Informationen aus Orthodontie & Kieferorthopädie 2021; 53(02): 153-162
DOI: 10.1055/a-1401-4100
Übersichtsartikel

Minimal invasive prothetische Versorgung als wertvolle Alternative zum kieferorthopädischen Lückenschluss bei Zahnnichtanlagen

Minimally Invasive Prosthetic Restoration as a Valuable Alternative to Orthodontic Gap Closure in Patients with Congenitally Missing Teeth
Matthias Kern
Klinik für Zahnärztliche Prothetik, Propädeutik und Werkstoffkunde, Universitätsklinikum Schleswig-Holstein – Campus Kiel, Kiel
› Author Affiliations

Zusammenfassung

Untere, aber auch obere zweite Prämolaren und obere laterale Schneidezähne sind die am häufigsten nicht angelegten Zähne; nicht selten sind auch untere Schneidezähne und erste Prämolaren nicht angelegt. Im Rahmen einer kieferorthopädischen Gesamttherapie ist der kieferorthopädische Lückenschluss eine wertvolle Therapieoption, die aber längst nicht für alle betroffenen Patientenfälle in Frage kommt.

In diesen Fällen sollten die Lückenbreiten der nicht angelegten Zähne zum Abschluss der kieferorthopädischen Therapie auf adäquate Dimensionen eingestellt sein, um die Lücken jugendlicher Patienten restaurativ zu versorgen. Minimal invasive Adhäsivbrücken wurden lange Zeit von vielen nur als provisorische Versorgung zur Überbrückung der Zeit bis zu einer geplanten „definitiven“ Versorgung mit dentalen Implantaten angesehen.

Neuere wissenschaftliche Erkenntnisse zeigen jedoch, dass insbesondere einflügelige Adhäsivbrücken zum Schneidezahnersatz exzellente Langzeitergebnisse aufweisen, die denen von Einzelzahnimplantaten nicht nachstehen oder sogar überlegen sind. Aber auch der Ersatz von nicht angelegten Prämolaren mit einflügeligen Adhäsivbrücken ist sehr vielversprechend.

Dieser Beitrag fasst den wissenschaftlichen Stand der Versorgung von Patienten mit minimal invasiven Adhäsivbrücken unter besonderer Berücksichtigung der Versorgung jugendlicher Patienten mit Zahnnichtanlagen zusammen.

Abstract

Mandibular, but also maxillary second premolars and lateral incisors are the most common congenitally missing teeth. However, it is not uncommon for mandibular incisors and first premolars to be congenitally missing as well. As part of an overall orthodontic therapy, orthodontic gap closure is a valuable treatment option, but it is far from being an option for all affected patients. In these cases, the gap width of the missing teeth should be adjusted to adequate dimensions at the finalization of the orthodontic therapy in order to restore the gaps in adolescent patients prosthetically. For a long time, minimally invasive resin-bonded fixed dental prostheses (RBFDPs) were considered by many to be only temporary restorations to bridge the time up to a planned “definitive” restoration with dental implants.

However, more recent scientific findings show that single-retainer RBFDPs in particular offer excellent long-term results for the replacement of incisors, which are not inferior or even superior to those of single-tooth implants. Also, the replacement of missing premolars with single-retainer RBFDPs is very promising.

This article summarizes the scientific status of the treatment of patients with minimally invasive RBFDPs with special reference to the treatment of adolescent patients with congenitally missing teeth.



