Fortschr Neurol Psychiatr 2020; 88(09): 573-581
DOI: 10.1055/a-1227-6258
Übersicht

Die Geschichte des ‚Freezing-of-gait‘ beim Parkinson-Syndrom – vom Phänomen zum Symptom

The history of Freezing-of-gait in Parkinson’s disease – from phenomena to symptom
Jochen Klucken
1   Molekulare Neurologie, Universitätsklinikum Erlangen; Fraunhofer-Institut für Integrierte Schaltungen IIS, Erlangen; Medical Valley Digital Health Application Center, Bamberg
,
Juergen Winkler
2   Molekular-Neurologische Abteilung, Universitätsklinikum Erlangen
,
Rejko Krüger
3   Universite du Luxembourg, Clinical and Experimental Neuroscience; Luxembourg Institute for Health (LIH), Transversal Translational Medicine
,
Wolfgang Jost
4   Parkinson-Klinik Ortenau, Wolfach
› Author Affiliations

Zusammenfassung

In der Übersichtsarbeit wird der Hintergrund des Phänomens Freezing-of-Gait (FOG) beim Parkinson-Syndrom beleuchtet. Die Charakterisierung des Phänomens als Symptom und die unterschiedlich definierten Subtypen werden diskutiert. Dabei stellen die unterschiedlichen Ausprägungsformen eine erhebliche Herausforderung an die alltägliche Behandlung und auch an die einheitliche Diagnostik bei klinischen Studien dar. Die bisherigen, standardisierten Erfassungsmethoden mittels Fragebögen und semistandardisierten klinischen Untersuchungen werden in Relevanz zur patientenspezifischen Versorgung dargestellt. Bei den derzeitigen Therapieformen spielen neben der Optimierung der dopaminergen Medikation gezielte medikamentöse Optionen bislang keine wesentliche Rolle, was aber auch an der Trennschärfe der standardisierten Diagnostik liegen kann. Dadurch ist beim variantenreichen Phänomen FOG auch die Evidenzlage der Tiefen Hirnstimulation eingeschränkt. Im Alltag können hingegen Physiotherapie und Cueing-Strategien sehr gute Erfolge erzielen, auch wenn die Studienlage bzgl. höchster Evidenzklasse eher gering ist. Die Entwicklungen der Technologie scheinen sowohl die diagnostische Trennschärfe als auch das individualisierte „Cueing“-Angebot zu revolutionieren. Aber auch hier fehlen noch ausreichend große Studien, die diese Diagnostik- und Therapieformen hinterlegen. Trotzdem ist davon auszugehen, dass vielen Patienten diese „neuen Tools“ gerne nutzen werden und der Behandlungsalltag für Arzt und Physiotherapeuten entsprechend belebt wird.

Abstract

The background of the freezing-of-gait (FOG) phenomenon in Parkinson’s syndrome is presented in this review. The following issues are addressed: characterization of the symptom freezing and its subtypes that challenge standardized diagnostic procedures; available assessment methods generating freezing-related parameters that not only support clinical studies but can also be applied in everyday care, and current therapy options. FOG exists in different subtypes, and clinical and diagnostic definitions are limited by subjective characterization and semi-standardized tests. FOG-specific drug options are not existing, apart from the optimization of dopaminergic medication, which may also be due to the poor discriminatory power of standardized diagnostics. This is also true for deep brain stimulation. Both of these therapeutic options may be due not only to the complex neural network alterations as a motor-control correlate of FOG, but also because of challenging diagnostic assessments methodologies. Innovative, wearable, sensor-based diagnostic strategies are currently being developed, and supportive therapies using tools and technologies focusing on ‘cueing’ are becoming increasingly well accepted. Even though high level evidence is missing, they provide a helpful treatment option for individualized therapy. It can be assumed that these options will become particularly popular due to technological progress and likely alter the everyday treatment challenges faced by doctors and therapists.



