Informationen aus Orthodontie & Kieferorthopädie 2021; 53(02): 99-110
DOI: 10.1055/a-1401-4114
Übersichtsartikel

Digitale Kiefermodelle – Erstellung und kieferorthopädisch-diagnostische Anwendungen

Digital Dental Arch Models – Generation and Diagnostic Applications in Orthodontics
Catrin Gerhart
Klinik für Kieferorthopädie und Orthodontie, Universitätsklinikum Ulm
,
Johanna Radeke
Klinik für Kieferorthopädie und Orthodontie, Universitätsklinikum Ulm
,
Fayez Elkholy
Klinik für Kieferorthopädie und Orthodontie, Universitätsklinikum Ulm
,
Elena Schramm
Klinik für Kieferorthopädie und Orthodontie, Universitätsklinikum Ulm
,
Bernd G. Lapatki
Klinik für Kieferorthopädie und Orthodontie, Universitätsklinikum Ulm
› Author Affiliations

Zusammenfassung

Die digitale Kieferorthopädie erfuhr besonders in den letzten Jahren sowohl in der Diagnostik als auch in der Therapie großen Zuspruch. Digitale Kiefermodelle können entweder direkt mittels Einscannen der Gipsmodelle oder indirekt mittels Intraoralscan erstellt werden. Auf längere Sicht setzt sich hier sicherlich das Intraoralscanning durch. Die digitalisierten und gegenseitig registrierten Kiefermodelle können mit ausgereiften Softwaretools mittlerweile sehr genau und ohne zeitlichen Mehraufwand ausgewertet werden. Zudem ergeben sich zahlreiche neue Applikationsmöglichkeiten, wie z. B. die Integration mit 3D-Gesichtsscans für dento-faziale 3D-Analysen. Auch das digitale Setup von Kiefermodellen zur Behandlungssimulationen, z. B. bei der Fragestellung Ex- oder Non-Ex-Therapie oder vor kieferchirurgisch-kieferorthopädisch kombinierter Behandlung, ist ein attraktives Anwendungsfeld. Darüber hinaus ergeben sich durch die Verfügbarkeit von digitalen Kiefermodellen faszinierende therapeutische Anwendungen, z. B. im Bereich des indirekten Bracketings oder der Alignertherapie, die in diesem mehr diagnostisch fokussierten Beitrag jedoch nicht näher thematisiert werden.

Abstract

Digital orthodontics has become very popular, particularly in recent years, both in diagnostics and in therapy. Digital jaw models can be created either directly by scanning plaster models or indirectly by intraoral scanning. In the long term, intraoral scanning will certainly prevail. The digitized and registered jaw models can now be evaluated very accurately and without additional time expenditure using sophisticated software tools. In addition, numerous new possibilities of application arise, such as integration with 3D facial scans for dento-facial 3D analyses. The digital setup of jaw models for treatment simulations, e.g. for ex- or non-ex-therapy or prior to combined orthodontic and maxillofacial treatment, is also an attractive field of application. In addition, the availability of digital jaw models opens up fascinating therapeutic possibilities, e.g. in the field of indirect bracketing or aligner therapy, which will not be discussed in detail in this article, focusing more on diagnostics.



Publication History

Article published online:
07 July 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Whetten JL, Williamson PC, Heo G, Varnhagen C, Major PW. Variations in orthodontic treatment planning decisions of Class II patients between virtual 3-dimensional models and traditional plaster study models. Am J Orthod Dentofacial Orthop 2006; 130: 485-491 DOI: 10.1016/j.ajodo.2005.02.022.
  • 2 Rheude B, Sadowsky PL, Ferriera A, Jacobson A. An evaluation of the use of digital study models in orthodontic diagnosis and treatment planning. Angle Orthod 2005; 75: 300-304. DOI: 10.1043/0003-3219(2005)75[300:AEOTUO]2.0.CO;2.
