CC BY-NC-ND 4.0 · Int J Sports Med 2021; 42(10): 863-878
DOI: 10.1055/a-1481-8683
Review

Current Insights into the Steroidal Module of the Athlete Biological Passport

Thomas Piper
1   Center for Preventive Doping Research – Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
,
Hans Geyer
1   Center for Preventive Doping Research – Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
,
Nadine Haenelt
1   Center for Preventive Doping Research – Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
,
Frank Huelsemann
1   Center for Preventive Doping Research – Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
,
Wilhelm Schaenzer
1   Center for Preventive Doping Research – Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
,
Mario Thevis
1   Center for Preventive Doping Research – Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
2   European Monitoring Center for Emerging Doping Agents (EuMoCEDA) Cologne/Bonn Germany
› Institutsangaben

Abstract

For decades, the class of anabolic androgenic steroids has represented the most frequently detected doping agents in athletes’ urine samples. Roughly 50% of all adverse analytical findings per year can be attributed to anabolic androgenic steroids, of which about 2/3 are synthetic exogenous steroids, where a qualitative analytical approach is sufficient for routine doping controls. For the remaining 1/3 of findings, caused by endogenous steroid-derived analytical test results, a more sophisticated quantitative approach is required, as their sheer presence in urine cannot be directly linked to an illicit administration. Here, the determination of urinary concentrations and concentration ratios proved to be a suitable tool to identify abnormal steroid profiles. Due to the large inter-individual variability of both concentrations and ratios, population-based thresholds demonstrated to be of limited practicability, leading to the introduction of the steroidal module of the Athlete Biological Passport. The passport enabled the generation of athlete-specific individual reference ranges for steroid profile parameters. Besides an increase in sensitivity, several other aspects like sample substitution or numerous confounding factors affecting the steroid profile are addressed by the Athlete Biological Passport-based approach. This narrative review provides a comprehensive overview on current prospects, supporting professionals in sports drug testing and steroid physiology.



