Rofo 2021; 193(04): 446-458
DOI: 10.1055/a-1253-8422
Vessels

3T MRI of Peripheral Vascular Malformations: Characteristics and Comparison of Two Fat-Saturated sequences: Short Tau Inversion Recovery Versus Three-Dimensional High-Resolution Volume Interpolated Gradient Recalled Echo

3T-MR-Bildgebung peripherer vaskulärer Malformationen – Charakteristiken und Vergleich von 2 fettgesättigten Sequenzen: Short Tau Inversion Recovery versus 3-dimensionale hochauflösende Volume Interpolated Gradient Recalled Echo Sequenz
Florentine Höhn
1   Clinic and Policlinic of Nuclear Medicine, University Hospital Würzburg, Germany
,
Simone Hammer
2   Department of Radiology, University Hospital Regensburg, Germany
,
Claudia Fellner
2   Department of Radiology, University Hospital Regensburg, Germany
,
Florian Zeman
3   Centre for Clinical Studies, University Hospital Regensburg, Germany
,
Wibke Uller
2   Department of Radiology, University Hospital Regensburg, Germany
,
Richard Brill
4   University Clinic and Policlinic of Radiology, Martin Luther University Hospital Halle-Wittenberg, Halle (Saale), Germany
,
Moritz Guntau
4   University Clinic and Policlinic of Radiology, Martin Luther University Hospital Halle-Wittenberg, Halle (Saale), Germany
,
Moritz Wildgruber
5   Department of Clinical Radiology, University Hospital Münster, Germany
,
Walter A. Wohlgemuth
4   University Clinic and Policlinic of Radiology, Martin Luther University Hospital Halle-Wittenberg, Halle (Saale), Germany
› Author Affiliations

Abstract

Purpose To assess morphological and hemodynamic characteristics of peripheral vascular malformations on 3 T magnetic resonance imaging (MRI) including qualitative comparison of two fat-saturated sequences: short tau inversion recovery (STIR) and three-dimensional high-resolution volume interpolated gradient recalled echo (GRE).

Materials and Methods During 9 months, 100 patients with suspected or known vascular malformations were prospectively assessed on a 3 T scanner using T2-weighted STIR and turbo spin echo (TSE), T1-weighted TSE, time-resolved contrast-enhanced magnetic resonance angiography (MRA) with interleaved stochastic trajectories (TWIST) and T1-weighted volume interpolated breath-hold examination (VIBE) after contrast enhancement. The analysis included signal behavior and morphologic and hemodynamic characteristics. Additionally, the image quality of the fat-saturated sequences was evaluated by 2 radiologists.

Results 86 patients (14 dropouts; 57 female, 29 male; mean age 26.8 years, age range 1–56) were analyzed. 22 had high-flow and 64 low-flow malformations, including 14 with a lymphatic component. In 21 of 22 patients with high-flow malformations, typical characteristics (flow voids, hyperdynamic arteriovenous fistula, dilated main/feeder-arteries and draining veins) were documented. Patients with low-flow malformations had phleboliths in 35 cases, fluid-fluid levels in 47 and dilated draining veins in 23. Lymphatic malformations showed peripheral contrast enhancement of cyst walls in the volume interpolated GRE. The comparison of fat-saturated sequences showed significantly better results of the volume interpolated GRE in all categories except the presence of artifacts which were significantly reduced in the STIR (p < 0.05).

Conclusion 3 T MRI with MRA provides detailed morphological and hemodynamic information of different types of peripheral vascular malformations. Contrast-enhanced high-resolution volume interpolated GRE proved superior to STIR in differentiating morphologic features and to be diagnostic in the differentiation of lymphatic parts and joint involvement.

Key Points:

  • 3 T MRI with MRA offers detailed information about vascular malformations.

  • Fat-saturated MRI provides especially information about morphological characteristics, extent and tissue involvement.

