Fortschr Neurol Psychiatr 2020; 88(09): 609-619
DOI: 10.1055/a-1207-0515
Übersicht

Empfehlung zum differenzierten Einsatz nuklearmedizinischer Diagnostik bei Parkinson-Syndromen

Recommendation for the differentiated use of nuclear medical diagnostic for parkinsonian syndromes
Thilo van Eimeren
1   Uniklinik Köln, Klinik und Poliklinik für Nuklearmedizin; Klinik und Poliklinik für Neurologie; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
,
Joseph Claßen
2   Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig
,
Alexander Drzezga
3   Uniklinik Köln, Klinik und Poliklinik für Nuklearmedizin; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Institut für Neurowissenschaften und Medizin (INM-2), Forschungszentrum Jülich
,
Carsten Eggers
11   Klinik für Neurologie, Universitätsklinikum Gießen und Marburg, Standort Marburg; Center for Mind, Brain & Behavior, Marburg
,
Rüdiger Hilker-Roggendorf
4   Klinikum Vest, Recklinghausen / Marl
,
Jochen Klucken
5   Molekulare Neurologie, Universitätsklinikum Erlangen
,
Jiri Koschel
6   Parkinson-Klinik Wolfach
,
Philipp Tobias Meyer
7   Klinik für Nuklearmedizin, Universitätsklinikum Freiburg
,
Christoph Redecker
8   Klinik für Neurologie, Klinikum Lippe Standort Lemgo
,
Hendrik Theis
9   Uniklinik Köln, Klinik und Poliklinik für Neurologie
,
Carsten Buhmann
10   Ambulanzzentrum und Neurologische Klinik, Universitätsklinikum Hamburg-Eppendorf
› Author Affiliations

Zusammenfassung

Die vorliegende Arbeit gibt einen Überblick über die verschiedenen nuklearmedizinischen Verfahren in der Diagnostik bei neurodegenerativen Parkinson-Syndromen sowie ihre Evidenzlage und soll praxistaugliche Entscheidungshilfen in der Anwendung und Interpretation der Methoden und Befunde ermöglichen. Die Wertigkeit der Verfahren unterscheidet sich erheblich in Bezug auf die beiden relevanten diagnostischen Fragestellungen. Dies ist zum einen die Frage, ob überhaupt ein neurodegeneratives Parkinson-Syndrom vorliegt, zum anderen die Frage, welches. Während zur Beantwortung der ersten Frage das DAT-SPECT unter Berücksichtigung gewisser Parameter in der Praxis unbestritten die Methode der Wahl ist, eignet sich dieses Verfahren nicht zur Beantwortung der zweiten Fragestellung. Zur Unterscheidung der Parkinson-Syndrome in idiopathisch oder atypisch werden im klinischen Alltag mit der MIBG-Szintigraphie und dem FDG-PET verschiedene Verfahren angewendet. Wir legen dar, warum das FDG-PET von diesen Methoden nicht nur die geeignetste ist, um ein idiopathisches Parkinson-Syndrom von einem atypischen Parkinson-Syndrom abzugrenzen, sondern auch ausreichend valide ermöglicht, die verschiedenen atypischen neurodegenerativen Parkinson-Syndrome (d. h. MSA, PSP und CBD) voneinander zu unterscheiden, und deshalb in den Leistungskatalog der GKV aufgenommen werden sollte.

Abstract

The present work provides an overview of the various nuclear medicine methods in the diagnosis of neurodegenerative parkinsonian syndromes and their respective evidence and is intended to enable practical decision-making aids in the application and interpretation of the methods and findings. The value of the procedures differs considerably in relation to the two relevant diagnostic questions. On the one hand, it is the question of whether there is a neurodegenerative parkinsonian syndrome at all, and on the other hand the question of which one. While the DAT-SPECT is undisputedly the method of choice for answering the first question (taking certain parameters into account), this method is not suitable for answering the second question. To categorise parkinsonian syndromes into idiopathic (i. e. Parkinson´s disease) or atypical, various procedures are used in everyday clinical practice including MIBG scintigraphy, and FDG-PET. We explain why FDG-PET currently is not only the most suitable of these methods to differentiate an idiopathic parkinsonian syndrome, from an atypical Parkinson’s syndrome, but also enables sufficiently valid to distinguish the various atypical neurodegenerative Parkinson’s syndromes (i. e. MSA, PSP and CBD) from each other and therefore should be reimbursed by health insurances.



