Rofo 2021; 193(10): 1171-1182
DOI: 10.1055/a-1401-0215
Review

Imaging of Bone Sarcomas and Soft-Tissue Sarcomas

Bildgebung von Knochen- und Weichteilsarkomen
Division of General Radiological Diagnostics, Department of Radiology, Medical University of Graz, Austria
,
Michael H. Fuchsjäger
Division of General Radiological Diagnostics, Department of Radiology, Medical University of Graz, Austria
› Institutsangaben

Abstract

Background In the diagnosis of bone and soft-tissue sarcomas, the continuous advancement of various imaging modalities has improved the detection of small lesions, surgical planning, assessment of chemotherapeutic effects, and, importantly, guidance for surgery or biopsy.

Method This review was composed based on a PubMed literature search for the terms “bone sarcoma,” “bone cancer” and “soft tissue sarcoma,” “imaging,” “magnetic resonance imaging”, “computed tomography”, “ultrasound”, “radiography”, and “radiomics” covering the publication period 2005–2020.

Results and Conclusion As discussed in this review, radiography, ultrasound, CT, and MRI all play key roles in the imaging evaluation of bone and soft-tissue sarcomas. In daily practice, advanced MRI techniques complement standard MRI but remain underused, as they are considered time-consuming, technically challenging, and not reliable enough to replace biopsy and histology. PET/MRI and radiomics have shown promise regarding the imaging of sarcomas in the future.

Key Points:

  • Radiographs remain crucial in diagnostic imaging algorithms for sarcomas.

  • US is an initial imaging study for the evaluation of superficial soft-tissue tumors.

  • The role of CT continues to evolve as new techniques emerge.

  • MRI allows the noninvasive evaluation of soft-tissue, osseous, and articular structures.

  • Machine learning methods could improve personalized selection of therapy for patients with sarcoma.

Citation Format

  • Igrec J, Fuchsjäger MH. Imaging of Bone and Soft-Tissue Sarcomas. Fortschr Röntgenstr 2021; 193: 1171 – 1182

Zusammenfassung

Hintergrund Bei der Diagnose von Knochen- und Weichteilsarkomen hat die kontinuierliche Weiterentwicklung verschiedener bildgebender Verfahren die Erkennung kleiner Läsionen, die chirurgische Planung, die Beurteilung chemotherapeutischer Effekte und, was wichtig ist, die Anleitung für die Operation oder Biopsie verbessert.

Methode Diese Übersicht wurde auf der Grundlage einer PubMed-Literaturrecherche nach den Begriffen „Knochensarkom“, „Knochenkrebs“ und „Weichteilsarkom“, „Bildgebung“, „Magnetresonanztomografie“, „Computertomografie“, „Ultraschall“, „Radiografie“ und „Radiomics“ für den Publikationszeitraum 2005–2020 verfasst.

Ergebnisse und Schlussfolgerung Wie in dieser Übersicht diskutiert, spielen Radiografie, Ultraschall, CT und MRI eine Schlüsselrolle bei der bildgebenden Beurteilung von Knochen- und Weichteilsarkomen. In der täglichen Praxis ergänzen fortgeschrittene MRT-Techniken die Standard-MRT, werden aber nach wie vor zu wenig genutzt, da sie als zeitaufwändig, technisch anspruchsvoll und nicht zuverlässig genug angesehen werden, um Biopsie und Histologie zu ersetzen. PET/MRI und Radiomics haben sich als vielversprechend erwiesen, um in Zukunft zur Bildgebung von Sarkomen beizutragen.

Kernaussagen:

  • Röntgenbilder sind bei diagnostischen Bildgebungsalgorithmen für Sarkome nach wie vor von entscheidender Bedeutung.

  • US ist eine erste bildgebende Studie zur Beurteilung von oberflächlichen Weichteiltumoren.

  • Die Rolle der CT entwickelt sich mit dem Entstehen neuer Techniken ständig weiter.

  • Die MRT ermöglicht die nichtinvasive Beurteilung von Weichteil-, Knochen- und Gelenkstrukturen.

  • Maschinelle Lernmethoden könnten die personalisierte Auswahl der Therapie für Patienten mit Sarkom verbessern.