Publication History

Received: 11 March 2020

Accepted: 22 July 2020

Article published online:
21 September 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Stern GM, Lander CM, Lees AJ. Akinetic freezing and trick movements in Parkinson’s disease. J Neural Transm Suppl 1980; 137-141 . doi:10.1007/978-3-7091-8582-7_14
  • 2 Giladi N, Horak FB, Hausdorff JM. Classification of gait disturbances: Distinguishing between continuous and episodic changes. Mov Disord 2013; 28: 1469-1473
  • 3 Snijders AH, Nijkrake MJ, Bakker M. et al. Clinimetrics of freezing of gait. Mov Disord 2008; 23 (Suppl 2): S468-474
  • 4 Nieuwboer A, Giladi N. The challenge of evaluating freezing of gait in patients with Parkinson’s disease. Br J Neurosurg 2008; 22 (Suppl 1): S16-18
  • 5 Bartels AL, Balash Y, Gurevich T. et al. Relationship between freezing of gait (FOG) and other features of Parkinson’s: FOG is not correlated with bradykinesia. J Clin Neurosci 2003; 10: 584-588
  • 6 Schaafsma JD, Balash Y, Gurevich T. et al. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur J Neurol 2003; 10: 391-398
  • 7 Giladi N. Freezing of gait. Clinical overview. Adv Neurol 2001; 87: 191-197
  • 8 Ehgoetz Martens KA, Shine JM, Walton CC. et al. Evidence for subtypes of freezing of gait in Parkinson’s disease. Mov Disord 2018; 33: 1174-1178
  • 9 Fahn S. The freezing phenomenon in parkinsonism. Adv Neurol 1995; 67: 53-63
  • 10 Espay AJ, Fasano A, van Nuenen BF. et al. “On” state freezing of gait in Parkinson disease: A paradoxical levodopa-induced complication. Neurology 2012; 78: 454-457
  • 11 Reich MM, Sawalhe AD, Steigerwald F. et al. The Pirouette test to evaluate asymmetry in Parkinsonian gait freezing. Mov Disord Clin Pract 2014; 1: 136-138
  • 12 Giladi N, Shabtai H, Rozenberg E. et al. Gait festination in Parkinson’s disease. Parkinsonism Relat Disord 2001; 7: 135-138
  • 13 Morris ME, Iansek R, Galna B. Gait festination and freezing in Parkinson’s disease: Pathogenesis and rehabilitation. Mov Disord 2008; 23 (Suppl 2): S451-460
  • 14 Nonnekes J, Giladi N, Guha A. et al. Gait festination in parkinsonism: Introduction of two phenotypes. J Neurol 2019; 266: 426-430
  • 15 Factor SA, Jennings DL, Molho ES. et al. The natural history of the syndrome of primary progressive freezing gait. Arch Neurol 2002; 59: 1778-1783
  • 16 Giladi N, Nieuwboer A. Understanding and treating freezing of gait in parkinsonism, proposed working definition, and setting the stage. Mov Disord 2008; 23 (Suppl 2): S423-425
  • 17 Vogler A, Janssens J, Nyffeler T. et al. German translation and validation of the “freezing of gait questionnaire” in patients with Parkinson’s disease. Parkinsons Dis 2015; 2015: 982058
  • 18 Nieuwboer A, Rochester L, Herman T. et al. Reliability of the new freezing of gait questionnaire: Agreement between patients with Parkinson’s disease and their carers. Gait Posture 2009; 30: 459-463
  • 19 Giladi N, Tal J, Azulay T. et al. Validation of the freezing of gait questionnaire in patients with Parkinson’s disease. Mov Disord 2009; 24: 655-661
  • 20 Giladi N, McDermott MP, Fahn S. et al. Freezing of gait in PD: Prospective assessment in the DATATOP cohort. Neurology 2001; 56: 1712-1721
  • 21 Forsaa EB, Larsen JP, Wentzel-Larsen T. et al. A 12-year population-based study of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 2015; 21: 254-258
  • 22 Sawada M, Wada-Isoe K, Hanajima R. et al. Clinical features of freezing of gait in Parkinson’s disease patients. Brain Behav 2019; 9: e01244