  • Volume interpolated GRE proved superior in almost all categories compared to STIR.

  • Volume interpolated GRE showed more artifacts.

  • Volume interpolated GRE additionally allows differentiation of lymphatic parts and evaluation of joint involvement.

Citation Format

  • Höhn F, Hammer S, Fellner C et al. 3T MRI of Peripheral Vascular Malformations: Characteristics and Comparison of Two Fat-Saturated sequences: Short Tau Inversion Recovery Versus Three-Dimensional High-Resolution Volume Interpolated Gradient Recalled Echo. Fortschr Röntgenstr 2021; 193: 446 – 458

Zusammenfassung

Ziel Studienziel war es, morphologische und hämodynamische Charakteristiken peripherer vaskulärer Malformationen mittels 3T-Magnetresonanz-Bildgebung prospektiv zu untersuchen und 2 fettgesättigte Sequenzen qualitativ zu vergleichen: die Short Tau Inversion Recovery (STIR) und die 3-dimensionale hochauflösende Volume Interpolated Gradient Recalled Echo (GRE) Sequenz.

Material und Methoden In 9 Monaten wurden 100 Patienten mit V. a. oder mit gesicherter vaskulärer Malformation prospektiv unter Verwendung eines 3T-Scanners mittels einer T2-gewichteten STIR und Turbo-Spin-Echo (TSE), T1-gewichteten TSE und T1-gewichteten, kontrastmittelunterstützten Volume Interpolated Breath-hold Examination (VIBE) untersucht. Zudem wurde eine zeitaufgelöste Magnetresonanzangiografie mit interleaved stochastic trajectories (TWIST-MRA) durchgeführt. Analysiert wurden Signalverhalten, morphologische und hämodynamische Charakteristiken sowie die Bildqualität der 2 fettgesättigten Sequenzen im Vergleich.

Ergebnisse Bei 14 Drop-outs wurden die Daten von 86 Patienten (57 Frauen, 29 Männer; Durchschnittsalter 26,8 Jahre; Altersgruppe 1–56 Jahre) analysiert. Es lagen 22 High-flow- und 64 Low-flow-Malformationen (davon 14 mit lymphatischem Anteil) vor. In 21 der 22 High-flow-Malformationen wurden typische Charakteristiken detektiert (flow-voids, hyperdynamische arteriovenöse Fisteln, dilatierte Haupt-/zuführende Arterien und dilatierte ableitende Venen). Bei den Low-flow-Malformationen kamen in 35 Fällen Phlebolithen, in 47 Flüssigkeits-Flüssigkeitsspiegel und in 23 dilatierte Venen zur Darstellung. Bei den lymphatischen Malformationen zeigte sich eine wandständige Kontrastmittelaufnahme der Zysten. Der Vergleich der fettgesättigten Sequenzen ergab signifikant bessere Ergebnisse der Volume Interpolated GRE in allen untersuchten Kategorien mit Ausnahme der Artefakte, welche in der STIR signifikant geringer ausfielen (p < 0,05).

Schlussfolgerung 3T-MR-Bildgebung mit MRA liefert detaillierte morphologische und hämodynamische Informationen zu allen peripheren Malformationstypen. Von den fettgesättigten Sequenzen erwies sich die kontrastmittelgestützte hochauflösende Volume Interpolated GRE bezüglich der Differenzierung morphologischer Charakteristiken der STIR überlegen und diagnostisch aussagekräftig zur Differenzierung lymphatischer Anteile und Gelenkbeteiligungen.

Kernaussagen:

  • 3T-MR-Bildgebung mit MRA liefert detaillierte Informationen über alle Malformationstypen.

  • Fettgesättigte MR-Sequenzen bilden insbesondere morphologische Charakteristiken, Ausdehnung und Umgebungsinfiltration exakt ab.

  • Die Volume Interpolated GRE erwies sich in nahezu allen Kriterien der STIR überlegen.