Publication History

Received: 03 March 2020

Accepted: 10 June 2020

Article published online:
21 September 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Deutsche Gesellschaft für Neurologie. Leitlinien für Diagnostik und Therapie in der Neurologie: Idiopathisches Parkinson-Syndrom. DGN - Deutsche Gesellschaft für Neurologie Im Internet:. https: / /www.dgn.org/leitlinien/3219-030-010-idiopathisches-parkinson-syndrom
  • 2 Hammes J, Drzezga A, van Eimeren T. The role of Tau imaging in Parkinsonian disorders. Curr Neurol Neurosci Rep 2018; 18: 86
  • 3 Brück A, Aalto S, Rauhala E. et al. A follow-up study on 6-[18F]fluoro-L-dopa uptake in early Parkinson’s disease shows nonlinear progression in the putamen. Mov Disord 2009; 24: 1009-1015
  • 4 Neumeyer JL, Campbell A, Wang S. et al. N-.omega.-fluoroalkyl analogs of (1R)-2.beta.-carbomethoxy-3.beta.-(4-iodophenyl)tropane (.beta.-CIT): radiotracers for positron emission tomography and single photon emission computed tomography imaging of dopamine transporters. J Med Chem 1994; 37: 1558-1561.
  • 5 Deutsche Gesellschaft für Nuklearmedizin. DGN-Handlungsempfehlung (S1-Leitlinie)SPECT-Untersuchungen mit dem 123I-markierten Dopamintransporter-Liganden FP-CIT (DaTSCANTM). 2017 Im Internet: https: / /www.nuklearmedizin.de/leistungen/leitlinien/docs/031-037.pdf
  • 6 Lee CS, Samii A, Sossi V. et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 2000; 47: 493-503.
  • 7 Iranzo A, Valldeoriola F, Lomeña F. et al. Serial dopamine transporter imaging of nigrostriatal function in patients with idiopathic rapid-eye-movement sleep behaviour disorder: A prospective study. Lancet Neurol 2011; 10: 797-805.
  • 8 Eggers C, Schmidt A, Hagenah J. et al. Progression of subtle motor signs in PINK1 mutation carriers with mild dopaminergic deficit. Neurology 2010; 74: 1798-1805.
  • 9 Hilker R, Klein C, Ghaemi M. et al. Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann Neurol 2001; 49: 367-376.
  • 10 McKeith IG, Boeve BF, Dickson DW. et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 2017; 89: 88-100.
  • 11 Buchert R, Buhmann C, Apostolova I. et al. J. nuclear imaging in the diagnosis of clinically uncertain parkinsonian syndromes. Dtsch Arztebl Int 2019; 116: 747-754.
  • 12 Eshuis SA, Maguire RP, Leenders KL. et al. Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson’s disease. Eur J Nucl Med Mol Imaging 2006; 33: 200-209.
  • 13 Ibrahim N, Kusmirek J, Struck AF. et al. The sensitivity and specificity of F-DOPA PET in a movement disorder clinic. Am J Nucl Med Mol Imaging 2016; 6: 102-109.
  • 14 Vingerhoets FJ, Schulzer M, Calne DB. et al. Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion?. Ann Neurol 1997; 41: 58-64.
  • 15 Benamer HT, Patterson J, Wyper DJ. et al. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord 2000; 15: 692-698.
  • 16 Seibyl JP, Marek KL, Quinlan D. et al. Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol 1995; 38: 589-598.
  • 17 Nurmi E, Bergman J, Eskola O. et al. Progression of dopaminergic hypofunction in striatal subregions in Parkinson’s disease using [18F]CFT PET. Synapse 2003; 48: 109-115.
  • 18 Brooks DJ. Morphological and functional imaging studies on the diagnosis and progression of Parkinson’s disease. J Neurol 2000; 247 (Suppl 2): II11-18.
  • 19 Batla A, Erro R, Stamelou M. et al. Patients with scans without evidence of dopaminergic deficit: A long-term follow-up study. Mov Disord 2014; 29: 1820-1825.
  • 20 Marshall VL, Reininger CB, Marquardt M. et al. Parkinson’s disease is overdiagnosed clinically at baseline in diagnostically uncertain cases: A 3-year European multicenter study with repeat [123I]FP-CIT SPECT. Mov Disorders 2009; 24: 500-508.
