Z Orthop Unfall 2021; 159(04): 459-475
DOI: 10.1055/a-1302-8636
CME-Fortbildung

Operative Knorpeltherapie aktuell

Update on the Operative Treatment of Cartilage Defects
Maximilian Hinz
,
Andreas B. Imhoff
,
Andreas Schmitt

Zusammenfassung

Fokale Knorpelschäden gehen mit Schwellung, Funktionsverlust der betroffenen Gelenke und starker Schmerzsymptomatik einher. Zudem werden sie mit der Entstehung einer späteren Arthrose in Verbindung gebracht. Oftmals betroffen sind hierbei junge, sportlich aktive Patienten, die einen hohen funktionellen Anspruch haben. Die Behandlungsmöglichkeiten des Orthopäden in Bezug auf knorpelregenerative Therapiemöglichkeiten an Knie, Hüfte, Schulter, Ellenbogen und Sprunggelenk sind mannigfaltig.

Abstract

Focal cartilage defects lead to swelling, significant pain and loss of function of the affected joint. Additionally, they are linked to early onset of osteoarthritis. Often young and active patients are especially susceptible due to the high stress placed on their joints. A vast amount of treatment options is available to orthopaedic surgeons to cure cartilage defects of the knee, hip, shoulder, elbow and ankle joints. This article serves to give an overview of these available treatment options and to explain the expected outcomes.

Lernziele

Nach der Lektüre dieses Beitrages können Sie …

  • festlegen, welche Knorpelschäden operativ behandelt werden sollten,

  • bestimmen, welche Knorpelschäden welcher Therapie zugeführt werden sollten,

  • Unterschiede in Bezug auf die Knorpeltherapie an den verschiedenen Gelenken berücksichtigen,

  • das richtige Therapieverfahren für Ihren Patienten wählen,

  • die Relevanz von Begleitpathologien einschätzen und

  • Ihre Patienten eingehend in Bezug auf das zu erwartende funktionelle Ergebnis beraten.

Kernaussagen
  1. Fokale Knorpelschäden können zu Schwellungen, erheblichen Schmerzen und einem Funktionsverlust des betroffenen Gelenkes fühlen. Bleiben fokale, symptomatische Knorpelschäden unbehandelt, kann die Progression zu einer Arthrose beschleunigt und die Lebensqualität deutlich gemindert werden.

  2. Fokale Knorpelschäden sind von einer Arthrose abzugrenzen. Die Arthrose betrifft – anders als der fokale Knorpelschaden – außerdem weitere Strukturen wie die Synovia und Bänder und ist durch eine katabole, inflammatorische Stoffwechsellage gekennzeichnet.

  3. Mittel der Wahl zur Beurteilung eines Knorpeldefekts ist die MRT-Untersuchung des betroffenen Gelenkes. Ist außerdem der subchondrale Knochen betroffen, sollte zusätzlich eine CT-Untersuchung erfolgen.

  4. Dem Orthopäden steht eine Vielzahl an Therapieoptionen zur Verfügung, um Knorpeldefekte im Knie-, Hüft-, Schulter-, Ellenbogen- und Sprunggelenk zu behandeln. Vor Beginn einer Knorpeltherapie sollten jedoch – unabhängig vom zu behandelnden Gelenk – Begleitpathologien ausgeschlossen oder mitbehandelt werden.

  5. Die Mikrofrakturierung stellt weiterhin eine gute Möglichkeit dar, um kleine chondrale Läsionen zu behandeln.

  6. Bei größeren Läsionen ist meist eine autologe Chondrozytentransplantation (ACT) indiziert, welche zweizeitig erfolgt. Im ersten Eingriff werden Knorpelzellen aus einem unbelasteten Gelenkbereich entnommen, dann angezüchtet, und in einem zweiten Eingriff in den Defekt reimplantiert.

  7. Bei osteochondralen Läsionen sollte der geschädigte subchondrale Knochen mitbehandelt werden. Für kleine Läsionen stellt die osteochondrale Autograft-Transplantation (OAT), bei der ein Knorpel-Knochen-Zylinder – meist aus einer unbelasteten Zone des Kniegelenks – entnommen und in das Defektbett implantiert wird, eine gute Therapieoption dar.



