Hamostaseologie 2021; 41(04): 307-315
DOI: 10.1055/a-1232-7721
Review Article

Trauma-Induced Coagulopathy and Massive Bleeding: Current Hemostatic Concepts and Treatment Strategies

Johannes Gratz
1   Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Austria
,
Daniel Oberladstätter
2   Department of Anaesthesiology and Intensive Care, AUVA Trauma Centre, Salzburg, Austria
3   Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria
,
Herbert Schöchl
2   Department of Anaesthesiology and Intensive Care, AUVA Trauma Centre, Salzburg, Austria
3   Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria
› Author Affiliations
Funding None.

Abstract

Hemorrhage after trauma remains a significant cause of preventable death. Trauma-induced coagulopathy (TIC) at the time of hospital admission is associated with an impaired outcome. Rather than a universal phenotype, TIC represents a complex hemostatic disorder, and standard coagulation tests are not designed to adequately reflect the complexity of TIC. Viscoelastic testing (VET) has gained increasing interest for the characterization of TIC because it provides a more comprehensive depiction of the coagulation process. Thus, VET has been established as a point-of-care-available hemostatic monitoring tool in many trauma centers. Damage-control resuscitation and early administration of tranexamic acid provide the basis for treating TIC. To improve survival, ratio-driven massive transfusion protocols favoring early and high-dose plasma transfusion have been implemented in many trauma centers around the world. Although plasma contains all coagulation factors and inhibitors, only high-volume plasma transfusion allows for adequate substitution of lacking coagulation proteins. However, high-volume plasma transfusion has been associated with several relevant risks. In some European trauma facilities, a more individualized hemostatic therapy concept has been implemented. The hemostatic profile of the bleeding patient is evaluated by VET. Subsequently, goal-directed hemostatic therapy is primarily based on coagulation factor concentrates such as fibrinogen concentrate or prothrombin complex concentrate. However, a clear difference in survival benefit between these two treatment strategies has not yet been shown. This concise review aims to summarize current evidence for different diagnostic and therapeutic strategies in patients with TIC.

Zusammenfassung

Nach wie vor sind Blutungen die Ursache eines relevanten Anteils potentiell behandelbarer Todesfälle bei TraumapatientInnen. Das Auftreten einer trauma-induzierten Koagulopathie (TIC) bei Aufnahme ist mit einem schlechteren Outcome dieser PatientInnen assoziiert. TIC stellt eine komplexe Störung des Gerinnungssystems dar und wird durch Standardgerinnungstests nicht adäquat abgebildet. Aufgrund der umfassenderen Darstellung des Gerinnungsprozesses haben viskoelastische Tests (VET) an Bedeutung in der Charakterisierung von TIC gewonnen. VET werden daher zunehmend als bettseitig verfügbare gerinnungsspezifische Monitoringmöglichkeit verwendet. Die sogenannte “Damage-Control Resuscitation” sowie die frühzeitige Gabe von Tranexamsäure stellen die Basis der Behandlung von PatientInnen mit TIC dar. In der Hoffnung auf einen Überlebensvorteil haben viele Traumazentren weltweit Massivtransfusionsprotokolle eingeführt, welche eine frühzeitige und hochdosierte Transfusion von Plasma vorsehen. Plasma enthält alle Gerinnungsfaktoren sowie Gerinnungsinhibitoren; ein adäquater Ersatz der fehlenden Gerinnungsfaktoren bei blutenden PatientInnen kann jedoch nur durch Transfusion großer Volumina erreicht werden. Allerdings wurden für die Gabe großer Mengen an Plasmen relevante Risiken beschrieben. In einigen europäischen Traumazentren wird in diesem Zusammenhang zunehmend ein individualisiertes hämostatisches Therapiekonzept zur Behandlung von TraumapatientInnen verfolgt. Hierbei wird das individuelle, tatsächlich vorliegende Gerinnungsprofil der PatientInnen anhand von VET dargestellt. Die nachfolgende zielgerichtete Therapie basiert hauptsächlich auf der Gabe von Gerinnungsfaktorkonzentraten wie Fibrinogen oder Prothrombinkomplexkonzentrat. Ein klarer Vorteil in Bezug auf das Überleben der PatientInnen konnte jedoch bis jetzt für keine der beiden Therapiestrategien nachgewiesen werden. Das Ziel dieses Reviewartikel ist es, die aktuell verfügbare Literatur für unterschiedliche diagnostische und therapeutische Vorgehen bei PatientInnen mit TIC zusammenzufassen.



