6
  • 19 Kemmler W, von Stengel S. Exercise frequency, health risk factors and diseases of the elderly. Arch Phys Med Rehabil 2013; 94: 2046-2053
  • 20 Senn E. Grundlagen der positiv-trophischen Wirksamkeit physikalischer Belastung auf normales, osteopenisches und osteoporotisches Knochengewebe. Phys Med 1994; 4: 133-134
  • 21 Kemmler W, Engelke K, Baumann H. et al. Bone status in elite male runners. Eur J Appl Physiol 2006; 96: 78-85
  • 22 Morel J, Combe B, Francisco J. et al. Bone mineral density of 704 amateur sportsmen involved in different physical activities. Osteoporos Int 2001; 12: 152-157
  • 23 Nichols JF, Rauh MJ, Barrack MT. et al. Bone mineral density in female high school athletes: interactions of menstrual function and type of mechanical loading. Bone 2007; 41: 371-377
  • 24 Martyn-St James M, Carroll S. Effects of different impact exercise modalities on bone mineral density in premenopausal women: a meta-analysis. J Bone Miner Metab 2011; 28: 251-267
  • 25 Judex S, Zernicke RF. High-impact exercise and growing bone: Relation between high strain rates and enhanced bone formation. J Appl Physiol 2000; 88: 2183-2191
  • 26 Kato T, Terashima T, Yamashita T. et al. Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol 2006; 100: 839-843
  • 27 Zhao R, Zhao M, Zhang L. Efficiency of jumping exercise in improving bone mineral density among premenopausal women: a meta-analysis. Sports Med 2014; 44: 1393-1402
  • 28 Martyn-St James M, Carroll S. A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med 2009; 43: 898-908
  • 29 Beck BR, Daly RM, Singh MA. et al. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J Sci Med Sport 2017; 20: 438-445
  • 30 Multanen J, Nieminen MT, Häkkinen A. et al. Effects of high‐impact training on bone and articular cartilage: 12‐month randomized controlled quantitative MRI study. J Bone Miner Res 2014; 29: 192-201
  • 31 Mangione KK, Miller AH, Naughton IV. Cochrane review: Improving physical function and performance with progressive resistance strength training in older adults. Phys Ther 2010; 90: 1711-1715
  • 32 Shojaa M, von Stengel S, Kohl M. et al. Effects of dynamic resistance exercise on bone mineral density in postmenopausal women: A systematic review and meta-analysis with special emphasis on exercise parameters. Osteoporos Int 2020
  • 33 Kerr D, Morton A, Dick I. et al. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res 1996; 11: 218-225
  • 34 Csapo R, Alegre LM. Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: A meta-analysis. Scand J Med Sci Sports 2016; 26: 995-1006
  • 35 Kemmler W, von Stengel S, Engelke K. et al. Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Intern Med 2010; 170: 179-185
  • 36 Turner CH, Owan I, Takano Y. Mechanotransduction in bone: role of strain rate. Am J Physiol Endocrinol Metab 1995; 269: E438-E42
  • 37 Mosley JR, Lanyon LE. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 1998; 23: 313-318
  • 38 Stengel SV, Kemmler W, Pintag R. et al. Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J Appl Physiol 2005; 99: 181-188
  • 39 Steib S, Schoene D, Pfeifer K. Dose-response relationship of resistance training in older adults: a meta-analysis. Med Sci Sports Exerc 2010; 42: 902-914
  • 40 Fukumoto Y, Tateuchi H, Ikezoe T. et al. Effects of high-velocity resistance training on muscle function, muscle properties, and physical performance in individuals with hip osteoarthritis: a randomized controlled trial. Clin Rehabil 2014; 28: 48-58
  • 41 Watson SL, Weeks BK, Weis LJ. et al. High‐intensity resistance and impact training improves bone mineral density and physical function in postmenopausal women with osteopenia and osteoporosis: the LIFTMOR randomized controlled trial. J Bone Miner Res 2018; 33: 211-220
  • 42 Zhao R, Zhao M, Xu Z. The effects of differing resistance training modes on the preservation of bone mineral density in postmenopausal women: a meta-analysis. Osteoporosis Int 2015; 26: 1605-1618
  • 43 Marin-Cascales E, Alcaraz PE, Ramos-Campo DJ. et al. Whole-body vibration training and bone health in postmenopausal women: a systematic review and meta-analysis. Med (Baltimore) 2018; 97: e11918
  • 44 Fratini A, Bonci T, Bull AM. Whole body vibration treatments in postmenopausal women can improve bone mineral density: results of a stimulus focussed meta-analysis. PLoS One 2016; 11: e0166774. DOI: 10.1371/journal.pone.0166774.