  • 3 Bootvong K, Liu Z, McGrath C. et al. Virtual model analysis as an alternative approach to plaster model analysis: reliability and validity. Eur J Orthod 2010; 32: 589-595. DOI: 10.1093/ejo/cjp159.
  • 4 Leifert MF, Leifert MM, Efstratiadis SS, Cangialosi TJ. Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofacial Orthop 2009; 136: 16.e1-16.e4 discussion 16. DOI: 10.1016/j.ajodo.2008.11.019.
  • 5 Radeke J, Wense von der C, Lapatki BG. Comparison of orthodontic measurements on dental plaster casts and 3D scans. J Orofac Orthop 2014; 75: 264-274. DOI: 10.1007/s00056-014-0217-9.
  • 6 Sjögren APG, Lindgren JE, Huggare JAV. Orthodontic study cast analysis−reproducibility of recordings and agreement between conventional and 3D virtual measurements. J Digit Imaging 2010; 23: 482-492. DOI: 10.1007/s10278-009-9211-y.
  • 7 Veenema AC, Katsaros C, Boxum SC, Bronkhorst EM, Kuijpers-Jagtman AM. Index of Complexity, Outcome and Need scored on plaster and digital models. Eur J Orthod 2009; 31: 281-286 DOI: 10.1093/ejo/cjn077.
  • 8 Naidu D, Scott J, Ong D, Ho CTC. Validity, reliability and reproducibility of three methods used to measure tooth widths for bolton analyses. Aust Orthod J 2009; 25: 97-103
  • 9 Gracco A, Buranello M, Cozzani M, Siciliani G. Digital and plaster models: a comparison of measurements and times. Prog Orthod 2007; 8: 252-259
  • 10 Meyer SID. Retrospektive methodische Studie zum Vergleich von digitaler und manueller Modellanalyse in der Kieferorthopädie. [Med Dent Diss]. Münster: WWU; 2010
  • 11 Mullen SR, Martin CA, Ngan P, Gladwin M. Accuracy of space analysis with emodels and plaster models. Am J Orthod Dentofacial Orthop 2007; 132: 346-352 DOI: 10.1016/j.ajodo.2005.08.044.
  • 12 Torassian G, Kau CH, English JD. et al. Digital models vs plaster models using alginate and alginate substitute materials. Angle Orthod 2010; 80: 474-481 DOI: 10.2319/072409-413.1.
  • 13 Elkholy F, Stöckel K, Lapatki BG. Accuracy and time saving of automatic tooth width measurement on digital three dimensional orthodontic study models. 94th European Orthodontic Society Congress. Edinburgh: 2018
  • 14 Camardella LT, Rothier EKC, Vilella OV, Ongkosuwito EM, Breuning KH. Virtual setup: application in orthodontic practice. J Orofac Orthop 2016; 77: 409-419 DOI: 10.1007/s00056-016-0048-y.
  • 15 Schmidt F, Kilic F, Piro NE, Geiger ME, Lapatki BG. Novel Method for Superposing 3D Digital Models for Monitoring Orthodontic Tooth Movement. Ann Biomed Eng 2018; 46: 1160-1172. DOI: 10.1007/s10439-018-2029-3.
  • 16 Align Technology. The Invisalign System. www.aligntech.com/solutions/invisalign. Accessed July 17, 2018
  • 17 CA Digital GmbH. CA digital - digital orthodontics. www.ca-digit.com. Accessed July 17, 2018
  • 18 Müller-Hartwich R, Präger TM, Jost-Brinkmann PG. SureSmile−CAD/CAM system for orthodontic treatment planning, simulation and fabrication of customized archwires. Int J Comput Dent 2007; 10: 53-62
  • 19 Dedem P, Turp JC. Digital Michigan splint - from intraoral scanning to plasterless manufacturing. Int J Comput Dent 2016; 19: 63-76
  • 20 Graf S, Cornelis MA, Hauber Gameiro G, Cattaneo PM. Computer-aided design and manufacture of hyrax devices: Can we really go digital?. Am J Orthod Dentofacial Orthop 2017; 152: 870-874 DOI: 10.1016/j.ajodo.2017.06.016.
