Fortschr Neurol Psychiatr 2021; 89(06): 281-288
DOI: 10.1055/a-1375-0761
Übersicht

Störungen der Chemosensorik bei Covid-19: Pathomechanismen und klinische Relevanz

Chemosensory disorders in Covid-19: Pathomechanisms and clinical relevance
Stefan Isenmann
1   Klinik für Neurologie und klinische Neurophysiologie, St. Josef Krankenhaus Moers
,
2   Interdisziplinäres Zentrum für Riechen und Schmecken, Klinik für HNO-Heilkunde, Universitätsklinikum Carl Gustav Carus, TU Dresden
,
Thomas Hummel
2   Interdisziplinäres Zentrum für Riechen und Schmecken, Klinik für HNO-Heilkunde, Universitätsklinikum Carl Gustav Carus, TU Dresden
› Author Affiliations

Zusammenfassung

In dieser Übersichtsarbeit wurden aktuelle Angaben zu Häufigkeit und Relevanz chemosensorischer Störungen bei Covid-19 erfasst, pathophysiologisch zugeordnet und Aussagen zur prognostischen Bedeutung abgeleitet. Die Ergebnisse basieren auf einer umfassenden Literaturrecherche sämtlicher Literatur zu diesem Thema und eigenen Erfahrungen in der Behandlung von Patienten mit Riech- und Schmeckstörungen seit dem Beginn der Pandemie.

Bisherige Studienergebnisse deuten darauf hin, dass klinisch gering betroffene Covid-19-Patienten ohne stationäre Behandlungs- und Beatmungspflicht häufig Störungen der Chemosensorik aufweisen. Insbesondere bei jungen Patienten und Frauen scheinen sie ein Indikator einer günstigen Prognose des Krankheitsverlaufs zu sein. Riechstörungen können früh, isoliert oder als eines von mehreren Symptomen einer Covid-19-Erkrankung auftreten. Ob eine Ageusie eigenständig auftreten kann oder aber im Rahmen der Anosmie mit empfunden wird, ist noch nicht geklärt. In der Pandemie ist das neue Auftreten einer Anosmie ohne Kongestion / Obstruktion/Schnupfen wahrscheinlich Ausdruck einer Infektion mit SARS-CoV-2 und sollte stets zu Quarantäne und Testung auf SARS-CoV-2 Anlass geben. Die Riechstörung bei Covid-19 scheint meist vorübergehend zu sein; ob es regelhaft zu einer vollständigen Restitution kommt, kann noch nicht abschließend beurteilt werden. Die bereits bei anderen postviralen Riechstörungen etablierten Therapieansätze (z. B. Riechtraining) kommen auch hier zum Einsatz.

Abstract

In this review article, current information on the frequency and relevance of chemosensory disorders in Covid-19 was recorded, assigned pathophysiologically and statements on prognostic significance were derived. The results are based on a comprehensive literature search of all literature on this topic and our own experience in the treatment of patients with smell and taste disorders since the beginning of the pandemic.

Current study results indicate that clinically less affected Covid-19 patients without inpatient treatment and who do not require ventilation often have disorders of the chemosensory system. In young patients and women in particular, they seem to be an indicator of a favorable prognosis for the course of the disease. Smell disorders can appear early, as the sole symptom or together with other symptoms of Covid-19 disease. It has not yet been clarified whether ageusia can occur independently or whether it is also felt in the context of anosmia. In the pandemic, the new occurrence of anosmia without congestion / obstruction/runny nose is probably an expression of an infection with SARS-CoV-2 and should always give rise to quarantine and testing for SARS-CoV-2. The smell disorder in Covid-19 mostly seems to be temporary; It is not yet possible to conclusively assess whether there is usually a full restitution. The therapeutic approaches already established for other postviral olfactory disorders (e. g. olfactory training) are also used here.