Publication History

Received: 09 May 2020

Accepted: 03 August 2020

Article published online:
07 September 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma 2006; 60 (6, Suppl): S3-S11
  • 2 Oyeniyi BT, Fox EE, Scerbo M, Tomasek JS, Wade CE, Holcomb JB. Trends in 1029 trauma deaths at a level 1 trauma center: Impact of a bleeding control bundle of care. Injury 2017; 48 (01) 5-12
  • 3 Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet J-F. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway?. Ann Surg 2007; 245 (05) 812-818
  • 4 Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma 2003; 54 (06) 1127-1130
  • 5 Chang R, Kerby JD, Kalkwarf KJ. et al; PROPPR Study Group. Earlier time to hemostasis is associated with decreased mortality and rate of complications: results from the Pragmatic Randomized Optimal Platelet and Plasma Ratio trial. J Trauma Acute Care Surg 2019; 87 (02) 342-349
  • 6 Holcomb JB, Tilley BC, Baraniuk S. et al; PROPPR Study Group. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA 2015; 313 (05) 471-482
  • 7 McQuilten ZK, Crighton G, Brunskill S. et al. Optimal dose, timing and ratio of blood products in massive transfusion: results from a systematic review. Transfus Med Rev 2018; 32 (01) 6-15
  • 8 Stein P, Kaserer A, Sprengel K. et al. Change of transfusion and treatment paradigm in major trauma patients. Anaesthesia 2017; 72 (11) 1317-1326
  • 9 Schöchl H, Maegele M, Solomon C, Görlinger K, Voelckel W. Early and individualized goal-directed therapy for trauma-induced coagulopathy. Scand J Trauma Resusc Emerg Med 2012; 20: 15
  • 10 Gratz J, Güting H, Thorn S. et al. Protocolised thromboelastometric-guided haemostatic management in patients with traumatic brain injury: a pilot study. Anaesthesia 2019; 74 (07) 883-890
  • 11 Schöchl H, Nienaber U, Hofer G. et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care 2010; 14 (02) R55
  • 12 Innerhofer P, Fries D, Mittermayr M. et al. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): a single-centre, parallel-group, open-label, randomised trial. Lancet Haematol 2017; 4 (06) e258-e271
  • 13 Lier H, Krep H, Schroeder S, Stuber F. Preconditions of hemostasis in trauma: a review. The influence of acidosis, hypocalcemia, anemia, and hypothermia on functional hemostasis in trauma. J Trauma 2008; 65 (04) 951-960
  • 14 Cap A, Hunt BJ. The pathogenesis of traumatic coagulopathy. Anaesthesia 2015; 70 (Suppl. 01) 96-101 , e32–e34
  • 15 Duque P, Mora L, Levy JH, Schöchl H. Pathophysiological response to trauma-induced coagulopathy: a comprehensive review. Anesth Analg 2020; 130 (03) 654-664
  • 16 Cotton BA, Harvin JA, Kostousouv V. et al. Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg 2012; 73 (02) 365-370 , discussion 370
  • 17 Schöchl H, Frietsch T, Pavelka M, Jámbor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma 2009; 67 (01) 125-131
  • 18 Verni CC, Davila Jr A, Balian S, Sims CA, Diamond SL. Platelet dysfunction during trauma involves diverse signaling pathways and an inhibitory activity in patient-derived plasma. J Trauma Acute Care Surg 2019; 86 (02) 250-259
  • 19 Vulliamy P, Kornblith LZ, Kutcher ME, Cohen MJ, Brohi K, Neal MD. Alterations in platelet behavior after major trauma: adaptive or maladaptive?. Platelets 2020; 1-10
  • 20 Solomon C, Traintinger S, Ziegler B. et al. Platelet function following trauma. A multiple electrode aggregometry study. Thromb Haemost 2011; 106 (02) 322-330