  • Einzige Einschränkung war die höhere Artefaktanfälligkeit der Volume Interpolated GRE.

  • Die Volume Interpolated GRE ermöglicht zusätzlich die Differenzierung von lymphatischen Malformationsanteilen sowie Gelenkbeteiligungen.



Publication History

Received: 17 November 2019

Accepted: 26 August 2020

Article published online:
01 October 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in infants and children: A classification based on endothelial characteristics. Plast Reconstr Surg 1982; 69: 412-422 . doi:10.1097/00006534-198203000-00002
  • 2 Enjolras O, Mulliken JB. Vascular tumors and vascular malformations (new issues). Adv Dermatol 1997; 13: 375-423
  • 3 Enjolras O, Wassef M, Chapot R. Color atlas of vascular tumors and vascular malformations. Cambridge University Press; 2007 1st ed.. 1-12 DOI: https://doi.org/10.1017/CBO9780511722073
  • 4 Enjolras O. Classification and management of the various superficial vascular anomalies: hemangiomas and vascular malformations. J Dermatol 1997; 24: 701-710 . doi:10.1111/j.1346-8138.1997.tb02522.x
  • 5 Garzon MC, Huang JT, Enjolras O. et al Vascular malformations Part I. J Am Acad Dermatol 2007; 56: 353-370 . doi:10.1016/j.jaad.2006.05.069
  • 6 Wohlgemuth WA, Wölfle K, Schuster T. et al Angeborene Gefäßmalformationen: Klassifikation, Symptome, Diagnostik und Prognose. Zentralbl Chir 2012; 137: 440-445 . doi:10.1055/s-0030-1262546
  • 7 Behr GG, Johnson C. Vascular anomalies: Hemangiomas and beyond – Part 1, fast-flow lesions. Am J Roentgenol 2013; 200: 414-422 . doi:10.2214/Am J Roentgenol.11.7852
  • 8 Behr GG, Johnson CM. Vascular anomalies: Hemangiomas and beyond – Part 2, slow-flow lesions. Am J Roentgenol 2013; 200: 423-436 . doi:10.2214/ajr.11.7853
  • 9 Wassef M, Blei F, Adams D. et al Vascular anomalies classification: Recommendations from the International Society for the Study of Vascular Anomalies. Pediatrics 2015; 136: e203-e214 . doi:10.1542/peds.2014-3673
  • 10 Lee BB, Kim DI, Huh S. et al New Experiences with absolute ethanol sclerotherapy in the management of a complex form of congenital venous malformation. J Vasc Surg 2001; 33: 764-772 . doi:10.1067/mva.2001.112209
  • 11 Müller-Wille R, Wildgruber M, Sadick M. et al Vascular anomalies (Part II): Interventional therapy of peripheral vascular malformations. Fortschr Röntgenstr 2018; (EFirst) DOI: 10.1055/s-0044-101266.
  • 12 Ali S, Mitchell SE. Outcomes of venous malformation sclerotherapy: A review of study methodology and long-term results. Semin Intervent Radiol 2017; 34: 288-293 . doi:10.1055/s-0037-1604300
  • 13 Qiu Y, Chen H, Lin X. et al Outcomes and complications of sclerotherapy for venous malformations. Vasc Endovascular Surg 2013; 47: 454-461 . doi:10.1177/1538574413492390
  • 14 Do YS, Park KB, Cho SK. How do we treat arteriovenous malformations (tips and tricks)?. Tech Vasc Interv Radiol 2007; 10: 291-298 . doi:10.1053/j.tvir.2008.03.008
  • 15 Yakes WF, Rossi P, Odink H. How do I do it? Arteriovenous malformation management. Cardiovasc Intervent Radiol 1996; 19: 65-71 . doi:10.1007/bf02563895
  • 16 Dubois J, Alison M. Vascular anomalies: what a radiologist needs to know. Pediatr Radiol 2010; 40: 895 . doi:10.1007/s00247-010-1621-y