Publication History

Article published online:
07 July 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Polder BJ, Vanʼt Hof MA, Van der Linden FP. et al. A meta-analysis of the prevalence of dental agenesis of permanent teeth. Community Dent Oral Epidemiol 2004; 32: 217-226 DOI: 10.1111/j.1600-0528.2004.00158.xOM158. [pii]
  • 2 Schroeder HE. Pathobiologie oraler Strukturen. Zähne Pulpa Parodont. Basel: Karger; 1983
  • 3 Robertsson S, Mohlin B. The congenitally missing upper lateral incisor. A retrospective study of orthodontic space closure versus restorative treatment. Eur J Orthod 2000; 22: 697-710
  • 4 Armbruster PC, Gardiner DM, Whitley JB. et al. The congenitally missing maxillary lateral incisor. Part 1: esthetic judgment of treatment options. World J Orthod 2005; 6: 369-375
  • 5 Kokich VG, Kokich VO. Congenitally missing mandibular second premolars: clinical options 2006; 130: 437-444
  • 6 Armbruster PC, Gardiner DM, Whitley JB. et al. The congenitally missing maxillary lateral incisor. Part 2: assessing dentists' preferences for treatment. World J Orthod 2005; 6: 376-381
  • 7 Terheyden H, Wüsthoff F. Occlusal rehabilitation in patients with congenitally missing teeth-dental implants, conventional prosthetics, tooth autotransplants, and preservation of deciduous teeth-a systematic review. Int J Implant Dent 2015; 1: 30 10.1186/s40729-015-0025-z
  • 8 Thoma DS, Sailer I, Ioannidis A. et al. A systematic review of the survival and complication rates of resin-bonded fixed dental prostheses after a mean observation period of at least 5 years. Clin Oral Implants Res 2017; 28: 1421-1432 DOI: 10.1111/clr.13007.
  • 9 Passia N, Kern M. Prothetische Versorgungskonzepte für das reduzierte Lückengebiss an deutschen Hochschulen. Quintessenz 2016; 67: 167-175
  • 10 Ostermann F, Meyer G, Kern M. Survey of clinically used adhesive ceramic bonding methods - follow up after 12 years. Dent Mater 2021; 37: e195-e200 DOI: 10.1016/j.dental.2020.11.018.
  • 11 Botelho MG, Ma X, Cheung GJ. et al. Long-term clinical evaluation of 211 two-unit cantilevered resin-bonded fixed partial dentures. J Dent 2014; 42: 778-784 DOI: 10.1016/j.jdent.2014.02.004.
  • 12 Botelho MG, Chan AW, Leung NC. et al. Long-term evaluation of cantilevered versus fixed-fixed resin-bonded fixed partial dentures for missing maxillary incisors. J Dent 2016; 45: 59-66 DOI: 10.1016/j.jdent.2015.12.006.
  • 13 Kern M. Fifteen-year survival of anterior all-ceramic cantilever resin-bonded fixed dental prostheses. J Dent 2017; 56: 133-135 10.1016/j.jdent.2016.11.003
  • 14 Kern M, Passia N, Sasse M. et al. Ten-year outcome of zirconia ceramic cantilever resin-bonded fixed dental prostheses and the influence of the reasons for missing incisors. J Dent 2017; 65: 51-55 DOI: 10.1016/j.jdent.2017.07.003.
  • 15 Pjetursson BE, Brägger U, Lang NP. et al. Comparison of survival and complication rates of tooth-supported fixed dental prostheses (FDPs) and implant-supported FDPs and single crowns (SCs). Clin Oral Implants Res 2007; 18: 97-113 DOI: 10.1111/j.1600-0501.2007.01439.x.
  • 16 Jung RE, Zembic A, Pjetursson BE. et al. Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years. Clin Oral Implants Res 2012; 23: 2-21 DOI: 10.1111/j.1600-0501.2012.02547.x.
  • 17 Sonoyama W, Kuboki T, Okamoto S. et al. Quality of life assessment in patients with implant-supported and resin-bonded fixed prosthesis for bounded edentulous spaces. Clin Oral Implants Res 2002; 13: 359-364
  • 18 Lam WY, McGrath CP, Botelho MG. Impact of complications of single tooth restorations on oral health-related quality of life. Clin Oral Implants Res 2014; 25: 67-73 DOI: 10.1111/clr.12166.
  • 19 Dreyer H, Grischke J, Tiede C. et al. Epidemiology and risk factors of peri-implantitis: A systematic review. J Periodontal Res 2018; 53: 657-681 DOI: 10.1111/jre.12562.
  • 20 Thilander B. Dentoalveolar development in subjects with normal occlusion. A longitudinal study between the ages of 5 and 31 years. Eur J Orthod 2009; 31: 109-120 cjn124 [pii]10.1093/ejo/cjn124
