Rofo 2021; 193(10): 1162-1170
DOI: 10.1055/a-1395-7905
Review

Clinical Relevance of Coronary Computed Tomography Angiography Beyond Coronary Artery Stenosis

Klinische Relevanz der CT-Angiographie der Koronargefäße jenseits der Koronararterienstenose
Centre for Cardiovascular Science, The University of Edinburgh Centre for Cardiovascular Science, Edinburgh, United Kingdom of Great Britain and Northern Ireland
,
Centre for Cardiovascular Science, The University of Edinburgh Centre for Cardiovascular Science, Edinburgh, United Kingdom of Great Britain and Northern Ireland
› Author Affiliations

Abstract

Background The capabilities of coronary computed tomography angiography (CCTA) have advanced significantly in the past decade. Its capacity to detect stenotic coronary arteries safely and consistently has led to a marked decline in invasive diagnostic angiography. However, CCTA can do much more than identify coronary artery stenoses.

Method This review discusses applications of CCTA beyond coronary stenosis assessment, focusing in particular on the visual and quantitative analysis of atherosclerotic plaque.

Results Established signs of visually assessed high-risk plaque on CT include positive remodeling, low-attenuation plaque, spotty calcification, and the napkin-ring sign, which correlate with the histological thin-cap fibroatheroma. Recently, quantification of plaque subtypes has further improved the assessment of coronary plaque on CT. Quantitatively assessed low-attenuation plaque, which correlates with the necrotic core of the thin-cap fibroatheroma, has demonstrated superiority over stenosis severity and coronary calcium score in predicting subsequent myocardial infarction. Current research aims to use radiomic and machine learning methods to further improve our understanding of high-risk atherosclerotic plaque subtypes identified on CCTA.

Conclusion Despite rapid technological advances in the field of coronary computed tomography angiography, there remains a significant lag in routine clinical practice where use is often limited to lumenography. We summarize some of the most promising techniques that significantly improve the diagnostic and prognostic potential of CCTA.

Key Points:

  • In addition to its ability to determine severity of luminal stenoses, CCTA provides important prognostic information by evaluating atherosclerotic plaque.

  • Simple scoring systems such as the segment involved score or the CT-adapted Leaman score can provide more prognostic information on major adverse coronary events compared to traditional risk factors such as presence of hypertension or diabetes.

  • CT signs of high-risk plaque, including positive remodeling, low-attenuation plaque, spotty calcification, and the napkin-ring sign, are significantly more likely to predict acute coronary syndromes.

  • Quantitative plaque assessment can provide precise description of volume and burden of plaque subtypes and have been found to predict subsequent myocardial infarction better than cardiovascular risk scores, calcium scoring and severity of coronary artery stenoses.

  • Machine learning techniques have the potential to automate risk stratification and enhance health economy, even though present clinical applications are limited. In this era of “big data” they are an exciting avenue for future research.

Citation Format

  • Meah MN, Williams MC. Clinical Relevance of Coronary Computed Tomography Angiography Beyond Coronary Artery Stenosis. Fortschr Röntgenstr 2021; 193: 1162 – 1170

Zusammenfassung

Hintergrund Die Möglichkeiten der CT-Angiographie der Koronargefäße (CCTA) haben sich in den letzten 10 Jahren erheblich weiterentwickelt. Ihre Fähigkeit, stenotische Koronararterien sicher und konsistent zu erkennen, hat zu einem deutlichen Rückgang der invasiven diagnostischen Angiografie geführt. Die CCTA kann jedoch viel mehr als nur Stenosen in den Koronararterien erkennen.

Methode In dieser Übersichtsarbeit werden Anwendungen der CCTA über die Beurteilung der Koronarstenose hinaus erörtert, wobei insbesondere die visuelle und quantitative Analyse von atherosklerotischen Plaques im Mittelpunkt steht.