  • 23 Mancini M, Bloem BR, Horak FB. et al. Clinical and methodological challenges for assessing freezing of gait: Future perspectives. Mov Disord 2019; 34: 783-790
  • 24 Klucken J, Gladow T, Hilgert JG. et al. Wearables in the treatment of neurological diseases-where do we stand today?. Nervenarzt 2019; 90: 787-795
  • 25 Espay AJ, Hausdorff JM, Sanchez-Ferro A. et al. A roadmap for implementation of patient-centered digital outcome measures in Parkinson’s disease obtained using mobile health technologies. Mov Disord 2019; 34: 657-663
  • 26 Klucken J, Kruger R, Schmidt P. et al. Management of Parkinson’s disease 20 years from now: towards digital health pathways. J Parkinsons Dis 2018; 8: S85-S94
  • 27 Schlachetzki JCM, Barth J, Marxreiter F. et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS One 2017; 12: e0183989
  • 28 Silva de Lima AL, Evers LJW, Hahn T. et al. Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: a systematic review. J Neurol 2017; 264: 1642-1654
  • 29 Pardoel S, Kofman J, Nantel J. et al. Wearable-sensor-based detection and prediction of freezing of gait in Parkinson’s disease: a review. Sensors (Basel) 2019; 19 . DOI: doi:10.3390/s19235141.
  • 30 Fling BW, Cohen RG, Mancini M. et al. Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One 2014; 9: e100291
  • 31 Nutt JG, Bloem BR, Giladi N. et al. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 2011; 10: 734-744
  • 32 Hall JM, Shine JM, Ehgoetz Martens KA. et al. Alterations in white matter network topology contribute to freezing of gait in Parkinson’s disease. J Neurol 2018; 265: 1353-1364
  • 33 Ono SA, Sato T, Muramatsu S. Freezing of gait in Parkinson’s disease is associated with reduced 6-[(18)F]Fluoro-l-m-tyrosine uptake in the Locus Coeruleus. Parkinsons Dis 2016; 2016: 5430920
  • 34 Bohnen NI, Kanel P, Zhou Z. et al. Cholinergic system changes of falls and freezing of gait in Parkinson’s disease. Ann Neurol 2019; 85: 538-549
  • 35 Zwergal A, Linn J, Xiong G. et al. Aging of human supraspinal locomotor and postural control in fMRI. Neurobiol Aging 2012; 33: 1073-1084
  • 36 Jahn K, Deutschlander A, Stephan T. et al. Supraspinal locomotor control in quadrupeds and humans. Prog Brain Res 2008; 171: 353-362
  • 37 Ehgoetz Martens KA, Hall JM, Georgiades MJ. et al. The functional network signature of heterogeneity in freezing of gait. Brain 2018; 141: 1145-1160
  • 38 Lewis SJ, Shine JM. The next step: a common neural mechanism for freezing of gait. Neuroscientist 2016; 22: 72-82
  • 39 Gilat M, Ehgoetz Martens KA, Miranda-Dominguez O. et al. Dysfunctional limbic circuitry underlying freezing of gait in Parkinson’s disease. Neuroscience 2018; 374: 119-132
  • 40 Smulders K, Dale ML, Carlson-Kuhta P. et al. Pharmacological treatment in Parkinson’s disease: effects on gait. Parkinsonism Relat Disord 2016; 31: 3-13
  • 41 Giladi N. Medical treatment of freezing of gait. Mov Disord 2008; 23 (Suppl 2): S482-488
  • 42 Chang FC, Tsui DS, Mahant N. et al. 24 h Levodopa-carbidopa intestinal gel may reduce falls and “unresponsive” freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 2015; 21: 317-320
  • 43 Ogawa N, Kuroda H, Yamamoto M. et al. Improvement in freezing phenomenon of Parkinson’s disease after DL-threo-3, 4-dihydroxyphenylserine. Acta Med Okayama 1984; 38: 301-304
  • 44 Narabayashi H, Kondo T, Nagatsu T. et al. DL-threo-3,4-dihydroxyphenylserine for freezing symptom in parkinsonism. Adv Neurol 1984; 40: 497-502
  • 45 Fukada K, Endo T, Yokoe M. et al. L-threo-3,4-dihydroxyphenylserine (L-DOPS) co-administered with entacapone improves freezing of gait in Parkinson’s disease. Med Hypotheses 2013; 80: 209-212