Publication History

Article published online:
11 May 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Alford JW, Cole BJ. Cartilage restoration, part 1: basic science, historical perspective, patient evaluation, and treatment options. Am J Sports Med 2005; 33: 295-306
  • 2 Gomoll AH, Minas T. The quality of healing: articular cartilage. Wound Repair Regenerat 2014; 22: 30-38
  • 3 Buckwalter JA. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 1998; 28: 192-202
  • 4 Gelber AC, Hochberg MC, Mead LA. et al. Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann Intern Med 2000; 133: 321-328
  • 5 Kraus VB, Blanco FJ, Englund M. et al. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis Cartilage 2015; 23: 1233-1241
  • 6 Orr JD, Sabesan V, Major N. et al. Painful bone marrow edema syndrome of the foot and ankle. Foot Ankle Int 2010; 31: 949-953
  • 7 Jungmann PM. Präoperative Patientenevaluation. Arthroskopie 2019; 32: 173-181
  • 8 Niemeyer P, Faber S. Standards und aktuelle Trends bei der Behandlung von Knorpelschäden am Kniegelenk. Knie J 2020; 2: 35-48
  • 9 Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 2003; 85: 58-69
  • 10 Filardo G, Andriolo L, Sessa A. et al. Age is not a contraindication for cartilage surgery: a critical analysis of standardized outcomes at long-term follow-up. Am J Sports Med 2017; 45: 1822-1828
  • 11 Heir S, Nerhus TK, Røtterud JH. et al. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am J Sports Med 2010; 38: 231-237
  • 12 Cicuttini F, Ding C, Wluka A. et al. Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheum 2005; 52: 2033-2039
  • 13 DiBartola AC, Everhart JS, Magnussen RA. et al. Correlation between histological outcome and surgical cartilage repair technique in the knee: a meta-analysis. Knee 2016; 23: 344-349
  • 14 Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 1982; 64: 460-466
  • 15 Frisbie D, Trotter G, Powers B. et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg 1999; 28: 242-255
  • 16 Erggelet C, Vavken P. Microfracture for the treatment of cartilage defects in the knee joint–A golden standard?. J Clin Orthop Trauma 2016; 7: 145-152
  • 17 Lee YHD, Suzer F, Thermann H. Autologous matrix-induced chondrogenesis in the knee: a review. Cartilage 2014; 5: 145-153
  • 18 Gill TJ, Macgillivray JD. The technique of microfracture for the treatment of articular cartilage defects in the knee. Op Tech Orthop 2001; 11: 105-107
  • 19 Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc 2014; 22: 1986-1996
  • 20 Saris DB, Vanlauwe J, Victor J. et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 2009; 36: 235-246
  • 21 Zedde P, Cudoni S, Giachetti G. et al. Subchondral bone remodeling: comparing nanofracture with microfracture. An ovine in vivo study. Joints 2016; 4: 87
  • 22 Pestka JM, Bode G, Salzmann G. et al. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med 2012; 40: 325-331
  • 23 Brittberg M, Lindahl A, Nilsson A. et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889-895
  • 24 Fickert S, Thier S. Knorpeltherapie: Wie ist die Evidenz?. Arthroskopie 2018; 31: 303-308
  • 25 Niemeyer P, Porichis S, Steinwachs M. et al. Long-term outcomes after first-generation autologous chondrocyte implantation for cartilage defects of the knee. Am J Sports Med 2014; 42: 150-157
  • 26 Niethammer TR, Altmann D, Holzgruber M. et al. Third generation autologous chondrocyte implantation is a good treatment option for athletic persons. Knee Surg Sports Traumatol Arthrosc 2020; DOI: 10.1007/s00167-020-06148-5.
  • 27 Patil S, Tapasvi SR. Osteochondral autografts. Curr Rev Musculoskelet Med 2015; 8: 423-428
  • 28 Gudas R, Kalesinskas RJ, Kimtys V. et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 2005; 21: 1066-1075
  • 29 Hangody L, Dobos J, Baló E. et al. Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med 2010; 38: 1125-1133