Zusatzmaterial



Publication History

Received: 13 November 2020

Accepted: 21 January 2021

Article published online:
23 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Stevenson RJ. An initial evaluation of the functions of human olfaction. Chem Senses 2010; 35 (01) : 3-20
  • 2 Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 1991; 65 (01) : 175-187
  • 3 Hüttenbrink KB, Hummel T, Berg D. et al. Riechstörungen: Häufig im Alter und wichtiges Frühsymptom. Dtsch Arztebl Int 2013; 110 (1-2): 1-7
  • 4 Bednár M. (1930). Anosmie und Influenza (Ein rhinologischer Beitrag zur Differentialdiagnose der Erkältungskrankheiten). Medizinische Klinik,. 48. 1787-1789.
  • 5 Schaupp H. Probleme der objektiven Gustometrie. Z Laryng Rhinol 1971; 50: 208-213
  • 6 Konstantinidis I, Haehner A, Frasnelli J. et al. Post-infectious olfactory dysfunction exhibits a seasonal pattern. Rhinology 2006; 44 (02) : 135-139
  • 7 Sugiura M, Aiba T, Mori J. et al. An epidemiological study of postviral olfactory disorder. Acta Otolaryngol Suppl 1998; 538: 191-196
  • 8 Arbour N, Day R, Newcombe J. et al. Neuroinvasion by human respiratory coronaviruses. J Virol 2000; 74 (19) : 8913-8921
  • 9 Li W, Moore MJ, Vasilieva N. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426 (6965): 450-454
  • 10 Netland J, Meyerholz DK, Moore S. et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008; Aug; 82 (15) : 7264-7275
  • 11 Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: report of a case. Acta Neurol Taiwan 2006; 15 (01) : 26-28
  • 12 Sungnak W, Huang N, Bécavin C. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020; 26 (05) : 681-687
  • 13 Matheson NJ, Lehner PJ. How does SARS-CoV-2 cause COVID-19?. Science 2020; 369: 510-511
  • 14 Kirschenbaum D, Imbach LL, Ulrich S. et al. Inflammatory olfactory neuropathy in two patients with COVID-19. Lancet 2020; 396 (10245): 166
  • 15 van Riel D, de Wit E. Next-generation vaccine platforms for COVID-19. Nat Mater 2020; 19 (08) : 810-812
  • 16 Puelles VG, Lütgehetmann M, Lindenmeyer MT. et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med 2020; 383 (06) : 590-592
  • 17 Guan WJ, Ni ZY, Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382 (18) : 1708-1720
  • 18 Huang X, Wei F, Hu L. et al. Epidemiology and clinical characteristics of COVID-19. Arch Iran Med 2020; 23 (04) : 268-271
  • 19 Grasselli G, Zangrillo A, Zanella A. et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020; 323 (16) : 1574-1581
  • 20 Dreher M, Kersten A, Bickenbach J. et al. The characteristics of 50 hospitalized COVID-19 patients with and without ARDS. Dtsch Arztebl Int 2020; 117 (16) : 271-278
  • 21 Mao L, Jin H, Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77 (06) : 683-690
  • 22 Helms J, Kremer S, Merdji H. et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 2020; 382 (23) : 2268-2270
  • 23 Berlit P, Bösel J, Gahn G. et al. Neurologische Manifestationen, S1-Leitlinie, 2020. In: Deutsche Gesellschaft für Neurologie, eds. Leitlinien für Diagnostik und Therapie in der Neurologie. Online:. www.dgn.org/leitlinien (abgerufen am 09.11.2020)
  • 24 Matschke J, Lütgehetmann M, Hagel C. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 2020; 19 (11) : 919-929
  • 25 https://www.faz.net/aktuell/gesellschaft/gesundheit/coronavirus/neue-corona-symptome-entdeckt-virologe-hendrik-streeck-zum-virus-16681450.html
  • 26 Schmithausen RM, Döhla M, Schöβler H. et al. Characteristic temporary loss of taste and olfactory senses in SARS-CoV-2-positive-individuals with mild symptoms. Pathog Immun 2020; 5 (01) : 117-120
  • 27 https://news.joins.com/article/23738003?cloc=joongang-mhome-group6&fbclid=IwAR33__i-aKtLN2MzCs5AE-
  • 28 https://www.entuk.org/loss-sense-smell-marker-covid-19-infection-0
  • 29 Bagheri SH, Asghari A, Farhadi M. et al. Coincidence of COVID-19 epidemic and olfactory dysfunction outbreak in Iran. Med J Islam Repub Iran 2020; 34: 62
  • 30 Giacomelli A, Pezzati L, Conti F. et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin Infect Dis 2020; 71 (15) : 889-890
  • 31 Lechien JR, Chiesa-Estomba CM, De Siati DR. et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 2020; 277 (08) : 2251-2261
  • 32 Mermelstein S. Acute anosmia from COVID-19 infection. Pract Neurol 2020; 20 (04) : 343-344
  • 33 Moein ST, Hashemian SM, Mansourafshar B. et al. Smell dysfunction: a biomarker for COVID-19. Int Forum Allergy Rhinol 2020; 10 (08) : 944-950
  • 34 Hintschich CA, Wenzel JJ, Hummel T. et al. Psychophysical tests reveal impaired olfaction but preserved gustation in COVID-19 patients. Int Forum Allergy Rhinol 2020; 10 (09) : 1105-1107