  • 21 Marek K, Seibyl J, Eberly S. et al. Longitudinal follow-up of SWEDD subjects in the PRECEPT study. Neurology 2014; 82: 1791-1797.
  • 22 Erro R, Schneider SA, Stamelou M. et al. What do patients with scans without evidence of dopaminergic deficit (SWEDD) have? New evidence and continuing controversies. J Neurol Neurosurg Psychiatry 2016; 87: 319-323.
  • 23 Postuma RB, Berg D, Stern M. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 2015; 30: 1591-1601.
  • 24 Kaasinen V, Kankare T, Joutsa J. et al. Presynaptic striatal dopaminergic function in atypical parkinsonism: a metaanalysis of imaging studies. J Nucl Med 2019; 60: 1757-1763.
  • 25 Kadekaro M, Crane AM, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci USA 1985; 82: 6010-6013.
  • 26 Sokoloff L. Energetics of functional activation in neural tissues. Neurochem Res 1999; 24: 321-329.
  • 27 Harris JJ, Jolivet R, Attwell D. Synaptic energy use and supply. Neuron 2012; 75: 762-777.
  • 28 Meyer PT, Frings L, Rücker G. et al. 18F-FDG PET in parkinsonism: differential diagnosis and evaluation of cognitive impairment. J Nucl Med 2017; 58: 1888-1898
  • 29 Varrone A, Asenbaum S, Vander B. et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 2009; 36: 2103-2110
  • 30 Burdette JH, Minoshima S, Vander Borght T. et al. Alzheimer disease: Improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections. Radiology 1996; 198: 837-843
  • 31 Minoshima S, Frey KA, Koeppe RA. et al. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995; 36: 1238-1248.
  • 32 Friston KJ, Holmes AP, Worsley KJ. et al. Statistical parametric maps in functional imaging: A general linear approach. Hum Brain Mapp 1994; 2: 189-210.
  • 33 Tang CC, Poston KL, Eckert T. et al. Differential diagnosis of parkinsonism: A metabolic imaging study using pattern analysis. Lancet Neurol 2010; 9: 149-158.
  • 34 Walker Z, Gandolfo F, Orini S. et al. Clinical utility of FDG PET in Parkinson’s disease and atypical parkinsonism associated with dementia. Eur J Nucl Med Mol Imaging 2018; 45: 1534-1545.
  • 35 Meyer PT, Frings L, Hellwig S. Nuklearmedizinische Differenzialdiagnostik der Parkinson-Syndrome: update 2016. Nuklearmediziner 2016; 39: 245-258.
  • 36 Minoshima S, Foster NL, Sima AA. et al. Alzheimer’s disease versus dementia with Lewy bodies: Cerebral metabolic distinction with autopsy confirmation. Ann Neurol 2001; 50: 358-365.
  • 37 Eckert T, Barnes A, Dhawan V. et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005; 26: 912-921.
  • 38 Hellwig S, Amtage F, Kreft A. et al. [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology 2012; 79: 1314-1322.
  • 39 Höglinger GU, Respondek G, Kovacs GG. New classification of tauopathies. Rev Neurol (Paris) 2018; 174: 664-668.
  • 40 Grijalvo-Perez AM, Litvan I. Corticobasal degeneration. Semin Neurol 2014; 34: 160-173.
  • 41 Niethammer M, Tang CC, Feigin A. et al. A disease-specific metabolic brain network associated with corticobasal degeneration. Brain 2014; 137: 3036-3046.
  • 42 van Eimeren T, Antonini A, Berg D. et al. Neuroimaging biomarkers for clinical trials in atypical parkinsonian disorders: proposal for a neuroimaging biomarker utility system. Alzheimers Dement (Amst) 2019; 11: 301-309.
  • 43 Pilotto A, Premi E, Paola Caminiti S. et al. Single-subject SPM FDG-PET patterns predict risk of dementia progression in Parkinson disease. Neurology 2018; 90: e1029-e1037.
  • 44 Hellwig S, Frings L, Amtage F. et al. 18F-FDG PET is an early predictor of overall survival in suspected atypical parkinsonism. J Nucl Med 2015; jnumed: 115: 159822.
  • 45 Höglinger GU, Respondek G, Stamelou M. et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 2017; 32: 853-864.