  • 30 Solheim E, Hegna J, Øyen J. et al. Results at 10 to 14 years after osteochondral autografting (mosaicplasty) in articular cartilage defects in the knee. Knee 2013; 20: 287-290
  • 31 Zellner J, Grechenig S, Pfeifer CG. et al. Clinical and radiological regeneration of large and deep osteochondral defects of the knee by bone augmentation combined with matrix-guided autologous chondrocyte transplantation. Am J Sports Med 2017; 45: 3069-3080
  • 32 Lau BC, Conway D, Mulvihill J. et al. Biomechanical consequences of meniscal tear, partial meniscectomy, and meniscal repair in the knee. JBJS Rev 2018; 6: e3
  • 33 Musahl V, Citak M, OʼLoughlin PF. et al. The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 2010; 38: 1591-1597
  • 34 Stein T, Mehling AP, Welsch F. et al. Long-term outcome after arthroscopic meniscal repair versus arthroscopic partial meniscectomy for traumatic meniscal tears. Am J Sports Med 2010; 38: 1542-1548
  • 35 Mina C, Garrett jr. WE, Pietrobon R. et al. High tibial osteotomy for unloading osteochondral defects in the medial compartment of the knee. Am J Sports Med 2008; 36: 949-955
  • 36 Bode G, Schmal H, Pestka JM. et al. A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5°. Arch Orthop Trauma Surg 2013; 133: 43-49
  • 37 Bull A, Earnshaw P, Smith A. et al. Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 2002; 84: 1075-1081
  • 38 Cavaignac E, Carpentier K, Pailhé R. et al. The role of the deep medial collateral ligament in controlling rotational stability of the knee. Knee Surg Sports Traumatol Arthrosc 2015; 23: 3101-3107
  • 39 Bollier M, Smith PA. Anterior cruciate ligament and medial collateral ligament injuries. J Knee Surg 2014; 27: 359-368
  • 40 Johnson VL, Guermazi A, Roemer FW. et al. Comparison in knee osteoarthritis joint damage patterns among individuals with an intact, complete and partial anterior cruciate ligament rupture. Int J Rheum Dis 2017; 20: 1361-1371
  • 41 Allen CR, Kaplan LD, Fluhme DJ. et al. Posterior cruciate ligament injuries. Curr Opin Rheumatol 2002; 14: 142-149
  • 42 McAllister DR, Petrigliano FA. Diagnosis and treatment of posterior cruciate ligament injuries. Curr Sports Med Rep 2007; 6: 293-299
  • 43 Salonen EE, Magga T, Sillanpää PJ. et al. Traumatic patellar dislocation and cartilage injury: a follow-up study of long-term cartilage deterioration. Am J Sports Med 2017; 45: 1376-1382
  • 44 Vollnberg B, Koehlitz T, Jung T. et al. Prevalence of cartilage lesions and early osteoarthritis in patients with patellar dislocation. Eur Radiol 2012; 22: 2347-2356
  • 45 Nomura E, Horiuchi Y, Kihara M. Medial patellofemoral ligament restraint in lateral patellar translation and reconstruction. Knee 2000; 7: 121-127
  • 46 Amis AA. Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthrosc Rev 2007; 15: 48-56
  • 47 Ward SR, Terk MR, Powers CM. Patella alta: association with patellofemoral alignment and changes in contact area during weight-bearing. J Bone Joint Surg Am 2007; 89: 1749-1755
  • 48 Banke IJ, Kohn LM, Meidinger G. et al. Combined trochleoplasty and MPFL reconstruction for treatment of chronic patellofemoral instability: a prospective minimum 2-year follow-up study. Knee Surg Sports Traumatol Arthrosc 2014; 22: 2591-2598
  • 49 Schoettle PB, Zanetti M, Seifert B. et al. The tibial tuberosity–trochlear groove distance; a comparative study between CT and MRI scanning. Knee 2006; 13: 26-31
  • 50 Frings J, Krause M, Akoto R. et al. Combined distal femoral osteotomy (DFO) in genu valgum leads to reliable patellar stabilization and an improvement in knee function. Knee Surg Sports Traumatol Arthrosc 2018; 26: 3572-3581
  • 51 Liska F, von Deimling C, Otto A. et al. Distal femoral torsional osteotomy increases the contact pressure of the medial patellofemoral joint in biomechanical analysis. Knee Surg Sports Traumatol Arthrosc 2019; 27: 2328-2333