  • 17 Majewska NK, Stajgis P, Wykrętowicz M. et al Peripheral vascular malformations – modern imaging. Pol J Radiol 2018; 83: 253-259 . doi:10.5114/pjr.2018.75724
  • 18 Herborn CU, Goyen M, Lauenstein TC. et al Comprehensive time-resolved MRI of peripheral vascular malformations. Am J Roentgenol 2003; 181: 729-735 . doi:10.2214/ajr.181.3.1810729
  • 19 Kociemba A, Karmelita-Katulska K, Stajgis M. et al Distinguishing high-flow from low-flow vascular malformations using maximum intensity projection images in dynamic magnetic resonance angiography – comparison to other MR-based techniques. Acta Radiol 2016; 57: 565-571 . doi:10.1177/0284185115615005
  • 20 Donnelly LF, Adams DM, Bisset 3rd GS. Vascular malformations and hemangiomas: a practical approach in a multidisciplinary clinic. Am J Roentgenol 2000; 174: 597-608 . doi:10.2214/ajr.174.3.1740597
  • 21 Hyodoh H, Hori M, Akiba H. et al Peripheral vascular malformations: Imaging, treatment approaches, and therapeutic issues. Radiographics 2005; 25: 159-172 . doi:10.1148/rg.25si055509
  • 22 Moukaddam H, Pollak J, Haims AH. MRI characteristics and classification of peripheral vascular malformations and tumors. Skeletal Radiol 2009; 38: 535-547 . doi:10.1007/s00256-008-0609-2
  • 23 Kim JS, Chandler A, Borzykowski R. et al Maximizing time-resolved MRA for differentiation of hemangiomas, vascular malformations and vascularized tumors. Pediatr Radiol 2012; 42: 775-784 . doi:10.1007/s00247-012-2359-5
  • 24 Mostardi PM, Young PM, McKusick MA. et al High temporal and spatial resolution imaging of peripheral vascular malformations. J Magn Reson Imaging 2012; 36: 933-942 . doi:10.1002/jmri.23714
  • 25 Rak KM, Yakes WF, Ray RL. et al MR imaging of symptomatic peripheral vascular malformations. Am J Roentgenol 1992; 159: 107-112 . doi:10.2214/ajr.159.1.1609682
  • 26 Van Rijswijk CSP, Van der Linden E, Van der Woude HJ. et al Value of dynamic contrast-enhanced MR imaging in diagnosing and classifying peripheral vascular malformations. Am J Roentgenol 2002; 178: 1181-1187 . doi:10.2214/ajr.178.5.1781181
  • 27 Kramer U, Ernemann U, Mangold S. et al Diagnostic value of high spatial and temporal resolution time-resolved MR angiography in the workup of peripheral high-flow vascular malformations at 1.5 Tesla. Int J Cardiovasc Imaging 2012; 28: 823-834 . doi:10.1007/s10554-011-9887-1
  • 28 Heidemann RM. Magnetresonanztomografie bei hohen Feldstärken: Ist stärker besser? Max-Planck-Institut für Kognitions- und Neurowissenschaften Leipzig, Jahrbuch 2007/2008. Im Internet (Stand: 23.10.2019): https://www.cbs.mpg.de/3177/research_report_384338?c=7551
  • 29 Ohgiya Y, Hashimoto T, Gokan T. et al Dynamic MRI for distinguishing high-flow from low-flow peripheral vascular malformations. Am J Roentgenol 2005; 185: 1131-1137 . doi:10.2214/ajr.04.1508
  • 30 Hammer S, Uller W, Manger F. et al Time-resolved magnetic resonance angiography (MRA) at 3.0 Tesla for evaluation of hemodynamic characteristics of vascular malformations: description of distinct subgroups. Eur Radiol 2017; 27: 296-305 . doi:10.1007/s00330-016-4270-1