Ergebnisse Zu den etablierten Zeichen einer visuell beurteilten Hochrisiko-Plaque in der CT gehören positives Remodeling, Plaque mit geringer Abschwächung, fleckige Verkalkung und das Napkin-Ring-Zeichen, die mit dem histologischen Thin-Cap-Fibroatherom korrelieren. In jüngster Zeit hat die Quantifizierung von Plaque-Subtypen die Beurteilung von Koronarplaque im CT weiter verbessert. Quantitativ bewertete Plaques mit geringer Abschwächung, die mit dem nekrotischen Kern des Thin-Cap-Fibroatheroms korrelieren, haben bei der Vorhersage des nachfolgenden Myokardinfarkts eine Überlegenheit gegenüber dem Schweregrad der Stenose und dem koronaren Kalzium-Score gezeigt. Die aktuelle Forschung zielt darauf ab, radiomische und maschinelle Lernmethoden zu nutzen, um unser Verständnis der mittels CCTA identifizierten atherosklerotischen Hochrisiko-Plaque-Subtypen weiter zu verbessern.

Schlussfolgerung Trotz des schnellen technologischen Fortschritts auf dem Gebiet der Koronar-Computertomografie-Angiografie gibt es in der täglichen klinischen Praxis, wo der Einsatz häufig auf die Lumenografie beschränkt ist, noch einen erheblichen Rückstand. Wir fassen einige der vielversprechendsten Techniken zusammen, die das diagnostische und prognostische Potenzial der CCTA deutlich verbessern.

Kernaussagen:

  • Neben der Fähigkeit, den Schweregrad von Luminalstenosen zu bestimmen, liefert die CCTA durch die Beurteilung atherosklerotischer Plaques wichtige prognostische Informationen.

  • Einfache Scoring-Systeme wie der Segment-Involved-Score oder der CT-adaptierte Leaman-Score können im Vergleich zu herkömmlichen Risikofaktoren wie Bluthochdruck oder Diabetes mehr prognostische Informationen über schwerwiegende unerwünschte koronare Ereignisse liefern.

  • CT-Zeichen einer Hochrisiko-Plaque, einschließlich positiver Remodellierung, Plaque mit geringer Abschwächung, fleckiger Verkalkung und dem Napkin-Ring-Zeichen, sagen signifikant häufiger akute Koronarsyndrome voraus.

  • Die quantitative Plaque-Bewertung kann eine präzise Beschreibung des Volumens und der Belastung der Plaque-Subtypen liefern, und es wurde festgestellt, dass sie einen nachfolgenden Myokardinfarkt besser vorhersagen kann als kardiovaskuläre Risiko-Scores, Kalzium-Scoring und der Schweregrad der Koronararterienstenosen.

  • Machine Learning hat das Potenzial, die Risikostratifizierung zu automatisieren und die Gesundheitsökonomie zu verbessern, auch wenn die derzeitigen klinischen Anwendungen begrenzt sind. In dieser Zeit der „Big Data“ sind sie ein aufregender Weg für die zukünftige Forschung.