  • 21 Jemt T, Ahlberg G, Henriksson K. et al. Tooth movements adjacent to single-implant restorations after more than 15 years of follow-up. Int J Prosthodont 2007; 20: 626-632
  • 22 Bernard JP, Schatz JP, Christou P. et al. Long-term vertical changes of the anterior maxillary teeth adjacent to single implants in young and mature adults. A retrospective study. J Clin Periodontol 2004; 31: 1024-1028 DOI: 10.1111/j.1600-051X.2004.00574.x.
  • 23 Daftary F, Mahallati R, Bahat O. et al. Lifelong craniofacial growth and the implications for osseointegrated implants. Int J Oral Maxillofac Implants 2013; 28: 163-169 DOI: 10.11607/jomi.2827.
  • 24 Huanca Ghislanzoni L, Jonasson G, Kiliaridis S. Continuous eruption of maxillary teeth and changes in clinical crown length: A 10-year longitudinal study in adult women. Clin Implant Dent Relat Res 2017; 19: 1082-1089 10.1111/cid.12545
  • 25 Tetsch J. Implantation in die Zukunft. Dental Magazin 2016; 34: 42-44
  • 26 Bienz SP, Sailer I, Sanz-Martin I. et al. Volumetric changes at pontic sites with or without soft tissue grafting. A controlled clinical study with a 10-year follow-up. J Clin Periodontol 2017; 44: 178-184 DOI: 10.1111/jcpe.12651.
  • 27 Naenni N, Michelotti G, Lee WZ. et al. Resin-bonded fixed dental prostheses with zirconia ceramic single retainers show high survival rates and minimal tissue changes after a mean of 10 years of service. Int J Prosthodont 2020; 33: 503-512 DOI: 10.11607/ijp.6737.
  • 28 Mühlemann HR. Physiologic and pathologic dental mobility. Schweiz Monatsschr Zahnheilkd 1951; 61: 1-71
  • 29 Lemos CA, de Souza Batista VE, Almeida DA. et al. Evaluation of cement-retained versus screw-retained implant-supported restorations for marginal bone loss: A systematic review and meta-analysis. J Prosthet Dent 2016; 115: 419-427 DOI: 10.1016/j.prosdent.2015.08.026.
  • 30 Rasperini G, Siciliano VI, Cafiero C. et al. Crestal bone changes at teeth and implants in periodontally healthy and periodontally compromised patients. A 10-year comparative case-series study. J Periodontol 2014; 85: e152-e159 DOI: 10.1902/jop.2013.130415.
  • 31 Shahin R, Tannous F, Kern M. Inlay-retained cantilever fixed dental prostheses to substitute a single premolar: impact of zirconia framework design after dynamic loading. Eur J Oral Sci 2014; 122: 310-316 DOI: 10.1111/eos.12134.
  • 32 Bishti S, Jäkel C, Kern M. et al. Influence of different preparation forms on the loading-bearing capacity of zirconia cantilever FDPs. A laboratory study. J Prosthodont Res 2019; 63: 347-353 DOI: 10.1016/j.jpor.2018.10.010.
  • 33 Tagami A, Chaar MS, Wille S. et al. Retention durability of posterior cantilever RBFDPs with different designs. J Dent Res 2020; 99: Abstr No 1726 doi:(www.dentalresearch.org)
  • 34 Passia N, Chaar MS, Kern M. Clinical outcome of posterior cantilever resin-bonded fixed dental protheses (RBFDPs). J Dent Res 2021; 100: Abstr No not assigned doi:(www.dentalresearch.org)
  • 35 Kern M, Gläser R. Cantilevered all-ceramic, resin-bonded fixed partial dentures. A new treatment modality. J Esthet Dent 1997; 9: 255-264
  • 36 Kern M, Knode H, Strub JR. The all-porcelain, resin-bonded bridge. Quintessence Int 1991; 22: 257-262
  • 37 Kern M. Adhäsivbrücken. Minimalinvasiv – ästhetisch – bewährt. 2. Aufl.. Berlin: Quintessenz; 2018
  • 38 Kern M. Einflügelige Adhäsivbrücken als Alternative zum KFO-Lückenschluss (und zum Einzelzahnimplantat). Kieferothopädie 2018; 32: 123-134
  • 39 Lung CY, Botelho MG, Heinonen M. et al. Resin zirconia bonding promotion with some novel coupling agents. Dent Mater 2012; 28: 863-872 DOI: 10.1016/j.dental.2012.04.023.
  • 40 Kern M, Chaar MS, Passia N. Minimierter Aufwand – hoher Nutzen. Frugale Methoden im Bereich der prothetischen Zahnmedizin. Zahnärztl Mitt 2019; 109: 2398-2404
  • Kern M. (2021). Minimal invasiver Zahnersatz [Videokanal]. YouTube. https://www.youtube.com/channel/UCCaQuqHNexQP8NvA9_k784w; Stand: 30.04.2021
  • Universitätsklinikum Schleswig-Holstein, Klinik für Zahnärztliche Prothetik, Propädeutik und Werkstoffkunde - Campus Kiel. Website: https://www.uni-kiel.de/proth/; Stand: 30.04.2021