  • 52 Slotkin S, Thome A, Ricketts C. et al. Anterior knee pain in children and adolescents: overview and management. J Knee Surg 2018; 31: 392-398
  • 53 Zarkadis NJ, Kusnezov NA, Garcia EJ. et al. Return to preoperative function after autologous cartilage implantation of the knee in active military servicemembers. Orthop J Sports Med 2017; 5: 2325967117706057
  • 54 MacDonald AE, Bedi A, Horner NS. et al. Indications and outcomes for microfracture as an adjunct to hip arthroscopy for treatment of chondral defects in patients with femoroacetabular impingement: a systematic review. Arthroscopy 2016; 32: 190-200 e192
  • 55 Karthikeyan S, Roberts S, Griffin D. Microfracture for acetabular chondral defects in patients with femoroacetabular impingement: results at second-look arthroscopic surgery. Am J Sports Med 2012; 40: 2725-2730
  • 56 Hevesi M, Bernard C, Hartigan DE. et al. Is microfracture necessary? Acetabular chondrolabral debridement/abrasion demonstrates similar outcomes and survival to microfracture in hip arthroscopy: a multicenter analysis. Am J Sports Med 2019; 47: 1670-1678
  • 57 Thier S, Weiss C, Fickert S. Arthroscopic autologous chondrocyte implantation in the hip for the treatment of full-thickness cartilage defects: A case series of 29 patients and review of the literature. SICOT J 2017; 3: 72
  • 58 Fontana A, Bistolfi A, Crova M. et al. Arthroscopic treatment of hip chondral defects: autologous chondrocyte transplantation versus simple debridement – a pilot study. Arthroscopy 2012; 28: 322-329
  • 59 OʼConnor M, Minkara AA, Westermann RW. et al. Outcomes of joint preservation procedures for cartilage injuries in the hip: A systematic review and meta-analysis. Orthop J Sports Med 2018; 6: 2325967118776944
  • 60 Green CJ, Beck A, Wood D. et al. The biology and clinical evidence of microfracture in hip preservation surgery. J Hip Preservat Surg 2016; 3: 108-123
  • 61 Schilders E, Dimitrakopoulou A, Bismil Q. et al. Arthroscopic treatment of labral tears in femoroacetabular impingement: a comparative study of refixation and resection with a minimum two-year follow-up. J Bone Joint Surg Br 2011; 93: 1027-1032
  • 62 Greaves LL, Gilbart MK, Yung AC. et al. Effect of acetabular labral tears, repair and resection on hip cartilage strain: a 7T MR study. J Biomech 2010; 43: 858-863
  • 63 Ganz R, Parvizi J, Beck M. et al. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 2003; 417: 112-120
  • 64 Elser F, Braun S, Dewing CB. et al. Glenohumeral joint preservation: current options for managing articular cartilage lesions in young, active patients. Arthroscopy 2010; 26: 685-696
  • 65 Gartsman GM, Taverna E. The incidence of glenohumeral joint abnormalities associated with full-thickness, reparable rotator cuff tears. Arthroscopy 1997; 13: 450-455
  • 66 Paley KJ, Jobe FW, Pink MM. et al. Arthroscopic findings in the overhand throwing athlete: evidence for posterior internal impingement of the rotator cuff. Arthroscopy 2000; 16: 35-40
  • 67 Guntern DV, Pfirrmann CW, Schmid MR. et al. Articular cartilage lesions of the glenohumeral joint: diagnostic effectiveness of MR arthrography and prevalence in patients with subacromial impingement syndrome. Radiology 2003; 226: 165-170
  • 68 Camp CL, Barlow JD, Krych AJ. Transplantation of a tibial osteochondral allograft to restore a large glenoid osteochondral defect. Orthopedics 2015; 38: e147-e152
  • 69 Park T-S, Kim T-S, Cho J-H. Arthroscopic osteochondral autograft transfer in the treatment of an osteochondral defect of the humeral head: report of one case. J Shoulder Elbow Surg 2006; 15: e31-e36
  • 70 Pham TT, Kany J, Lakhal W. et al. Arthroscopic osteochondral autograft transfer for juvenile osteochondritis dissecans of the humeral head: a case report. JBJS Case Connect 2017; 7: e63