  • 21 Spahn DR, Bouillon B, Cerny V. et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care 2019; 23 (01) 98
  • 22 Mann KG, Brummel K, Butenas S. What is all that thrombin for?. J Thromb Haemost 2003; 1 (07) 1504-1514
  • 23 Schöchl H, Voelckel W, Grassetto A, Schlimp CJ. Practical application of point-of-care coagulation testing to guide treatment decisions in trauma. J Trauma Acute Care Surg 2013; 74 (06) 1587-1598
  • 24 Hans GA, Besser MW. The place of viscoelastic testing in clinical practice. Br J Haematol 2016; 173 (01) 37-48
  • 25 Baksaas-Aasen K, Van Dieren S, Balvers K. et al; TACTIC/INTRN collaborators. Data-driven development of ROTEM and TEG algorithms for the management of trauma hemorrhage: a prospective observational multicenter study. Ann Surg 2019; 270 (06) 1178-1185
  • 26 Gonzalez E, Moore EE, Moore HB. et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg 2016; 263 (06) 1051-1059
  • 27 Pham HP, Shaz BH. Update on massive transfusion. Br J Anaesth 2013; 111 (Suppl. 01) i71-i82
  • 28 Brockamp T, Nienaber U, Mutschler M. et al; TraumaRegister DGU. Predicting on-going hemorrhage and transfusion requirement after severe trauma: a validation of six scoring systems and algorithms on the TraumaRegister DGU. Crit Care 2012; 16 (04) R129
  • 29 Schlimp CJ, Voelckel W, Inaba K, Maegele M, Ponschab M, Schöchl H. Estimation of plasma fibrinogen levels based on hemoglobin, base excess and Injury Severity Score upon emergency room admission. Crit Care 2013; 17 (04) R137
  • 30 Leibner E, Andreae M, Galvagno SM, Scalea T. Damage control resuscitation. Clin Exp Emerg Med 2020; 7 (01) 5-13
  • 31 Wang HE, Callaway CW, Peitzman AB, Tisherman SA. Admission hypothermia and outcome after major trauma. Crit Care Med 2005; 33 (06) 1296-1301
  • 32 Meng ZH, Wolberg AS, Monroe III DM, Hoffman M. The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J Trauma 2003; 55 (05) 886-891
  • 33 Kozek-Langenecker SA, Ahmed AB, Afshari A. et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology: First update 2016. Eur J Anaesthesiol 2017; 34 (06) 332-395
  • 34 Shakur H, Roberts I, Bautista R. et al; CRASH-2 Trial Collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010; 376 (9734): 23-32
  • 35 Morrison JJ, Ross JD, Dubose JJ, Jansen JO, Midwinter MJ, Rasmussen TE. Association of cryoprecipitate and tranexamic acid with improved survival following wartime injury: findings from the MATTERs II Study. JAMA Surg 2013; 148 (03) 218-225
  • 36 Raza I, Davenport R, Rourke C. et al. The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost 2013; 11 (02) 307-314
  • 37 Floccard B, Rugeri L, Faure A. et al. Early coagulopathy in trauma patients: an on-scene and hospital admission study. Injury 2012; 43 (01) 26-32
  • 38 Chambers LA, Chow SJ, Shaffer LET. Frequency and characteristics of coagulopathy in trauma patients treated with a low- or high-plasma-content massive transfusion protocol. Am J Clin Pathol 2011; 136 (03) 364-370
  • 39 Schlimp CJ, Schöchl H. The role of fibrinogen in trauma-induced coagulopathy. Hamostaseologie 2014; 34 (01) 29-39
  • 40 Hagemo JS, Christiaans SC, Stanworth SJ. et al. Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: an international prospective validation study. Crit Care 2015; 19: 97
  • 41 McQuilten ZK, Wood EM, Bailey M, Cameron PA, Cooper DJ. Fibrinogen is an independent predictor of mortality in major trauma patients: a five-year statewide cohort study. Injury 2017; 48 (05) 1074-1081