  • 21 Quaas S. Untersuchungen zur extraoralen mechanischen Digitalisierung von Modellen und Abformungen. [Med Dent Diss]. Dresden: Technische Universität Dresden;; 2006
  • 22 Chen H, Lowe AA, de Almeida FR, Wong M, Fleetham JA, Wang B. Three-dimensional computer-assisted study model analysis of long-term oral-appliance wear. Part 1: Methodology. Am J Orthod Dentofacial Orthop 2008; 134: 393-407 DOI: 10.1016/j.ajodo.2006.10.030.
  • 23 Hayasaki H, Martins RP, Gandini LG, Saitoh I, Nonaka K. A new way of analyzing occlusion 3 dimensionally. Am J Orthod Dentofacial Orthop 2005; 128: 128-132. DOI: 10.1016/j.ajodo.2004.07.039.
  • 24 Boldt F, Weinzierl C, Hertrich K, Hirschfelder U. Comparison of the spatial landmark scatter of various 3D digitalization methods. J Orofac Orthop 2009; 70: 247-263 DOI: 10.1007/s00056-009-0902-2.
  • 25 Gühring J. 3D-Erfassung und Objektrekonstruktion mittels Streifenprojektion. [Dissertation]. Stuttgart: Universität Stuttgart;; 2002
  • 26 Watanabe-Kanno GA, Abrão J, Miasiro Junior H, Sánchez-Ayala A, Lagravère MO. Reproducibility, reliability and validity of measurements obtained from Cecile3 digital models. Braz Oral Res 2009; 23: 288-295
  • 27 Steinhäuser-Andresen S, Detterbeck A, Funk C. et al. Pilot study on accuracy and dimensional stability of impression materials using industrial CT technology. J Orofac Orthop 2011; 72: 111-124 DOI: 10.1007/s00056-011-0015-6.
  • 28 Alcan T, Ceylanoğlu C, Baysal B. The relationship between digital model accuracy and time-dependent deformation of alginate impressions. Angle Orthod 2009; 79: 30-36. DOI: 10.2319/100307-475.1.
  • 29 Asquith J, Gillgrass T, Mossey P. Three-dimensional imaging of orthodontic models: a pilot study. Eur J Orthod 2007; 29: 517-522 DOI: 10.1093/ejo/cjm044.
  • 30 Redlich M, Weinstock T, Abed Y, Schneor R, Holdstein Y, Fischer A. A new system for scanning, measuring and analyzing dental casts based on a 3D holographic sensor. Orthod Craniofac Res 2008; 11: 90-95. DOI: 10.1111/j.1601-6343.2007.00417.x.
  • 31 Wiora G. Optische 3D-Messtechnik : Präzise Gestaltvermessung mit einem erweiterten Streifenprojektionsverfahren. [Heidelberg University Library]
  • 32 Rees DJ. A method for assessing the proportional relation of apical bases and contact diameters of the teeth. American Journal of Orthodontics 1953; 39: 695-707. DOI: 10.1016/0002-9416(53)90122-5.
  • 33 Vogel AB, Kilic F, Schmidt F, Rubel S, Lapatki BG. Dimensional accuracy of jaw scans performed on alginate impressions or stone models: A practice-oriented study. J Orofac Orthop 2015; 76: 351-365. DOI: 10.1007/s00056-015-0296-2.
  • 34 Vogel AB, Kilic F, Schmidt F, Rubel S, Lapatki BG. Optical 3D scans for orthodontic diagnostics performed on full-arch impressions. Completeness of surface structure representation. J Orofac Orthop 2015; 76: 493-507. DOI: 10.1007/s00056-015-0309-1.
