Ultraschall Med 2023; 44(01): e25-e38
DOI: 10.1055/a-1408-1998
Review

Reference Ranges for Vermis Biometry on Prenatal Ultrasound: Systematic Review and Meta-Analysis

Referenzbereiche für die Biometrie des Vermis cerebelli im pränatalen Ultraschall: Systematischer Überblick und Metaanalyse
1   Obstetrics and Gynecology Hadassah Medical Organization and Faculty of Medicine Hebrew University of Jerusalem Jerusalem, Israel
2   Obstetrics and Gynecology, Washington University in Saint Louis School of Medicine, Saint Louis, United States
,
Lauren H. Yaeger
3   Bernard Becker Medical Library, Washington University in Saint Louis School of Medicine, Saint Louis, United States
,
Shay Porat
1   Obstetrics and Gynecology Hadassah Medical Organization and Faculty of Medicine Hebrew University of Jerusalem Jerusalem, Israel
› Author Affiliations

Abstract

Purpose To conduct a systematic review and meta-analysis of published nomograms for fetal vermis biometry.

Materials and Methods A structured literature search was conducted to identify studies that reported normal measurements of the fetal vermis. A customized quality assessment tool was used to review the selected articles. Random effects meta-analysis was used to calculate normal ranges for vermian craniocaudal diameter, anteroposterior diameter, and surface area.

Results A total of 21 studies were included for qualitative review and 3 studies were included for quantitative synthesis. The 3 included articles comprised a total of 10 910 measurements from gestational ages 17–35 weeks. The quality assessment demonstrated that there was generally poor reporting regarding maternal characteristics and neonatal outcomes. Except for one article with a large sample size, the mean number of fetuses per week of gestational age was 15.9, with the lowest number being 5. There was significant statistical heterogeneity. Non-visualization rates ranged from 0–35.4 %. The craniocaudal diameter (reported in 3 articles) increased from a mean of 7.90 mm (95 % confidence interval [CI] 7.42, 8.38) at 17 weeks to 21.90 mm (95 % CI 20.63, 23.16) at 35 weeks gestation. The anteroposterior diameter (reported in 2 articles) increased from 6.30 mm (95 % CI 5.42, 7.18) at 17 weeks to 15.85 (95 %CI 15.49, 16.21) at 32 weeks.

Conclusion Reference ranges for vermis biometry across gestation based on meta-analysis of existing references are provided. However, because many of the underlying studies suffered from significant methodological issues, the ranges should be used with caution.

Zusammenfassung

Ziel Durchführung eines systematischen Reviews und Metaanalyse veröffentlichter Nomogramme für die Biometrie des fetalen Vermis cerebelli.

Material und Methoden Eine strukturierte Literaturrecherche wurde durchgeführt, um Studien zu identifizieren, die über normale Messungen des fetalen Vermis berichteten. Ein angepasstes Qualitätsbewertungs-Tool wurde verwendet, um die ausgewählten Artikel zu überprüfen. Eine Metaanalyse mit Random Effects wurde angewandt, um Normalbereiche für den kraniokaudalen Durchmesser des Vermis, den anteroposterioren Durchmesser und die Oberfläche zu berechnen.

Ergebnisse Insgesamt wurden 21 Studien zur qualitativen Überprüfung und 3 Studien zur quantitativen Synthese eingeschlossen. Die 3 eingeschlossenen Artikel umfassten insgesamt 10 910 Messungen von der 17.–35. SSW. Die Qualitätsbewertung zeigte, dass es im Allgemeinen eine schlechte Berichterstattung bezüglich mütterlicher Charakteristiken und des neonatalen Outcomes gab. Mit Ausnahme eines Artikels mit großer Stichprobengröße betrug die durchschnittliche Anzahl der Föten pro SSW 15,9, wobei die niedrigste Anzahl 5 betrug. Es gab eine signifikante statistische Heterogenität. Die Raten für Nichtdarstellbarkeit lagen zwischen 0 und 35,4 %. Der kraniokaudale Durchmesser (in 3 Artikeln angegeben) stieg von durchschnittlich 7,90 mm (95 %-Konfidenzintervall (KI) 7,42–8,38) in der 17. SSW auf 21,90 mm (95 %-KI 20,63–23,16) in der 35. SSW. Der anteroposteriore Durchmesser (in 2 Artikeln angegeben) stieg von 6,30 mm (95 %-KI 5,42–7,18) in der 17. SSW auf 15,85 mm (95 %-KI 15,49–16,21) in der 32. SSW.