  • 42 Yamamoto K, Yamaguchi A, Sawano M. et al. Pre-emptive administration of fibrinogen concentrate contributes to improved prognosis in patients with severe trauma. Trauma Surg Acute Care Open 2016; 1 (01) e000037
  • 43 Hamada SR, Pirracchio R, Beauchesne J. et al. Effect of fibrinogen concentrate administration on early mortality in traumatic hemorrhagic shock: a propensity score analysis. J Trauma Acute Care Surg 2020; 88 (05) 661-670
  • 44 Holcomb JB, del Junco DJ, Fox EE. et al; PROMMTT Study Group. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg 2013; 148 (02) 127-136
  • 45 Treml AB, Gorlin JB, Dutton RP, Scavone BM. Massive transfusion protocols: a survey of academic medical centers in the United States. Anesth Analg 2017; 124 (01) 277-281
  • 46 Ponschab M, Schöchl H, Gabriel C. et al. Haemostatic profile of reconstituted blood in a proposed 1:1:1 ratio of packed red blood cells, platelet concentrate and four different plasma preparations. Anaesthesia 2015; 70 (05) 528-536
  • 47 Gratz J, Ponschab M, Iapichino GE. et al. Comparison of fresh frozen plasma vs. coagulation factor concentrates for reconstitution of blood: an in vitro experimental study. Eur J Anaesthesiol 2020; (E-Pub ahead of print) DOI: 10.1097/EJA.0000000000001202.
  • 48 Rourke C, Curry N, Khan S. et al. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost 2012; 10 (07) 1342-1351
  • 49 Zielinski MD, Johnson PM, Jenkins D, Goussous N, Stubbs JR. Emergency use of prethawed Group A plasma in trauma patients. J Trauma Acute Care Surg 2013; 74 (01) 69-74 , discussion 74–75
  • 50 Johnson JL, Moore EE, Kashuk JL. et al. Effect of blood products transfusion on the development of postinjury multiple organ failure. Arch Surg 2010; 145 (10) 973-977
  • 51 Levy JH, Grottke O, Fries D, Kozek-Langenecker S. Therapeutic plasma transfusion in bleeding patients: a systematic review. Anesth Analg 2017; 124 (04) 1268-1276
  • 52 Cardenas JC, Rahbar E, Pommerening MJ. et al. Measuring thrombin generation as a tool for predicting hemostatic potential and transfusion requirements following trauma. J Trauma Acute Care Surg 2014; 77 (06) 839-845
  • 53 Dunbar NM, Chandler WL. Thrombin generation in trauma patients. Transfusion 2009; 49 (12) 2652-2660
  • 54 Park MS, Spears GM, Bailey KR. et al. Thrombin generation profiles as predictors of symptomatic venous thromboembolism after trauma: a prospective cohort study. J Trauma Acute Care Surg 2017; 83 (03) 381-387
  • 55 Chapman SA, Irwin ED, Beal AL, Kulinski NM, Hutson KE, Thorson MAL. Prothrombin complex concentrate versus standard therapies for INR reversal in trauma patients receiving warfarin. Ann Pharmacother 2011; 45 (7–8): 869-875
  • 56 Hanke AA, Joch C, Görlinger K. Long-term safety and efficacy of a pasteurized nanofiltrated prothrombin complex concentrate (Beriplex P/N): a pharmacovigilance study. Br J Anaesth 2013; 110 (05) 764-772
  • 57 Grottke O, Honickel M, Braunschweig T, Reichel A, Schöchl H, Rossaint R. Prothrombin complex concentrate-induced disseminated intravascular coagulation can be prevented by coadministering antithrombin in a porcine trauma model. Anesthesiology 2019; 131 (03) 543-554
  • 58 van den Brink DP, Wirtz MR, Neto AS. et al. Effectiveness of prothrombin complex concentrate for the treatment of bleeding: a systematic review and meta-analysis. J Thromb Haemost 2020; (E-Pub ahead of print) DOI: 10.1111/jth.14991.