  • 35 Haehner A, Draf J, Dräger S. et al. Predictive value of sudden olfactory loss in the diagnosis of COVID-19. ORL J Otorhinolaryngol Relat Spec 2020; 82 (04) : 175-180
  • 36 Whitcroft K. Clinical diagnosis ht and current management strategies for olfactory dysfunction: a review. JAMA Otolaryngol Head Neck Surg. 2019 Jul 18. DOI: 10.1001/jamaoto.2019.1728
  • 37 Zou LQ, Linden L, Cuevas M. et al. Self-reported mini olfactory questionnaire (Self-MOQ): a simple and useful measurement for the screening of olfactory dysfunction. Laryngoscope. 2019 Nov 20. DOI: 10.1002/lary.28419
  • 38 Doty RL, Shaman P, Dann M. Development of the university of Pennsylvania smell identification test: a standardized microencapsulated test of olfactory function. Physiol Behav 1984; 32: 489-502
  • 39 Vaira LA, Deiana G, Fois AG. et al. Objective evaluation of anosmia and ageusia in COVID-19 patients: single-center experience on 72 cases. Head Neck 2020; 42 (06) : 1252-1258.
  • 40 Petrocelli M, Ruggiero F, Baietti AM. et al. Remote psychophysical evaluation of olfactory and gustatory functions in early-stage coronavirus disease 2019 patients: the Bologna experience of 300 cases. J Laryngol Otol 2020; 134 (07) : 571-576
  • 41 Galougahi KG, Ghorbani J, Bakhshayeshkaram M. Olfactory bulb magnetic resonance imaging in SARS-CoV-2-induced anosmia: the first repor. Acad Radiol 2020; 27 (06) : 892-893
  • 42 Eliezer M, Hautefort C, Hamel AL. et al. Sudden and complete olfactory loss of function as a possible symptom of COVID-19. JAMA Otolaryngol Head Neck Surg 2020; 146 (07) : 674-675
  • 43 Laurendon T, Radulesco T, Mugnier J. Bilateral transient olfactory bulb edema during COVID-19-related anosmia. Neurology 2020; 95 (05) : 224-225
  • 44 Politi LS, Salsano E, Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. JAMA Neurol 2020; 77 (08) : 1028-1029
  • 45 Lin E, Lantos JE, Strauss SB. et al. Brain imaging of patients with COVID-19: findings at an academic institution during the height of the outbreak in New York City [published online ahead of print, 2020 Aug 20]. AJNR Am J Neuroradiol 2020 DOI: 10.3174/ajnr.A6793)
  • 46 Le Guennec L, Devianne J, Jalin L. et al. Orbitofrontal involvement in a neuroCOVID-19 patient. Epilepsia. 2020 Jun 26. DOI: 10.1111/epi.16612
  • 47 Karimi-Galougahi M, Yousefi-Koma A, Bakhshayeshkaram M. et al. 18 FDG PET / CT scan reveals hypoactive orbitofrontal cortex in anosmia of COVID-19. Acad Radiol 2020; Jul; 27 (07) : 1042-1043. DOI: 10.1016/j.acra.2020.04.030.
  • 48 Beltrán-Corbellini Á, Chico-García JL, Martínez-Poles J. et al. Acute-onset smell and taste disorders in the context of COVID-19: a pilot multicentre polymerase chain reaction based case-control study. Eur J Neurol 2020 DOI: 10.1111/ene.14273
  • 49 Isenmann A, Isenmann S. COVID-19: variable symptoms in mild course: olfactory loss and increased resting hert rate. Dtsch Med Wochenschr 2020; 145 (15) : 1095-1099
  • 50 Foster KJ, Jauregui E, Tajudeen B. et al. Smell loss is a prognostic factor for lower severity of coronavirus disease 2019 [published online ahead of print, 2020 Jul 24]. Ann Allergy Asthma Immunol. 2020 S1081-1206(20)30514-7. DOI: 10.1016/j.anai.2020.07.023
  • 51 AWMF. Riechstörungen – Leitlinie zur Epidemiologie, Pathophysiologie, Klassifikation, Diagnose und Therapie. AWMF online 2016. URL: //http://www.awmf.org/uploads/tx_szleitlinien/017-050l_S2k_Riech-und-Schmeckst%C3%B6rungen_2017-03.pdf
  • 52 Whitcroft KL, Hummel T. Olfactory dysfunction in COVID-19: diagnosis and management. JAMA 2020; 323 (24) : 2512-2514
  • 53 Hummel T, Whitcroft KL, Rueter G. et al. Intranasal vitamin A is beneficial in post-infectious olfactory loss. Eur Arch Otorhinolaryngol 2017; 274: 2819-2825
  • 54 Yan CH, Rathor A, Krook K. et al. Effect of omega-3 supplementation in patients with smell dysfunction following endoscopic sellar and parasellar tumor resection: a multicenter prospective randomized controlled trial. Neurosurgery 2020; 87 (02) : E91-E98
  • 55 Brookes NRG, Fairley JW, Brookes GB. acute olfactory dysfunction – a primary presentation of COVID-19 infection. Ear Nose Throat J 2020; 99 (09) : 94-98
  • 56 von Bartheld CS, Hagen MM, Butowt R. Prevalence of chemosensory dysfunction in COVID-19 patients: a systematic review and meta-analysis reveals significant ethnic differences. ACS Chem Neurosci 2020; 11 (19) : 2944-2961
  • 57 Pierron D, Pereda-Loth V, Mantel M. et al. Smell and taste changes are early indicators of the COVID-19 pandemic and political decision effectiveness. Nat Commun 2020; 11 (01) : 5152
  • 58 Hummel T, Whitcroft KL, Andrews P. et al. Position paper on olfactory dysfunction. Rhinology Suppl 2017; 25: 1-30