Publication History

Received: 25 November 2020

Accepted: 07 February 2021

Article published online:
26 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hounsfield G. Computed Medical Imaging. Science 1980; 210: 22-28
  • 2 Murray CJL, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. The Lancet 1997; 349: 1436-1442
  • 3 Douglas PS, De Bruyne B, Pontone G. et al. 1-Year Outcomes of FFRCT-Guided Care in Patients With Suspected Coronary Disease: The PLATFORM Study. J Am Coll Cardiol 2016; 68: 435-445
  • 4 Oikonomou EK, Marwan M, Desai MY. et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. The Lancet 2018; 392: 929-939
  • 5 Hackett D, Davies G, Maseri A. Pre-existing coronary stenosis in patients with first myocardial infarction are not necessarily severe. Eur Heart J 1988; 9: 1317-1323
  • 6 Hansson GK. Mechanisms of disease: Inflammation, Atherosclerosis and Coronary Artery disease. N Engl J Med 2005; 352: 1685-1695
  • 7 van der Wal AC, Becker A, van der Loos CM. et al. Site of Intimal Rupture or Erosion of Thrombosed Coronary Atherosclerotic Plaques Is Characterized by an Inflammatory Process Irrespective of the Dominant Plaque Morphology. Circulation 1994; 89: 36-44
  • 8 Davies MJ, Thomas A. Thrombosis and Acute Coronary Artery Lesions in Sudden Cardiac Ischaemic Death. N Engl J Med 1984; 310: 1137-1140
  • 9 Hurlock GS, Higashino H, Mochizuki T. History of cardiac computed tomography: single to 320-detector row multislice computed tomography. Int J Cardiovasc Imaging 2009; 25 (Suppl. 01) 31-42
  • 10 Hausleiter J, Meyer T, Hadamitzky M. et al. Prevalence of noncalcified coronary plaques by 64-slice computed tomography in patients with an intermediate risk for significant coronary artery disease. J Am Coll Cardiol 2006; 48: 312-318
  • 11 Kopp AF, Schroeder S, Baumbach A. et al. Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intracoronary ultrasound. Eur Radiol 2001; 11: 1607-1611
  • 12 Motoyama S, Kondo T, Anno H. et al. Atherosclerotic Plaque Characterization by 0.5-mm- Slice Multislice Computed Tomographic Imaging Comparison With Intravascular Ultrasound. Circulation Journal 2007; 71: 363-366
  • 13 Leber AW, Becker A, Knez A. et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 2006; 47: 672-677
  • 14 Hoffmann U, Moselewski F, Nieman K. et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol 2006; 47: 1655-1662
  • 15 Blaha MJ, Nasir K, Rivera JJ. et al. Gender differences in coronary plaque composition by coronary computed tomography angiography. Coronary Artery Disease 2009; 20: 506-512
  • 16 Plank F, Beyer C, Friedrich G. et al. Sex differences in coronary artery plaque composition detected by coronary computed tomography: quantitative and qualitative analysis. Neth Heart J 2019; 27: 272-280
  • 17 Nance JW, Schlett CL, Schoepf UJ. et al. Incremental Prognostic Value of Different components of coronary atherosclerotic Plaque at cardiac CT angiography beyond coronary calcification in Patients with acute chest Pain. Radiology 2012; 264: 679-690
  • 18 Hadamitzky M, Taubert S, Deseive S. et al. Prognostic value of coronary computed tomography angiography during 5 years of follow-up in patients with suspected coronary artery disease. Eur Heart J 2013; 34: 3277-3285
  • 19 Maroules CD, Hamilton-Craig C, Branch K. et al. Coronary artery disease reporting and data system (CAD-RADS(TM)): Inter-observer agreement for assessment categories and modifiers. J Cardiovasc Comput Tomogr 2018; 12: 125-130
  • 20 Maddox TM, Stanislawski MA, Grunwald GK. et al. Nonobstructive coronary artery disease and risk of myocardial infarction. JAMA 2014; 312: 1754-1763
  • 21 van den Hoogen IJ, van Rosendael AR, Lin FY. et al. Coronary atherosclerosis scoring with semiquantitative CCTA risk scores for prediction of major adverse cardiac events: Propensity score-based analysis of diabetic and non-diabetic patients. J Cardiovasc Comput Tomogr 2020; 14: 251-257