Schlussfolgerung Basierend auf einer Metaanalyse bestehender Literatur werden Referenzbereiche für die Biometrie des Vermis nach Schwangerschaftsalter angegeben. Da jedoch viele der zugrunde liegenden Studien unter erheblichen methodischen Problemen litten, sollten diese Bereiche mit Vorsicht angewandt werden.



Publication History

Received: 14 July 2020

Accepted: 15 February 2021

Article published online:
09 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 International Society of Ultrasound in Obstetrics and Gynecology Education Committee. Sonographic examination of the fetal central nervous system: guidelines for performing the 'basic examination' and the 'fetal neurosonogram'. Ultrasound Obstet Gynecol 2007; 29: 109-116 . doi:10.1002/uog.3909
  • 2 Goldstein I, Tamir A, Reece EA. The fetal superior cerebellar vermian width in normal, growth-restricted and macrosomic fetuses. J Matern Fetal Med 2001; 10: 23-27
  • 3 Cignini P, Giorlandino M, Brutti P. et al Reference charts for fetal cerebellar vermis height: A prospective cross-sectional study of 10605 fetuses. PLoS One 2016; 11 DOI: 10.1371/journal.pone.0147528.
  • 4 Gezer C, Ekin A, Gezer NS. et al Quantitative evaluation of the fetal cerebellar vermis using the median view on two-dimensional ultrasound. Iranian Journal of Radiology 2016; 13 DOI: 10.5812/iranjradiol.34870.
  • 5 Ginath S, Lerman-Sagie T, Haratz Krajden K. et al The Fetal vermis, pons and brainstem: Normal longitudinal development as shown by dedicated neurosonography. Journal of Maternal-Fetal and Neonatal Medicine 2013; 26: 757-762 . doi:10.3109/14767058.2012.755508
  • 6 Huang CC, Liu CC. The differences in growth of cerebellar vermis between appropriate-for-gestational-age and small-for-gestational-age newborns. Early Hum Dev 1993; 33: 9-19 . doi:10.1016/0378-3782(93)90169-U
  • 7 Kapur RP, Mahony BS, Finch L. et al Normal and abnormal anatomy of the cerebellar vermis in midgestational human fetuses. Birth Defects Research Part A – Clinical and Molecular Teratology 2009; 85: 700-709 . doi:10.1002/bdra.20589
  • 8 Katorza E, Bertucci E, Perlman S. et al Development of the fetal vermis: New biometry reference data and comparison of 3 diagnostic modalities-3d ultrasound, 2d ultrasound, and mr imaging. American Journal of Neuroradiology 2016; 37: 1359-1366 . doi:10.3174/ajnr.A4725
  • 9 Lei T, Xie HN, Zhu YX. et al Date-Independent Parameters: an Innovative Method to Assess Fetal Cerebellar Vermis. Cerebellum 2015; 14: 231-239 . doi:10.1007/s12311-014-0632-x
  • 10 Liu W, Cai AL, Zhao D. et al Evaluation of the fetal cerebellar vermis with three-dimensional ultrasound VOCAL technique. Chinese Journal of Medical Imaging Technology 2008; 24: 1795-1798
  • 11 Malinger G, Ginath S, Lerman-Sagie T. et al The fetal cerebellar vermis: normal development as shown by transvaginal ultrasound. Prenat Diagn 2001; 21: 687-692 . doi:10.1002/pd.137
  • 12 Rizzo G, Pietrolucci ME, Mammarella S. et al Assessment of cerebellar vermis biometry at 18–32 weeks of gestation by three-dimensional ultrasound examination. Journal of Maternal-Fetal and Neonatal Medicine 2012; 25: 519-522 . doi:10.3109/14767058.2011.622006
  • 13 Spinelli M, Sica C, Meglio LD. et al Fetal Cerebellar Vermis Circumference Measured by 2-Dimensional Ultrasound Scan: Reference Range, Feasibility and Reproducibility. Ultrasound International Open 2016; 2: E124-E128
  • 14 Viñals F, Muñoz M, Naveas R. et al The fetal cerebellar vermis: Anatomy and biometric assessment using volume contrast imaging in the C-plane (VCI-C). Ultrasound Obstet Gynecol 2005; 26: 622-627 . doi:10.1002/uog.2606