  • 71 Provencher MT, LeClere LE, Ghodadra N. et al. Postsurgical glenohumeral anchor arthropathy treated with a fresh distal tibia allograft to the glenoid and a fresh allograft to the humeral head. J Shoulder Elbow Surg 2010; 19: e6-e11
  • 72 Johnson DL, Warner JJ. Osteochondritis dissecans of the humeral head: treatment with a matched osteochondral allograft. J Shoulder Elbow Surg 1997; 6: 160-163
  • 73 Buchmann S, Salzmann GM, Glanzmann MC. et al. Early clinical and structural results after autologous chondrocyte transplantation at the glenohumeral joint. J Shoulder Elbow Surg 2012; 21: 1213-1221
  • 74 Frank RM, Van Thiel GS, Slabaugh MA. et al. Clinical outcomes after microfracture of the glenohumeral joint. Am J Sports Med 2010; 38: 772-781
  • 75 Millett PJ, Huffard BH, Horan MP. et al. Outcomes of full-thickness articular cartilage injuries of the shoulder treated with microfracture. Arthroscopy 2009; 25: 856-863
  • 76 Mehl J, Beitzel K. Cartilage Defects. In: Imhoff A, Sovoie FH. eds. Shoulder Instability across the Life Span. Berlin: Springer; 2017: 227-235
  • 77 Boehm E, Minkus M, Scheibel M. Autologous chondrocyte implantation for treatment of focal articular cartilage defects of the humeral head. J Shoulder Elbow Surg 2020; 29: 2-11
  • 78 Banke I, Vogt S, Buchmann S. et al. Arthroskopische Möglichkeiten biorekonstruktiver Verfahren bei Knorpelschäden der Schulter. Orthopäde 2011; 40: 85-92
  • 79 Kircher J, Patzer T, Magosch P. et al. Osteochondral autologous transplantation for the treatment of full-thickness cartilage defects of the shoulder: results at nine years. J Bone Joint Surg Br 2009; 91: 499-503
  • 80 Scheibel M, Bartl C, Magosch P. et al. Osteochondral autologous transplantation for the treatment of full-thickness articular cartilage defects of the shoulder. J Bone Joint Surg Br 2004; 86: 991-997
  • 81 Sweet SJ, Takara T, Ho L. et al. Primary partial humeral head resurfacing: outcomes with the HemiCAP implant. Am J Sports Med 2015; 43: 579-587
  • 82 OʼBrien J, Grebenyuk J, Leith J. et al. Frequency of glenoid chondral lesions on MR arthrography in patients with anterior shoulder instability. Eur J Radiol 2012; 81: 3461-3465
  • 83 Wiater BP, Neradilek MB, Polissar NL. et al. Risk factors for chondrolysis of the glenohumeral joint: a study of three hundred and seventy-five shoulder arthroscopic procedures in the practice of an individual community surgeon. J Bone Joint Surg Am 2011; 93: 615-625
  • 84 Weiss JM, Nikizad H, Shea KG. et al. The incidence of surgery in osteochondritis dissecans in children and adolescents. Orthop J Sports Med 2016; 4: 2325967116635515
  • 85 Harada M, Takahara M, Mura N. et al. Risk factors for elbow injuries among young baseball players. J Shoulder Elbow Surg 2010; 19: 502-507
  • 86 Yamamoto Y, Ishibashi Y, Tsuda E. et al. Osteochondral autograft transplantation for osteochondritis dissecans of the elbow in juvenile baseball players: minimum 2-year follow-up. Am J Sports Med 2006; 34: 714-720
  • 87 Azar FM, Andrews JR, Wilk KE. et al. Operative treatment of ulnar collateral ligament injuries of the elbow in athletes. Am J Sports Med 2000; 28: 16-23
  • 88 Pappas AM, Zawacki RM, Sullivan TJ. Biomechanics of baseball pitching: a preliminary report. Am J Sports Med 1985; 13: 216-222
  • 89 Bauer M, Jonsson K, Josefsson PO. et al. Osteochondritis dissecans of the elbow: a long-term follow-up study. Clin Orthop Related Res 1992; 284: 156-160
  • 90 Brownlow HC, OʼConnor-Read LM, Perko M. Arthroscopic treatment of osteochondritis dissecans of the capitellum. Knee Surg Sports Traumatol Arthrosc 2006; 14: 198-202
  • 91 Bexkens R, van den Ende KI, Ogink PT. et al. Clinical outcome after arthroscopic debridement and microfracture for osteochondritis dissecans of the capitellum. Am J Sports Med 2017; 45: 2312-2318