  • 59 Zeeshan M, Hamidi M, Feinstein AJ. et al. Four-factor prothrombin complex concentrate is associated with improved survival in trauma-related hemorrhage: a nationwide propensity-matched analysis. J Trauma Acute Care Surg 2019; 87 (02) 274-281
  • 60 Schöchl H, Voelckel W, Maegele M, Kirchmair L, Schlimp CJ. Endogenous thrombin potential following hemostatic therapy with 4-factor prothrombin complex concentrate: a 7-day observational study of trauma patients. Crit Care 2014; 18 (04) R147
  • 61 Schöchl H, Nienaber U, Maegele M. et al. Transfusion in trauma: thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care 2011; 15 (02) R83
  • 62 von Rappard S, Hinnen C, Lussmann R, Rechsteiner M, Korte W. Factor XIII deficiency and thrombocytopenia are frequent modulators of postoperative clot firmness in a surgical intensive care unit. Transfus Med Hemother 2017; 44 (02) 85-92
  • 63 Theusinger OM, Baulig W, Seifert B, Müller SM, Mariotti S, Spahn DR. Changes in coagulation in standard laboratory tests and ROTEM in trauma patients between on-scene and arrival in the emergency department. Anesth Analg 2015; 120 (03) 627-635
  • 64 Gödje O, Gallmeier U, Schelian M, Grünewald M, Mair H. Coagulation factor XIII reduces postoperative bleeding after coronary surgery with extracorporeal circulation. Thorac Cardiovasc Surg 2006; 54 (01) 26-33
  • 65 Gerlach R, Tölle F, Raabe A, Zimmermann M, Siegemund A, Seifert V. Increased risk for postoperative hemorrhage after intracranial surgery in patients with decreased factor XIII activity: implications of a prospective study. Stroke 2002; 33 (06) 1618-1623
  • 66 Cardenas JC, Zhang X, Fox EE. et al; PROPPR Study Group. Platelet transfusions improve hemostasis and survival in a substudy of the prospective, randomized PROPPR trial. Blood Adv 2018; 2 (14) 1696-1704
  • 67 Brown LM, Call MS, Margaret Knudson M. et al; Trauma Outcomes Group. A normal platelet count may not be enough: the impact of admission platelet count on mortality and transfusion in severely injured trauma patients. J Trauma 2011; 71 (02, Suppl 3): S337-S342
  • 68 Kornblith LZ, Decker A, Conroy AS. et al. It's about time: transfusion effects on postinjury platelet aggregation over time. J Trauma Acute Care Surg 2019; 87: 1042-1051
  • 69 Henriksen HH, Grand AG, Viggers S. et al. Impact of blood products on platelet function in patients with traumatic injuries: a translational study. J Surg Res 2017; 214: 154-161
  • 70 Ponschab M, Schlimp CJ, Zipperle J. et al. Platelet function in reconstituted whole blood variants: an observational study over 5 days of storage time. J Trauma Acute Care Surg 2015; 79 (05) 797-804
  • 71 Hallet J, Lauzier F, Mailloux O. et al. The use of higher platelet: RBC transfusion ratio in the acute phase of trauma resuscitation: a systematic review. Crit Care Med 2013; 41 (12) 2800-2811
  • 72 Geerts WH, Code KI, Jay RM, Chen E, Szalai JP. A prospective study of venous thromboembolism after major trauma. N Engl J Med 1994; 331 (24) 1601-1606
  • 73 Alhazzani W, Lim W, Jaeschke RZ, Murad MH, Cade J, Cook DJ. Heparin thromboprophylaxis in medical-surgical critically ill patients: a systematic review and meta-analysis of randomized trials. Crit Care Med 2013; 41 (09) 2088-2098
  • 74 Wiegele M, Schöchl H, Haushofer A. et al. Diagnostic and therapeutic approach in adult patients with traumatic brain injury receiving oral anticoagulant therapy: an Austrian interdisciplinary consensus statement. Crit Care 2019; 23 (01) 62