  • 15 Xie JX, You JH, Chen XK. et al Three-dimensional sonographic minute structure analysis of fetal cerebellar vermis development and malformations: utilizing volume contrast imaging. Journal of Medical Ultrasonics 2019; 46: 113-122 . doi:10.1007/s10396-018-0906-x
  • 16 Yang J, Yuan JJ, Qu XZ. Three-dimensional ultrasound visualization for fetal corpus callosum and cerebellar vermis midline image. Chinese Journal of Medical Imaging Technology 2012; 28: 1574-1576
  • 17 Zalel Y, Seidman DS, Brand N. et al The development of the fetal vermis: An in-utero sonographic evaluation. Ultrasound Obstet Gynecol 2002; 19: 136-139 . doi:10.1046/j.0960-7692.2001.00621.x
  • 18 Zalel Y, Yagel S, Achiron R. et al Three-dimensional ultrasonography of the fetal vermis at 18 to 26 weeks' gestation: Time of appearance of the primary fissure. J Ultrasound Med 2009; 28: 1-8 . doi:10.7863/jum.2009.28.1.1
  • 19 Zhang XW, Xie LM. Measurement of fetal vermis using OmniView combining with volume contrast imaging technology with three-dimensional ultrasound. Chinese Journal of Medical Imaging Technology 2012; 28: 1706-1708
  • 20 Zhao D, Cai A, Zhang J. et al 3D ultrasonography and MRI quantitative evaluation of fetal cerebellar vermis. Chinese Journal of Medical Imaging Technology 2016; 32: 109-114 . doi:10.13929/j.1003-3289.2016.01.028
  • 21 Zhao D, Cai A, Zhang J. et al Measurement of normal fetal cerebellar vermis at 24–32 weeks of gestation by transabdominal ultrasound and magnetic resonance imaging: A prospective comparative study. Eur J Radiol 2018; 100: 30-35 . doi:10.1016/j.ejrad.2018.01.013
  • 22 Zhao D, Liu W, Cai A. et al Quantitative evaluation of the fetal cerebellar vermis using the median view on three-dimensional ultrasound. Prenat Diagn 2013; 33: 153-157 . doi:10.1002/pd.4027
  • 23 Achiron R, Kivilevitch Z, Lipitz S. et al Development of the human fetal pons: In utero ultrasonographic study. Ultrasound Obstet Gynecol 2004; 24: 506-510 . doi:10.1002/uog.1731
  • 24 Bertucci E, Gindes L, Mazza V. et al Vermian biometric parameters in the normal and abnormal fetal posterior fossa: three-dimensional sonographic study. Journal of ultrasound in medicine: official journal of the American Institute of Ultrasound in Medicine 2011; 30: 1403-1410
  • 25 Leibovitz Z, Shkolnik C, Haratz KK. et al Assessment of fetal midbrain and hindbrain in mid-sagittal cranial plane by three-dimensional multiplanar sonography. Part 1: comparison of new and established nomograms. Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology 2014; 44: 575-580 . doi:10.1002/uog.13308
  • 26 Altmann R, Scharnreitner I, Scheier T. et al Sonoembryology of the fetal posterior fossa at 11 + 3 to 13 + 6 gestational weeks on three-dimensional transvaginal ultrasound. Prenat Diagn 2016; 36: 731-737 . doi:10.1002/pd.4852
  • 27 Altmann R, Specht C, Scharnreitner I. et al Reference Ranges for Transvaginal Examined Fossa Posterior Structures in Fetuses from 45 to 84 mm Crown-Rump Length. Gynecol Obstet Invest 2018; 83: 375-380 . doi:10.1159/000486334
  • 28 Paladini DVP. Posterior fossa and vermian morphometry in the characterization of fetal cerebellar abnormalities: A prospective three-dimensional ultrasound study. Ultrasound Obstet Gynecol 2006; 27: 482-489 . doi:10.1002/uog.2748
  • 29 Mirlesse V, Courtiol C, Althuser M. et al Ultrasonography of the fetal brainstem: A biometric and anatomical, multioperator, cross-sectional study of 913 fetuses of 21–36 weeks of gestation. Prenat Diagn 2010; 30: 739-745 . doi:10.1002/pd.2501