  • 92 Vogt S, Siebenlist S, Hensler D. et al. Osteochondral transplantation in the elbow leads to good clinical and radiologic long-term results: an 8- to 14-year follow-up examination. Am J Sports Med 2011; 39: 2619-2625
  • 93 Spahn G, Lipfert JU, Maurer C. et al. Risk factors for cartilage damage and osteoarthritis of the elbow joint: case-control study and systematic literature review. Arch Orthop Trauma Surg 2017; 137: 557-566
  • 94 McGahan PJ, Pinney SJ. Current concept review: osteochondral lesions of the talus. Foot Ankle Int 2010; 31: 90-101
  • 95 Chew KT, Tay E, Wong YS. Osteochondral lesions of the talus. Annals Acad Med Singapore 2008; 37: 63
  • 96 OʼLoughlin PF, Heyworth BE, Kennedy JG. Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle. Am J Sports Med 2010; 38: 392-404
  • 97 Easley ME, Scranton jr. PE. Osteochondral autologous transfer system. Foot Ankle Clin 2003; 8: 275
  • 98 Park H-W, Lee K-B. Comparison of chondral versus osteochondral lesions of the talus after arthroscopic microfracture. Knee Surg Sports Traumatol Arthrosc 2015; 23: 860-867
  • 99 Yontar NS, Aslan L, Can A. et al. One step treatment of talus osteochondral lesions with microfracture and cell free hyaluronic acid based scaffold combination. Acta Orthop Traumatol Turc 2019; 53: 372-375
  • 100 Yoon HS, Park YJ, Lee M. et al. Osteochondral autologous transplantation is superior to repeat arthroscopy for the treatment of osteochondral lesions of the talus after failed primary arthroscopic treatment. Am J Sports Med 2014; 42: 1896-1903
  • 101 Yoshimura I, Kanazawa K, Takeyama A. et al. Arthroscopic bone marrow stimulation techniques for osteochondral lesions of the talus: prognostic factors for small lesions. Am J Sports Med 2013; 41: 528-534
  • 102 Haleem AM, Ross KA, Smyth NA. et al. Double-plug autologous osteochondral transplantation shows equal functional outcomes compared with single-plug procedures in lesions of the talar dome: a minimum 5-year clinical follow-up. Am J Sports Med 2014; 42: 1888-1895
  • 103 Savage-Elliott I, Ross KA, Smyth NA. et al. Osteochondral lesions of the talus: a current concepts review and evidence-based treatment paradigm. Foot Ankle Spec 2014; 7: 414-422
  • 104 Murawski CD, Duke GL, Deyer TW. et al. Bone marrow aspirate concentrate (BMAC) as a biological adjunct to the surgical treatment of osteochondral lesions of the talus. Techn Foot Ankle Surg 2011; 10: 18-27
  • 105 Kennedy JG, Murawski CD. The treatment of osteochondral lesions of the talus with autologous osteochondral transplantation and bone marrow aspirate concentrate: surgical technique. Cartilage 2011; 2: 327-336
  • 106 Imhoff AB, Paul J, Ottinger B. et al. Osteochondral transplantation of the talus: long-term clinical and magnetic resonance imaging evaluation. Am J Sports Med 2011; 39: 1487-1493
  • 107 Paul J, Sagstetter M, Lämmle L. et al. Sports activity after osteochondral transplantation of the talus. Am J Sports Med 2012; 40: 870-874
  • 108 Valderrabano V, Miska M, Leumann A. et al. Reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med 2013; 41: 519-527
  • 109 Lee J, Hamilton G, Ford L. Associated intra-articular ankle pathologies in patients with chronic lateral ankle instability: arthroscopic findings at the time of lateral ankle reconstruction. Foot Ankle Spec 2011; 4: 284-289
  • 110 Massen FK, Inauen CR, Harder LP. et al. One-step autologous minced cartilage procedure for the treatment of knee joint chondral and osteochondral lesions: a series of 27 patients with 2-year follow-up. Orthop J Sports Med 2019; 7: 2325967119853773
  • 111 Mumme M, Barbero A, Miot S. et al. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet 2016; 388: 1985-1994
  • 112 Kyriakidis T, Iosifidis M, Michalopoulos E. et al. Good mid-term outcomes after adipose-derived culture-expanded mesenchymal stem cells implantation in knee focal cartilage defects. Knee Surg Sports Traumatol Arthrosc 2020; 28: 502-508