  • 35 Breuckmann B (ed) Bildverarbeitung und optische Messtechnik in der industriellen Praxis. Grundlagen der 3D-Messtechnik, Farbbildanalyse, Holografie und Interferometrie mit zahlreichen praktischen Applikationen
  • 36 Duret F. Empreinte Optique. Lyon: Université Claude Bernard;; 1973
  • 37 Mörmann WH. The evolution of the CEREC system. J Am Dent Assoc 2006; 137 Suppl 7S-13S
  • 38 Zimmermann M, Mehl A, Mörmann WH, Reich S. Intraoral scanning systems - a current overview. Int J Comput Dent 2015; 18: 101-129
  • 39 Claus D, Radeke J, Zint M. et al. Generation of 3D digital models of the dental arches using optical scanning techniques. Seminars in Orthodontics 2018; 24: 416-429. DOI: 10.1053/j.sodo.2018.10.006.
  • 40 Sirona. Sirona Cerec® Bluecam. www.sirona.com. Accessed January 30, 2018
  • 41 Planmeca Oy. Planmeca Emerald™. www.planmeca.com; www.e4d.com. Accessed July 17, 2018
  • 42 Kienle A, Hibst R. Light guiding in biological tissue due to scattering. Phys Rev Lett 2006; 97: 18104. DOI: 10.1103/PhysRevLett.97.018104.
  • 43 Burhardt L, Livas C, Kerdijk W, van der Meer WJ, Ren Y. Treatment comfort, time perception, and preference for conventional and digital impression techniques: A comparative study in young patients. Am J Orthod Dentofacial Orthop 2016; 150: 261-267. DOI: 10.1016/j.ajodo.2015.12.027.
  • 44 Sirona. Sirona Cerec® Omnicam. www.sirona.com. Accessed January 30, 2018
  • 45 Mayhew J. The interpretation of stereo-disparity information: the computation of surface orientation and depth. Perception 1982; 11: 387-403 DOI: 10.1068/p110387.
  • 46 Molesini G, inventor. Profile measuring instrument: Patent
  • 47 Minski M, inventor. Microscopy apparatus: Patent
  • 48 Imburgia M, Logozzo S, Hauschild U, Veronesi G, Mangano C, Mangano FG. Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study. BMC Oral Health 2017; 17: 92. DOI: 10.1186/s12903-017-0383-4.
  • 49 Mangano FG, Veronesi G, Hauschild U, Mijiritsky E, Mangano C. Trueness and Precision of Four Intraoral Scanners in Oral Implantology: A Comparative in Vitro Study. PLoS ONE 2016; 11: e0163107 DOI: 10.1371/journal.pone.0163107.
  • 50 Molesini G, Pedrini G, Poggi P, Quercioli F. Focus-wavelength encoded optical profilometer. Optics Communications 1984; 49: 229-233. DOI: 10.1016/0030-4018(84)90179-2.
  • 51 Zint M, Stock K, Graser R, et al. Development and verification of a novel device for dental intra-oral 3D scanning using chromatic confocal technology. In: Mahadevan-Jansen A, Vo-Dinh T, Grundfest WS, Liu Q, eds. Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XIII. SPIE; 2015. SPIE Proceedings
  • 52 Voco GmbH. IO-Scan Intraoraler 3D-Scanner mit subgingivaler Zusatzfunktion. Accessed January 30, 2018
  • 53 Hsuan. Review of Intraoral Scanners at IDS 2017. http://www.cerecdigest.net/2017/04/14/ids-2017-intraoral-scanners-review-revised/. Accessed July 16, 2018
  • 54 Jouanjean G. Les empreintes optiques au cabinet dentaire. [Med Dent Diss]. Nantes: Université de Nantes;; 2013
  • 55 Duvert R, Gebeile-Chauty S. Is the precision of intraoral digital impressions in orthodontics enough?. Orthod Fr 2017; 88: 347-354. DOI: 10.1051/orthodfr/2017024.