Publikationsverlauf

Eingereicht: 12. September 2020

Angenommen: 09. Februar 2021

Artikel online veröffentlicht:
26. März 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Biermann JS, Chow W, Reed DR. et al. NCCN guidelines insights: bone cancer, version 2.2017. Journal of the National Comprehensive Cancer Network 2017; 15: 155-167
  • 2 Von Mehren M, Randall RL, Benjamin RS. et al. Soft tissue sarcoma, version 2.2018, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network 2018; 16: 536-563
  • 3 Casali PG, Abecassis N, Bauer S. et al. Soft tissue and visceral sarcomas: ESMO–EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2018; 29: iv51-iv67
  • 4 Crombé A, Marcellin PJ, Buy X. et al. Soft-tissue sarcomas: assessment of MRI features correlating with histologic grade and patient outcome. Radiology 2019; 291: 710-721
  • 5 Asmar K, Saade C, Salman R. et al. The value of diffusion weighted imaging and apparent diffusion coefficient in primary Osteogenic and Ewing sarcomas for the monitoring of response to treatment: Initial experience. European Journal of Radiology 2020; 124: 108855
  • 6 Patel DB, Matcuk Jr GR. Imaging of soft tissue sarcomas. Chin Clin Oncol 2018; 7: 35
  • 7 García-Figueiras R, Goh VJ, Padhani AR. et al. CT perfusion in oncologic imaging: a useful tool?. American Journal of Roentgenology 2013; 200: 8-19
  • 8 Drapé JL. Advances in magnetic resonance imaging of musculoskeletal tumours. Orthopaedics & Traumatology: Surgery & Research 2013; 99: S115-S123
  • 9 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: a cancer journal for clinicians 2016; 66: 7-30
  • 10 Jo VY, Fletcher CD. WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology 2014; 46: 95-104
  • 11 Robinson E, Bleakney RR, Ferguson PC. et al. Multidisciplinary management of soft-tissue sarcoma. Radiographics 2008; 28: 2069-2086
  • 12 Levy AD, Manning MA, Al-Refaie WB. et al. Soft-tissue sarcomas of the abdomen and pelvis: radiologic-pathologic features, Part 1—common sarcomas: from the radiologic pathology archives. Radiographics 2017; 37: 462-483
  • 13 Gruber L, Loizides A, Luger AK. et al. Soft-tissue tumor contrast enhancement patterns: diagnostic value and comparison between ultrasound and MRI. American Journal of Roentgenology 2017; 208: 393-401
  • 14 Cohen J, Riishede I, Carlsen JF. et al. Can Strain Elastography Predict Malignancy of Soft Tissue Tumors in a Tertiary Sarcoma Center?. Diagnostics 2020; 10: 148
  • 15 James SL, Davies AM. Post-operative imaging of soft tissue sarcomas. Cancer Imaging 2008; 8: 8
  • 16 Yoon MA, Chee CG, Chung HW. et al. Added value of diffusion-weighted imaging to conventional MRI for predicting fascial involvement of soft tissue sarcomas. European radiology 2019; 29: 1863-1873
  • 17 Ioannidis GS, Nikiforaki K, Karantanas A. Statistical and spatial correlation between diffusion and perfusion MR imaging parameters: A study on soft tissue sarcomas. Physica Medica 2019; 65: 59-66
  • 18 Sbaraglia M, Dei Tos AP. The pathology of soft tissue sarcomas. La radiologia medica 2019; 124: 266-281
  • 19 Corino VD, Montin E, Messina A. et al. Radiomic analysis of soft tissues sarcomas can distinguish intermediate from high‐grade lesions. Journal of Magnetic Resonance Imaging 2018; 47: 829-840
  • 20 Schneider N, Strauss DC, Smith MJ. et al. The adequacy of core biopsy in the assessment of smooth muscle neoplasms of soft tissues. The American journal of surgical pathology 2017; 41: 923-931
  • 21 Barile A, Regis G, Masi R. et al. Musculoskeletal tumours: preliminary experience with perfusion MRI. La radiologia medica 2007; 112: 550-561
  • 22 Bologna M, Montin E, Corino VDA. et al. Stability assessment of first order statistics features computed on ADC maps in soft-tissue sarcoma. Annu Int Conf IEEE Eng Med Biol Soc 2017; 2017: 612-615
  • 23 Lee JH, Yoon YC, Seo SW. et al. Soft tissue sarcoma: DWI and DCE-MRI parameters correlate with Ki-67 labeling index. European Radiology 2020; 30: 914-924
  • 24 Deshmukh S, Subhawong T, Carrino JA. et al. Role of MR spectroscopy in musculoskeletal imaging. The Indian journal of radiology & imaging 2014; 24: 210
  • 25 Ferrari S, Bielack SS, Smeland S. et al. EURO-BOSS: A European study on chemotherapy in bone-sarcoma patients aged over 40: Outcome in primary high-grade osteosarcoma. Tumori Journal 2018; 104: 30-36
  • 26 Douis H, Saifuddin A. The imaging of cartilaginous bone tumours. II. Chondrosarcoma. Skeletal radiology 2013; 42: 611-626
