Synlett, Table of Contents Synlett 2021; 32(08): 833-837DOI: 10.1055/a-1377-7369 letter Mild Copper-Catalyzed Addition of Arylboronic Esters to Di-tert-butyl Dicarbonate: An Easy Access to Methyl Arylcarboxylates Authors Jin-Di Xu Xiao-Bo Su Cai Wang Li-Wei Yao Jing-Hui Liu∗ Guo-Qin Hu∗ Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract An efficient copper-catalyzed addition of arylboronic esters to (Boc)2O was developed. The reaction can be conducted under exceedingly mild conditions and is compatible with a variety of synthetically relevant functional groups. It therefore represents a useful alternative route for the synthesis of methyl arylcarboxylates. A preliminary mechanistic study indicated the involvement of an addition–elimination mechanism. Key words Key wordscopper catalysis - arylboronic esters - addition - carboxylation - methyl arylcarboxylates Full Text References References and Notes 1a Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587 1b Breit B, Schmidt Y. Chem. Rev. 2008; 108: 2928 1c Yoshikai N, Nakamura E. Chem. Rev. 2012; 112: 2339 2a Burns DH, Miller JD, Chan H.-K, Delaney MO. J. Am. Chem. Soc. 1997; 119: 2125 2b Bertz SH, Eriksson M, Miao G, Snyder JP. J. Am. Chem. Soc. 1996; 118: 10906 2c Genna DT, Posner GH. Org. Lett. 2011; 13: 5358 2d Lipshutz BH, Kozlowski JA, Wilhelm RS. J. Org. Chem. 1983; 48: 546 2e Pan J.-L, Chen T, Zhang Z.-Q, Li Y.-F, Zhang X.-M, Zhang F.-M. Chem. Commun. 2016; 52: 2382 For selected examples, see: 3a Johnson DA, Jennings MP. Org. Lett. 2018; 20: 6099 3b Guo Y, Harutyunyan SR. Angew. Chem. Int. Ed. 2019; 58: 12950 3c Cahiez G, Gager O, Buendia J. Angew. Chem. Int. Ed. 2010; 49: 1278 3d Xiao B, Gong T.-J, Liu Z.-J, Liu J.-H, Luo D.-F, Xu J, Liu L. J. Am. Chem. Soc. 2011; 133: 9250 3e Liu J.-H, Yang C.-T, Lu X.-Y, Zhang Z.-Q, Xu L, Cui M, Lu X, Xiao B, Fu Y, Liu L. Chem. Eur. J. 2014; 20: 15334 3f Ren P, Stern L.-A, Hu X. Angew. Chem. Int. Ed. 2012; 51: 9110 4a Hall DG. In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine. Hall DG. Wiley-VCH; Weinheim: 2005. 1 4b Fyfe JW. B, Watson AJ. B. Chem 2017; 3: 31 5a Akgun B, Hall DG. Angew. Chem. Int. Ed. 2018; 57: 13028 5b Lennox AJ. J, Lloyd-Jones GC. Angew. Chem. Int. Ed. 2013; 52: 7362 5c Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412 5d Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457 For selected examples of couplings with aryl halides or pseudohalides, see: 6a Thathagar MB, Beckers J, Rothenberg G. J. Am. Chem. Soc. 2002; 124: 11858 6b Bergmann AM, Oldham AM, You W, Brown MK. Chem. Commun. 2018; 54: 5381 6c Zhou Y, You W, Smith KB, Brown MK. Angew. Chem. Int. Ed. 2014; 53: 3475 6d Gurung SK, Thapa S, Shrestha B, Giri R. Org. Chem. Front. 2015; 2: 649 6e Gurung SK, Thapa S, Kafle A, Dickie DA, Giri R. Org. Lett. 2014; 16: 1264 6f Tailor SB, Manzotti M, Asghar S, Rowsell BJ. S, Luckham SL. J, Sparkes HA, Bedford RB. Organometallics 2019; 38: 1770 6g Budiman YP, Friedrich A, Radius U, Marder TB. ChemCatChem 2019; 11: 5387 6h Mao J, Guo J, Fang F, Ji S.-J. Tetrahedron 2008; 64: 3905 6i Li J.-H, Li J.-L, Xie Y.-X. Synthesis 2007; 984 Selected examples on coupling with alkyl halides or pseudohalides: 7a Yang C.-T, Zhang Z.-Q, Liu Y.-C, Liu L. Angew. Chem. Int. Ed. 2011; 50: 3904 7b Shintani R, Takatsu K, Takeda M, Hayashi T. Angew. Chem. Int. Ed. 2011; 50: 8656 7c Sun Y.-Y, Yi J, Lu X, Zhang Z.-Q, Xiao B, Fu Y. Chem. Commun. 2014; 50: 11060 7d Zhu Z, Liu J, Dong S, Chen B, Wang Z, Tang R, Li Z. Asian J. Org. Chem. 2020; 9: 631 7e Jiang S, Dong X.-Y, Gu Q.