  • 56 Flügge TV, Schlager S, Nelson K, Nahles S, Metzger MC. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am J Orthod Dentofacial Orthop 2013; 144: 471-478. DOI: 10.1016/j.ajodo.2013.04.017.
  • 57 Gan N, Xiong Y, Jiao T. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues. PLoS ONE 2016; 11: e0158800. DOI: 10.1371/journal.pone.0158800.
  • 58 Kamimura E, Tanaka S, Takaba M, Tachi K, Baba K. In vivo evaluation of inter-operator reproducibility of digital dental and conventional impression techniques. PLoS ONE 2017; 12: e0179188 DOI: 10.1371/journal.pone.0179188.
  • 59 Patzelt SBM, Bishti S, Stampf S, Att W. Accuracy of computer-aided design/computer-aided manufacturing-generated dental casts based on intraoral scanner data. J Am Dent Assoc 2014; 145: 1133-1140 DOI: 10.14219/jada.2014.87.
  • 60 Anh J-W, Park J-M, Chun Y-S, Kim M, Kim M. A comparison of the precision of three-dimensional images acquired by 2 digital intraoral scanners: Effects of tooth irregularity and scanning direction. Korean J Orthod 2016; 46: 3-12. DOI: 10.4041/kjod.2016.46.1.3.
  • 61 Lim J-H, Park J-M, Kim M, Heo S-J, Myung J-Y. Comparison of digital intraoral scanner reproducibility and image trueness considering repetitive experience. J Prosthet Dent 2017; DOI: 10.1016/j.prosdent.2017.05.002.
  • 62 Patzelt SBM, Emmanouilidi A, Stampf S, Strub JR, Att W. Accuracy of full-arch scans using intraoral scanners. Clin Oral Investig 2014; 18: 1687-1694. DOI: 10.1007/s00784-013-1132-y.
  • 63 Zimmermann M, Koller C, Rumetsch M, Ender A, Mehl A. Precision of guided scanning procedures for full-arch digital impressions in vivo. J Orofac Orthop 2017; 78: 466-471 DOI: 10.1007/s00056-017-0103-3.
  • 64 Grünheid T, McCarthy SD, Larson BE. Clinical use of a direct chairside oral scanner: An assessment of accuracy, time, and patient acceptance. Am J Orthod Dentofacial Orthop 2014; 146: 673-682. DOI: 10.1016/j.ajodo.2014.07.023.
  • 65 Kesling HD. Coordinating the predetermined pattern and tooth positioner with conventional treatment. American Journal of Orthodontics and Oral Surgery 1946; 32: 285-293. DOI: 10.1016/0096-6347(46)90053-1.
  • 66 Kesling HD. The diagnostic setup with consideration of the third dimension. Am J Orthod 1956; 740-748
  • 67 Barreto MS, Faber J, Vogel CJ, Araujo TM. Reliability of digital orthodontic setups. Angle Orthod 2016; 86: 255-259. DOI: 10.2319/120914-890.1.
  • 68 Grauer D, Proffit WR. Accuracy in tooth positioning with a fully customized lingual orthodontic appliance. Am J Orthod Dentofacial Orthop 2011; 140: 433–43. DOI: 10.1016/j.ajodo.2011.01.020.
  • 69 Wong BH. Invisalign A to Z. Am J Orthod Dentofacial Orthop 2002; 121: 540-541. DOI: 10.1067/mod.2002.123036.
  • 70 Hou D, Capote R, Bayirli B, Chan DCN, Huang G. The effect of digital diagnostic setups on orthodontic treatment planning. Am J Orthod Dentofacial Orthop 2020; 157: 542-549. DOI: 10.1016/j.ajodo.2019.09.008.
  • 71 Specht T, Kilic F, Schmidt F, Vogel AB, Lapatki BG Evaluation verschiedener Verfahren zur Registrierung der Lagebeziehung digitaler Kiefermodelle sowie deren Position zum 3D-Gesichtsscan; September 10, 2014