  • 27 Murphey MD, Senchak LT, Mambalam PK. et al. From the radiologic pathology archives: Ewing sarcoma family of tumors: radiologic-pathologic correlation. Radiographics 2013; 33: 803-831
  • 28 Stacy GS, Mahal RS, Peabody TD. Staging of bone tumors: a review with illustrative examples. American Journal of Roentgenology 2006; 186: 967-976
  • 29 Mintz DN, Hwang S. Bone tumor imaging, then and now. HSS Journal® 2014; 10: 230-239
  • 30 Sá Neto JL, Simão MN, Crema MD. et al. Diagnostic performance of magnetic resonance imaging in the assessment of periosteal reactions in bone sarcomas using conventional radiography as the reference. Radiologia brasileira 2017; 50: 176-181
  • 31 Aquerreta JD, San-Julián M, Benito A. et al. Growth Plate Involvement in Malignant Bone Tumors: Relationship Between Imaging Methods and Histological Findings. InCañadell's Pediatric Bone Sarcomas. Cham: Springer; 2016: 129-137
  • 32 Tanaka K, Ozaki T. New TNM classification (AJCC eighth edition) of bone and soft tissue sarcomas: JCOG Bone and Soft Tissue Tumor Study Group. Japanese journal of clinical oncology 2019; 49: 103-107
  • 33 Gersing AS, Pfeiffer D, Kopp FK. et al. Evaluation of MR-derived CT-like images and simulated radiographs compared to conventional radiography in patients with benign and malignant bone tumors. European radiology 2019; 29: 13-21
  • 34 Weber MA, Papakonstantinou O, Nikodinovska VV. et al. Ewing's sarcoma and primary osseous lymphoma: spectrum of imaging appearances. InSeminars in musculoskeletal radiology. Thieme Medical Publishers 2019; 23: 036-057
  • 35 Gulia A, Puri A, Subi TS. et al. Comparison of MRI and Histopathology with regard to Intramedullary Extent of Disease in Bone Sarcomas. Sarcoma 2019; 2019: 7385470
  • 36 Fayad LM, Jacobs MA, Wang X. et al. Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology 2012; 265: 340-356
  • 37 Uhl M, Saueressig U, van Buiren M. et al. Osteosarcoma: preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion-and perfusion-weighted magnetic resonance imaging. Investigative radiology 2006; 41: 618-623
  • 38 Rao A, Sharma C, Parampalli R. Role of diffusion-weighted MRI in differentiating benign from malignant bone tumors. BJR Open 2019; 1: 20180048 . doi:10.1259/bjro.20180048. PMID: 33178932; PMCID: PMC7592477
  • 39 Doganay S, Altinok T, Alkan A. et al. The role of MRS in the differentiation of benign and malignant soft tissue and bone tumors. European journal of radiology 2011; 79: e33-e37
  • 40 Malek M, Kazemi MA, Saberi S. et al Diffusion-Weighted Imaging and Proton Magnetic Resonance Spectroscopy Findings in Osteosarcoma Versus Normal Muscle. Iranian Journal of Radiology 2017 14.
  • 41 Zhang Y, Yue B, Zhao X. et al. Benign or Malignant Characterization of Soft-Tissue Tumors by Using Semiquantitative and Quantitative Parameters of Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Canadian Association of Radiologists Journal 2020; 71: 92-99
  • 42 Rajiah P, Sundaram M, Subhas N. Dual-Energy CT in Musculoskeletal Imaging: What Is the Role Beyond Gout?. American Journal of Roentgenology 2019; 213: 493-505
  • 43 Mallinson PI, Coupal TM, McLaughlin PD. et al. Dual-energy CT for the musculoskeletal system. Radiology 2016; 281: 690-707
  • 44 Schiano C, Soricelli A, De Nigris F. et al. New challenges in integrated diagnosis by imaging and osteo-immunology in bone lesions. Expert review of clinical immunology 2019; 15: 289-301
  • 45 Theruvath AJ, Siedek F, Muehe AM. et al. Therapy Response Assessment of Pediatric Tumors with Whole-Body Diffusion-weighted MRI and FDG PET/MRI. Radiology 2020; 296: 143-151
  • 46 Baljer BC, Kolhe S, Chan CD. et al. Advances in image enhancement for sarcoma surgery. Cancer letters 2020; 483: 1
  • 47 Vallières M, Freeman CR, Skamene SR. et al. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Physics in Medicine & Biology 2015; 60: 5471
  • 48 Crombé A, Périer C, Kind M. et al. T2‐based MRI Delta‐radiomics improve response prediction in soft‐tissue sarcomas treated by neoadjuvant chemotherapy. Journal of Magnetic Resonance Imaging 2019; 50: 497-510
  • 49 Malinauskaite I, Hofmeister J, Burgermeister S. et al. Radiomics and Machine Learning Differentiate Soft-Tissue Lipoma and Liposarcoma Better than Musculoskeletal Radiologists. Sarcoma 2020; 2020: 7163453
  • 50 Spraker MB, Wootton LS, Hippe DS. et al. MRI radiomic features are independently associated with overall survival in soft tissue sarcoma. Advances in radiation oncology 2019; 4: 413-421