  • 30 Khan K, Chief Editors of Journals participating in The Crown Initiative. The CROWN Initiative: journal editors invite researchers to develop core outcomes in women's health. Ultrasound Obstet Gynecol 2014; 44: 497-498 . doi:10.1002/uog.14625
  • 31 Oros D, Ruiz-Martinez S, Staines-Urias E. et al Reference ranges for Doppler indices of umbilical and fetal middle cerebral arteries and cerebroplacental ratio: systematic review. Ultrasound Obstet Gynecol 2019; 53: 454-464 . doi:10.1002/uog.20102
  • 32 Moher D, Liberati A, Tetzlaff J. et al Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097 . doi:10.1371/journal.pmed.1000097
  • 33 Raisi-Estabragh Z, Kenawy AAM, Aung N. et al Variation in left ventricular cardiac magnetic resonance normal reference ranges: systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging 2020; DOI: 10.1093/ehjci/jeaa089.
  • 34 Levy PT, Sanchez Mejia AA, Machefsky A. et al Normal ranges of right ventricular systolic and diastolic strain measures in children: a systematic review and meta-analysis. J Am Soc Echocardiogr 2014; 27: 549-560.e543 . doi:10.1016/j.echo.2014.01.015
  • 35 Wan X, Wang W, Liu J. et al Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014; 14: 135 . doi:10.1186/1471-2288-14-135
  • 36 Der Simonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-188 . doi:10.1016/0197-2456(86)90046-2
  • 37 Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Wiley; 2011
  • 38 Carter EB, Temming LA, Akin J. et al Group Prenatal Care Compared With Traditional Prenatal Care: A Systematic Review and Meta-analysis. Obstet Gynecol 2016; 128: 551-561 . doi:10.1097/AOG.0000000000001560
  • 39 Bramer WM, Giustini D, de Jonge GB. et al De-duplication of database search results for systematic reviews in EndNote. J Med Libr Assoc 2016; 104: 240-243 . doi:10.3163/1536-5050.104.3.014
  • 40 Guibaud L, des Portes V. Plea for an anatomical approach to abnormalities of the posterior fossa in prenatal diagnosis. Ultrasound Obstet Gynecol 2006; 27: 477-481 . doi:10.1002/uog.2777
  • 41 Malinger G, Lev D, Lerman-Sagie T. The fetal cerebellum. Pitfalls in diagnosis and management. Prenat Diagn 2009; 29: 372-380 . doi:10.1002/pd.2196
  • 42 Carroll SG, Porter H, Abdel-Fattah S. et al Correlation of prenatal ultrasound diagnosis and pathologic findings in fetal brain abnormalities. Ultrasound Obstet Gynecol 2000; 16: 149-153 . doi:10.1046/j.1469-0705.2000.00199.x
  • 43 Nevo D, Mandel M, Ein-Mor E. et al A comparison of methods for construction of fetal reference charts. Stat Med 2016; 35: 1226-1240 . doi:10.1002/sim.6774
  • 44 Wellek S, Lackner KJ, Jennen-Steinmetz C. et al Determination of reference limits: statistical concepts and tools for sample size calculation. Clin Chem Lab Med 2014; 52: 1685-1694 . doi:10.1515/cclm-2014-0226
  • 45 Melamed N, Ray JG, Shah PS. et al Should we use customized fetal growth percentiles in urban Canada?. J Obstet Gynaecol Can 2014; 36: 164-170 . doi:10.1016/s1701-2163(15)30663-0
  • 46 Gardosi J, Francis A, Turner S. et al Customized growth charts: rationale, validation and clinical benefits. Am J Obstet Gynecol 2018; 218: S609-S618 . doi:10.1016/j.ajog.2017.12.011
  • 47 Smith NA, Bukowski R, Thomas AM. et al Identification of pathologically small fetuses using customized, ultrasound and population-based growth norms. Ultrasound Obstet Gynecol 2014; 44: 595-599 . doi:10.1002/uog.13333