  • 46 Tohgi H, Abe T, Takahashi S. The effects of L-threo-3,4-dihydroxyphenylserine on the total norepinephrine and dopamine concentrations in the cerebrospinal fluid and freezing gait in parkinsonian patients. J Neural Transm Park Dis Dement Sect 1993; 5: 27-34
  • 47 Zhang LL, Canning SD, Wang XP. Freezing of gait in Parkinsonism and its potential drug treatment. Curr Neuropharmacol 2016; 14: 302-306
  • 48 Takahashi M, Tabu H, Ozaki A. et al. Antidepressants for depression, apathy, and gait instability in Parkinson’s disease: a multicenter randomized study. Intern Med 2019; 58: 361-368
  • 49 Henderson EJ, Lord SR, Brodie MA. et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15: 249-258
  • 50 Espay AJ, Dwivedi AK, Payne M. et al. Methylphenidate for gait impairment in Parkinson disease: a randomized clinical trial. Neurology 2011; 76: 1256-1262
  • 51 Iijima M, Orimo S, Terashi H. et al. Efficacy of istradefylline for gait disorders with freezing of gait in Parkinson’s disease: a single-arm, open-label, prospective, multicenter study. Expert Opin Pharmacother 2019; 20: 1405-1411
  • 52 Sandyk R. Freezing of gait in Parkinson’s disease is improved by treatment with weak electromagnetic fields. Int J Neurosci 1996; 85: 111-124
  • 53 Mi TM, Garg S, Ba F. et al. High-frequency rTMS over the supplementary motor area improves freezing of gait in Parkinson’s disease: a randomized controlled trial. Parkinsonism Relat Disord 2019; 68: 85-90
  • 54 Pozzi NG, Canessa A, Palmisano C. et al. Freezing of gait in Parkinson’s disease reflects a sudden derangement of locomotor network dynamics. Brain 2019; 142: 2037-2050
  • 55 Barbe MT, Barthel C, Chen L. et al. Subthalamic nucleus deep brain stimulation reduces freezing of gait subtypes and patterns in Parkinson’s disease. Brain Stimul 2018; 11: 1404-1406
  • 56 Barbe MT, Tonder L, Krack P. et al. Deep brain stimulation for freezing of gait in Parkinson’s disease with early motor complications. Mov Disord 2020; 35: 82-90
  • 57 Fasano A, Herzog J, Seifert E. et al. Modulation of gait coordination by subthalamic stimulation improves freezing of gait. Mov Disord 2011; 26: 844-851
  • 58 Xie T, Vigil J, MacCracken E. et al. Low-frequency stimulation of STN-DBS reduces aspiration and freezing of gait in patients with PD. Neurology 2015; 84: 415-420
  • 59 Ramdhani RA, Patel A, Swope D. et al. Early use of 60 Hz frequency subthalamic stimulation in Parkinson’s disease: a case series and review. Neuromodulation 2015; 18: 664-669
  • 60 Weiss D, Schoellmann A, Fox MD. et al. Freezing of gait: Understanding the complexity of an enigmatic phenomenon. Brain 2020; 143: 14-30
  • 61 Breit S, Lessmann L, Unterbrink D. et al. Lesion of the pedunculopontine nucleus reverses hyperactivity of the subthalamic nucleus and substantia nigra pars reticulata in a 6-hydroxydopamine rat model. Eur J Neurosci 2006; 24: 2275-2282
  • 62 Lafreniere-Roula M, Kim E, Hutchison WD. et al. High-frequency microstimulation in human globus pallidus and substantia nigra. Exp Brain Res 2010; 205: 251-261
  • 63 Thevathasan W, Debu B, Aziz T. et al. Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: a clinical review. Mov Disord 2018; 33: 10-20
  • 64 Soh D, Algarni M, Wong A. et al. Stimulation-induced reversed plus-minus syndrome: insights into eyelid physiology. Brain Stimul 2018; 11: 951-952
  • 65 Pinto de Souza C, Hamani C, Oliveira Souza C. et al. Spinal cord stimulation improves gait in patients with Parkinson’s disease previously treated with deep brain stimulation. Mov Disord 2017; 32: 278-282