-S, Ye L, Li Z.-L, Liu X.-Y. J. Am. Chem. Soc. 2020; 142: 19652 7f Takeda M, Takatsu K, Shintani R, Hayashi T. J. Org. Chem. 2014; 79: 2354 For selected examples of couplings with alkynyl halides or pseudohalides, see: 8a Yu C.-M, Kweon J.-H, Ho P.-S, Kang S.-C, Lee GY. Synlett 2005; 2631 8b Wang S, Wang M, Wang L, Wang B, Li P, Wang J. Tetrahedron 2011; 67: 4800 8c Babu SA, Saranya S, Rohit KR, Anilkumar J. ChemistrySelect 2019; 4: 1019 9a Takatsu K, Shintani R, Hayashi T. Angew. Chem. Int. Ed. 2011; 50: 5548 9b Wu C, Yue G, Nielsen CD.-T, Xu K, Hirao H, Zhou J. J. Am. Chem. Soc. 2016; 138: 742 10a Lu X.-Y, Yang C.-T, Liu J.-H, Zhang Z.-Q, Lu X, Lou X, Xiao B, Fu Y. Chem. Commun. 2015; 51: 2388 10b Lu X.-Y, Li J.-S, Wang J.-Y, Wang S.-Q, Li Y.-M, Zhu Y.-J, Zhou R, Ma W.-J. RSC Adv. 2018; 8: 41561 11a Shintani R, Takatsu K, Hayashi T. Chem. Commun. 2010; 46: 6822 11b Ni C, Gao J, Fang X. Chem. Commun. 2020; 56: 2654 11c Liao Y.-Y, Hu Q.-S. J. Org. Chem. 2011; 76: 7602 11d Zheng H, Zhang Q, Chen J, Liu M, Cheng S, Ding J, Wu H, Su W. J. Org. Chem. 2009; 74: 943 11e Tomita D, Yamatsugu K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 6946 12a Ohishi T, Nishiura M, Hou Z. Angew. Chem. Int. Ed. 2008; 47: 5792 12b Riss PJ, Lu S, Telu S, Aigbirhio FI, Pike VW. Angew. Chem. Int. Ed. 2012; 51: 2698 12c Takaya J, Tadami S, Ukai K, Iwasawa N. Org. Lett. 2008; 10: 2697 12d Ohmiya H, Tanabe M, Sawamura M. Org. Lett. 2011; 13: 1086 12e Wang W, Zhang G, Lang R, Xia C, Li F. Green Chem. 2013; 15: 635 12f Nayal OS, Hong J, Yang Y, Mo F. Org. Chem. Front. 2019; 6: 3673 12g Duong HA, Nguyen TM, Rosman NZ. B, Tan LJ. L. Synthesis 2014; 46: 1881 12h Zheng R, Zhou Q, Gu H, Jiang H, Wu J, Jin Z, Han D, Dai G, Chen R. Tetrahedron Lett. 2014; 55: 5671 13 Saito Y, Ouchi H, Takahata H. Tetrahedron 2006; 62: 11599 14a Sämann C, Haag B, Knochel P. Chem. Eur. J. 2012; 18: 16145 14b Degennaro L, Maggiulli D, Carlucci C, Fanelli F, Romanazzi G, Luisi R. Chem. Commun. 2016; 52: 9554 14c Huck L, de la Hoz A, Díaz-Ortiz A, Alcazar J. Org. Lett. 2017; 19: 3747 14d Kogami M, Watanabe N. Synth. Commun. 2013; 43: 681 15 Methyl (Het)arylcarboxylates 3a–y, 5a–e; General Procedure A 15 mL Schlenk tube equipped with a stirrer bar was charged with CuCl (10 mol%), L7 (13 mol%), LiOMe (2.5 equiv), and the appropriate boronic ester 1 or 4 (0.375 mmol). The vessel was then evacuated and filled with Ar (three cycles). DMA (0.5 mL) and (Boc)2O (0.25 mmol) were added sequentially under Ar, and the mixture was stirred at 30 ℃ for 6 h. MeI (5 equiv) was then added in air, and the mixture was stirred at 30 ℃ for additional 2 h. The mixture was finally diluted with EtOAc and washed with sat. aq NaCl (20 mL). The aqueous phase was further extracted with EtOAc (3 × 20 mL), and the combined organic phases were dried (Na2SO4) and concentrated. The residue was purified by column chromatography [silica gel EtOAc–hexane (1:100 to 1:50)]. Methyl 2-Naphthoate (3b) Prepared by following the general procedure as a white solid; yield: 91% (by HPLC). 1H NMR (400 MHz, CDCl3): δ = 8.62 (s, 1 H), 8.08–8.05 (m, 1 H), 7.96 (d, J = 8.0 Hz, 1 H), 7.88 (d, J = 8.7 Hz, 2 H), 7.63–7.49 (m, 2 H), 3.98 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 167.29, 135.53, 132.51, 131.09, 129.37, 128.25, 128.17, 127.78, 127.41, 126.66, 125.24, 52.26. The NMR spectral data agreed with the reported values.16 16 Tobisu M, Yamakawa K, Shimasaki T, Chatani N. Chem. Commun. 2011; 47: 2946 Supplementary Material Supplementary Material Supporting Information (PDF)