  • 22 Ayoub C, Erthal F, Abdelsalam MA. et al. Prognostic value of segment involvement score compared to other measures of coronary atherosclerosis by computed tomography: A systematic review and meta-analysis. J Cardiovasc Comput Tomogr 2017; 11: 258-267
  • 23 van Rosendael AR, Bax AM, Smit JM. et al. Clinical risk factors and atherosclerotic plaque extent to define risk for major events in patients without obstructive coronary artery disease: the long-term coronary computed tomography angiography CONFIRM registry. Eur Heart J Cardiovasc Imaging 2020; 21: 479-488
  • 24 Andreini D, Pontone G, Mushtaq S. et al. Long-term prognostic impact of CT-Leaman score in patients with non-obstructive CAD: Results from the COronary CT Angiography EvaluatioN For Clinical Outcomes InteRnational Multicenter (CONFIRM) study. Int J Cardiol 2017; 231: 18-25
  • 25 Virmani R, Burke AP, Kolodgie FD. et al. Vulnerable Plaque: The Pathology of Unstable Coronary Lesions. Journal of Interventional Cardiology 2002; 15: 439-446
  • 26 Kashiwagi M, Tanaka A, Kitabata H. et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging 2009; 2: 1412-1419
  • 27 Obaid DR, Calvert PA, Brown A. et al. Coronary CT angiography features of ruptured and high-risk atherosclerotic plaques: Correlation with intra-vascular ultrasound. J Cardiovasc Comput Tomogr 2017; 11: 455-461
  • 28 Motoyama S, Kondo T, Sarai M. et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 2007; 50: 319-326
  • 29 Motoyama S, Sarai M, Harigaya H. et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 2009; 54: 49-57
  • 30 Motoyama S, Ito H, Sarai M. et al. Plaque Characterization by Coronary Computed Tomography Angiography and the Likelihood of Acute Coronary Events in Mid-Term Follow-Up. J Am Coll Cardiol 2015; 66: 337-346
  • 31 Maurovich-Horvat P, Hoffmann U, Vorpahl M. et al. The napkin-ring sign: CT signature of high-risk coronary plaques?. JACC Cardiovasc Imaging 2010; 3: 440-444
  • 32 Maurovich-Horvat P, Schlett CL, Alkadhi H. et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging 2012; 5: 1243-1252
  • 33 Chang HJ, Lin FY, Lee SE. et al. Coronary Atherosclerotic Precursors of Acute Coronary Syndromes. J Am Coll Cardiol 2018; 71: 2511-2522
  • 34 Puchner SB, Liu T, Mayrhofer T. et al. High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: results from the ROMICAT-II trial. J Am Coll Cardiol 2014; 64: 684-692
  • 35 Ferencik M, Mayrhofer T, Bittner DO. et al. Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients With Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial. JAMA Cardiology 2018; 3: 144-152
  • 36 Feuchtner G, Kerber J, Burghard P. et al. The high-risk criteria low-attenuation plaque < 60 HU and the napkin-ring sign are the most powerful predictors of MACE: a long-term follow-up study. Eur Heart J Cardiovasc Imaging 2017; 18: 772-779
  • 37 Cury RC, Abbara S, Achenbach S. et al. CAD-RADS(TM) Coronary Artery Disease - Reporting and Data System. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Cardiovasc Comput Tomogr 2016; 10: 269-281
  • 38 Williams MC, Moss AJ, Dweck M. et al. Coronary Artery Plaque Characteristics Associated With Adverse Outcomes in the SCOT-HEART Study. J Am Coll Cardiol 2019; 73: 291-301
  • 39 Cheng VY, Nakazato R, Dey D. et al. Reproducibility of coronary artery plaque volume and composition quantification by 64-detector row coronary computed tomographic angiography: an intraobserver, interobserver, and interscan variability study. J Cardiovasc Comput Tomogr 2009; 3: 312-320
  • 40 Schuhbaeck A, Dey D, Otaki Y. et al. Interscan reproducibility of quantitative coronary plaque volume and composition from CT coronary angiography using an automated method. Eur Radiol 2014; 24: 2300-2308
  • 41 Ovrehus KA, Schuhbaeck A, Marwan M. et al. Reproducibility of semi-automatic coronary plaque quantification in coronary CT angiography with sub-mSv radiation dose. J Cardiovasc Comput Tomogr 2016; 10: 114-120