  • 66 Fonoff ET, de Lima-pardini AC, Coelho DB. et al. Spinal cord stimulation for freezing of gait: from bench to bedside. Front Neurol 2019; 10: 905
  • 67 Weiss D, Klotz R, Govindan RB. et al. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease. Brain 2015; 138: 679-693
  • 68 Dietz MA, Goetz CG, Stebbins GT. Evaluation of a modified inverted walking stick as a treatment for parkinsonian freezing episodes. Mov Disord 1990; 5: 243-247
  • 69 Cosentino C, Baccini M, Putzolu M. et al. Effectiveness of physiotherapy on freezing of gait in Parkinson’s disease: a systematic review and meta-analyses. Mov Disord. 2019 doi:10.1002/mds.27936.doi:10.1002/mds.27936
  • 70 Rutz DG, Benninger DH. Physical therapy for freezing of gait and gait impairments in Parkinson’s disease: A systematic review. Pm & R 2020; . DOI: doi:doi:10.1002/pmrj.12337.
  • 71 Abbruzzese G, Avanzino L, Marchese R. et al. Action observation and motor imagery: innovative cognitive tools in the rehabilitation of Parkinson’s disease. Parkinsons Dis 2015; 2015: 124214
  • 72 Pelosin E, Barella R, Bet C. et al. Effect of group-based rehabilitation combining action observation with physiotherapy on freezing of gait in Parkinson’s disease. Neural Plast 2018; 2018: 4897276
  • 73 Agosta F, Gatti R, Sarasso E. et al. Brain plasticity in Parkinson’s disease with freezing of gait induced by action observation training. J Neurol 2017; 264: 88-101
  • 74 Stummer C, Dibilio V, Overeem S. et al. The walk-bicycle: A new assistive device for Parkinson’s patients with freezing of gait?. Parkinsonism Relat Disord 2015; 21: 755-757
  • 75 Schroeteler FE, Ceballos-Baumann AO. Münchner Anti-Freezing-Training (MAFT). Nervenheilkunde 2016; 35: 198-204
  • 76 Nieuwboer A, Kwakkel G, Rochester L. et al. Cueing training in the home improves gait-related mobility in Parkinson’s disease: The RESCUE trial. J Neurol Neurosurg Psychiatry 2007; 78: 134-140. doi:78/2/134 [pii]10.1136/jnnp.200X.097923
  • 77 Redgrave P, Rodriguez M, Smith Y. et al. Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease. Nat Rev Neurosci 2010; 11: 760-772
  • 78 Azulay JP, Mesure S, Amblard B. et al. Visual control of locomotion in Parkinson’s disease. Brain 1999; 122 (Pt 1): 111-120
  • 79 Burleigh-Jacobs A, Horak FB, Nutt JG. et al. Step initiation in Parkinson’s disease: Influence of levodopa and external sensory triggers. Mov Disord 1997; 12: 206-215
  • 80 Janssen S, Bolte B, Nonnekes J. et al. Usability of three-dimensional augmented visual cues delivered by smart glasses on (Freezing of) gait in Parkinson’s disease. Front Neurol 2017; 8: 279
  • 81 Nieuwboer A. Cueing for freezing of gait in patients with Parkinson’s disease: A rehabilitation perspective. Mov Disord 2008; 23 (Suppl 2): S475-481
  • 82 Pereira MP, Gobbi LT, Almeida QJ. Freezing of gait in Parkinson’s disease: evidence of sensory rather than attentional mechanisms through muscle vibration. Parkinsonism Relat Disord 2016; 29: 78-82
  • 83 Enzensberger W, Oberlander U, Stecker K. Metronome therapy in patients with Parkinson disease. Nervenarzt 1997; 68: 972-977
  • 84 Sweeney D, Quinlan LR, Browne P. et al. A technological review of wearable cueing devices addressing freezing of gait in Parkinson’s disease. Sensors (Basel) 2019; 19 DOI: doi:10.3390/s19061277.
  • 85 Barthel C, Nonnekes J, van Helvert M. et al. The laser shoes: a new ambulatory device to alleviate freezing of gait in Parkinson disease. Neurology 2018; 90: e164-e171
  • 86 Nonnekes J, Ruzicka E, Nieuwboer A. et al. Compensation strategies for gait impairments in Parkinson disease: a review. JAMA Neurol 2019; 76: 718-725