  • 46 Herting B, Reichmann H. Parkinsonsyndrome: Fallstricke bei der Diagnose. Deutsches Ärzteblatt. 2016 113. Im Internet https: / /www.aerzteblatt.de/archiv/175987/Parkinsonsyndrome-Fallstricke-bei-der-Diagnose.
  • 47 Braune S. The role of cardiac metaiodobenzylguanidine uptake in the differential diagnosis of parkinsonian syndromes. Clin Auton Res 2001; 11: 351-355.
  • 48 Brown TP. Pure autonomic failure. Pract Neurol 2017; 17: 341-348.
  • 49 Nagayama H, Hamamoto M, Ueda M. et al. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2005; 76: 249-251.
  • 50 Borghammer P, Van Den Berge N. Brain-first versus Gut-first Parkinson’s disease: a hypothesis. J Parkinsons Dis 2019; 9 (S2): 281--295. DOI: 10.3233/JPD-191721
  • 51 Nagayama H, Ueda M, Yamazaki M. et al. Abnormal cardiac [(123)I]-meta-iodobenzylguanidine uptake in multiple system atrophy. Mov Disord 2010; 25: 1744-1747.
  • 52 Treglia G, Stefanelli A, Cason E. et al. Diagnostic performance of iodine-123-metaiodobenzylguanidine scintigraphy in differential diagnosis between Parkinson’s disease and multiple-system atrophy: A systematic review and a meta-analysis. Clin Neurol Neurosurg 2011; 113: 823-829.
  • 53 Kamada T, Miura S, Kida H. et al. MIBG myocardial scintigraphy in progressive supranuclear palsy. J Neurol Sci 2019; 396: 3-7.
  • 54 Südmeyer M, Antke C, Zizek T. et al. Diagnostic accuracy of combined FP-CIT, IBZM, and MIBG scintigraphy in the differential diagnosis of degenerative parkinsonism: A multidimensional statistical approach. J Nucl Med 2011; 52: 733-740.
  • 55 Kim YJ, Ichise M, Ballinger JR. et al. Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord 2002; 17: 303-312.
  • 56 Kim HW, Kim JS, Oh M. et al. Different loss of dopamine transporter according to subtype of multiple system atrophy. Eur J Nucl Med Mol Imaging 2016; 43: 517-525.
  • 57 Plotkin M, Amthauer H, Klaffke S. et al. S. Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: Study on 72 patients. J Neural Transm (Vienna) 2005; 112: 677-692.
  • 58 Koch W, Hamann C, Radau PE. et al. Does combined imaging of the pre- and postsynaptic dopaminergic system increase the diagnostic accuracy in the differential diagnosis of parkinsonism?. Eur J Nucl Med Mol Imaging 2007; 34: 1265-1273.
  • 59 Mo SJ, Linder J, Forsgren L. et al. Pre- and postsynaptic dopamine SPECT in the early phase of idiopathic parkinsonism: A population-based study. Eur J Nucl Med Mol Imaging 2010; 37: 2154-2164.
  • 60 Vlaar AMM, MJPG VK, Kessels AGH. et al. Meta-analysis of the literature on diagnostic accuracy of SPECT in parkinsonian syndromes. BMC Neurol 2007; 7: 27.
  • 61 Gilman S, Wenning GK, Low PA. et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008; 71: 670-676.
  • 62 Dams J, Bornschein B, Reese JP. et al. Modelling the cost effectiveness of treatments for parkinson’s disease. Pharmacoeconomics 2011; 29: 1025-1049
  • 63 Dodel RC, Höffken H, Möller JC. et al. Dopamine transporter imaging and SPECT in diagnostic work-up of Parkinson’s disease: A decision-analytic approach. Mov Disord 2003; 18 (Suppl 7): S52-62.
  • 64 Antonini A, Berto P, Lopatriello S. et al. Cost-effectiveness of 123I-FP-CIT SPECT in the differential diagnosis of essential tremor and Parkinson’s disease in Italy. Mov Disord 2008; 23: 2202-2209.
  • 65 Van Laere K, Everaert L, Annemans L. et al. The cost effectiveness of I-123-FP-CIT SPECT imaging in patients with an uncertain clinical diagnosis of parkinsonism. Eur J Nucl Med Mol Imaging 2008; 35: 1367-1376.
  • 66 Gu S-C, Ye Q, Yuan C-X. Metabolic pattern analysis of 18F-FDG PET as a marker for Parkinson’s disease: A systematic review and meta-analysis. Rev Neurosci 2019; 30 (7): 743--756. doi: https://doi.org/10.1515/revneuro-2018-0061