  • 42 Boogers MJ, Broersen A, van Velzen JE. et al. Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. Eur Heart J 2012; 33: 1007-1016
  • 43 Matsumoto H, Watanabe S, Kyo E. et al. Improved Evaluation of Lipid-Rich Plaque at Coronary CT Angiography: Head-to-Head Comparison with Intravascular US. Radiol Cardiothorac Imaging 2019; 1: e190069
  • 44 Ferencik M, Schlett CL, Ghoshhajra BB. et al. A computed tomography-based coronary lesion score to predict acute coronary syndrome among patients with acute chest pain and significant coronary stenosis on coronary computed tomographic angiogram. Am J Cardiol 2012; 110: 183-189
  • 45 Ferencik M, Mayrhofer T, Puchner SB. et al. Computed tomography-based high-risk coronary plaque score to predict acute coronary syndrome among patients with acute chest pain--Results from the ROMICAT II trial. J Cardiovasc Comput Tomogr 2015; 9: 538-545
  • 46 de Knegt MC, Linde JJ, Fuchs A. et al. Relationship between patient presentation and morphology of coronary atherosclerosis by quantitative multidetector computed tomography. Eur Heart J Cardiovasc Imaging 2019; 20: 1221-1230
  • 47 Conte E, Dwivedi A, Mushtaq S. et al. Age- and sex-related features of atherosclerosis from coronary computed tomography angiography in patients prior to acute coronary syndrome: results from the ICONIC study. Eur Heart J Cardiovasc Imaging 2021; 22: 24-33
  • 48 Nadjiri J, Hausleiter J, Jahnichen C. et al. Incremental prognostic value of quantitative plaque assessment in coronary CT angiography during 5 years of follow up. J Cardiovasc Comput Tomogr 2016; 10: 97-104
  • 49 Williams MC, Kwiecinski J, Doris M. et al. Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results From the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation 2020; 141: 1452-1462
  • 50 Lee SE, Chang HJ, Sung JM. et al. Effects of Statins on Coronary Atherosclerotic Plaques: The PARADIGM Study. JACC Cardiovasc Imaging 2018; 11: 1475-1484
  • 51 Lee SE, Sung JM, Andreini D. et al. Sex Differences in Compositional Plaque Volume Progression in Patients With Coronary Artery Disease. JACC Cardiovasc Imaging 2020; 13: 2386-2396
  • 52 Morris JR, Bellolio MF, Sangaralingham LR. et al. Comparative Trends and Downstream Outcomes of Coronary Computed Tomography Angiography and Cardiac Stress Testing in Emergency Department Patients With Chest Pain: An Administrative Claims Analysis. Acad Emerg Med 2016; 23: 1022-1030
  • 53 Pijls NH, van Schaardenburgh P, Manoharan G. et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 2007; 49: 2105-2111
  • 54 van Nunen LX, Zimmermann FM, Tonino PAL. et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. The Lancet 2015; 386: 1853-1860
  • 55 Koo BK, Erglis A, Doh JH. et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 2011; 58: 1989-1997
  • 56 Norgaard BL, Leipsic J, Gaur S. et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 2014; 63: 1145-1155
  • 57 Pontone G, Weir-McCall JR, Baggiano A. et al. Determinants of Rejection Rate for Coronary CT Angiography Fractional Flow Reserve Analysis. Radiology 2019; 292: 597-605
  • 58 Kolossvary M, Park J, Bang JI. et al. Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 2019; 20: 1250-1258
  • 59 van Velzen SGM, Lessmann N, Velthuis BK. et al. Deep Learning for Automatic Calcium Scoring in CT: Validation Using Multiple Cardiac CT and Chest CT Protocols. Radiology 2020; 295: 66-79
  • 60 van den Oever LB, Cornelissen L, Vonder M. et al. Deep learning for automated exclusion of cardiac CT examinations negative for coronary artery calcium. Eur J Radiol 2020; 129: 109114
  • 61 Motwani M, Dey D, Berman DS. et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J 2017; 38: 500-507
  • 62 Dey D, Gaur S, Ovrehus KA. et al. Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. Eur Radiol 2018; 28: 2655-2664