Publikationsverlauf

Eingereicht: 24. Dezember 2020

Angenommen: 07. April 2021

Artikel online veröffentlicht:
28. Mai 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Donike M, Zimmer J. Zur Darstellung von Trimethylsilyl-, Triethylsilyl- und tert.-Butyldimethyl-silyl-enoläthern von Ketosteroiden für gas-chromatographische und massenspektroskopische Untersuchungen. J Chromatogr A 1980; 202: 483-486
  • 2 Donike M, Bärwald KR, Klosterman K. et al. Nachweis von exogenem Testosteron. In: Heck H, Hollmann W, Liesen H, Rost R, Eds. Sport: Leistung und Gesundheit. Köln: Deutscher Ärzteverlag; 1983: 293-298
  • 3 Shackelton CHL, Charro-Salgado AL, Mitchel FL. Urinary neutral steroid profile analysis in adults and infants. Clin Chim Acta 1968; 24: 105-118
  • 4 Pfeiffer P, Spiteller G. Steroid profiles of healthy individuals. J Chromatogr B Biomed Appl 1981; 223: 21-32
  • 5 Baba S, Shinohara Y, Kasuya Y. Differentiation between endogenous and exogenous testosterone in human plasma and urine after oral administration of deuterium-labeled testosterone by mass fragmentography. J Clin Enocrin Metab 1980; 50: 889-894
  • 6 Shinohara Y, Baba S, Kasuya Y. Absorption, metabolism, and excretion of oral testosterone in humans by mass fragmentography. J Clin Enocrin Metab 1980; 51: 1459-1462
  • 7 Ueki M, Okano M. Doping with naturally occurring steroids. J Toxicol Toxin Rev 1999; 18: 177-195
  • 8 Ayotte C, Goudreault D, Charlebois A. Testing for natural and synthetic anabolic agents in human urine. J Chromatogr B Biomed Appl 1996; 687: 3-25
  • 9 de la Torre X, Segura J, Yang Z. et al. Testosterone detection in different ethnic groups. In: Schänzer W, Geyer H, Gotzmann A et al. Eds. Recent Advances in Doping Analysis (4). Köln: Sport und Buch Strauß; 1997: 71-89
  • 10 Geyer H, Mareck-Engelke U, Schänzer W. et al. The Cologne Protocol to Follow up High Testosterone/Epitestosterone Ratios. In: Schänzer W, Geyer H, Gotzmann A, Mareck-Engelke U Eds. Recent Advances in Doping Analysis (4). Köln: Sport und Buch Strauß; 1997: 107-125
  • 11 Donike M, Ueki M, Kuroda Y. et al. Detection of dihydrotestosterone (DHT) doping: alterations in the steroid profile and reference ranges for DHT and ist 5α-metabolites. J Sports Med Phys Fitness 1995; 35: 235-250
  • 12 Becchi M, Aguilera R, Farizon Y. et al. Gas chromatograhy/combustion/isotope ratio mass spectrometry analysis of urinary steroids to detect misuse of testosterone in sport. Rapid Commun Mass Spectrom 1994; 8: 304-308
  • 13 Ueki M, Okano M. Analysis of exogenous dehydroepiandrosterone excretion in urine by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 1999; 13: 2237-2243
  • 14 Piper T, Emery C, Saugy M. Recent developments in the use of isotope ratio mass spectrometry in sports drug testing. Anal Bioanal Chem 2011; 401: 433-447
  • 15 WADA Laboratory Committee. WADA Technical Document – TD2004EAAS https://www.wada-ama.org/sites/default/files/resources/files/WADA-TD2004-EAAS-Reporting-and-Evaluation-Guidance-for-Testosterone%2C-Epitestosterone%2C-T-E-Ratio-and-Other-Endogenous-Steroids.pdf Accessed 23.11.2020
  • 16 Piper T, Flenker U, Mareck U. et al. 13C/12C Ratios of endogenous urinary steroids investigated for doping control purposes. Drug Test Anal 2009; 1: 65-72
  • 17 WADA Laboratory Expert Group. WADA Technical Document – TD2014EAAS https://www.wada-ama.org/sites/default/files/resources/files/wada-td2014eaas-v1.0-endogenous-anabolic-androgenic-steroids-measurement-and-reporting-en.pdf Accessed 23.11.2020
  • 18 WADA Laboratory Expert Group. WADA Technical Document – TD2018EAAS https://www.wada-ama.org/sites/default/files/resources/files/td2018eaas_final_eng.pdf Accessed 23.11.2020
  • 19 Sottas PE, Baume N, Saudan C. et al. Bayesian detection of abnormal values in longitudinal biomarkers with an application to T/E ratio. Biostatistics 2007; 8: 285-296
  • 20 Sottas PE, Saugy M, Saudan C. Endogenous Steroid Profiling in the Athlete Biological Passport. Endocrinol Metab Clin N Am 2010; 39: 59-73
  • 21 WADA. WADA Technical Document – TD2021APMU https://www.wada-ama.org/sites/default/files/resources/files/td2021apmu_final_eng.pdf Accessed 25.02.2021
  • 22 Jakobsson J, Ekström L, Inotsume N. et al. Large differences in testosterone excretion in Korean and Swedish men are strongly associated with a UDP-glucuronosyl transferase 2B17 Polymorphism. J Clin Endocrinol Metab 2006; 91: 687-693
  • 23 Strahm E, Sottas PE, Schweizer C. et al. Steroid profiles of professional soccer players: An international comparative study. Br J Sports Med 2009; 43: 1126-1130
  • 24 Okano M, Ueda T, Nishitani Y. et al. UDP-glucuronosyltransferase 2B17 genotyping in Japanese athletes and evaluation of the current sports drug testing for detecting testosterone misuse. Drug Test Anal 2013; 5: 166-181
  • 25 WADA. 2019 anti-doping testing figures https://www.wada-ama.org/sites/default/files/resources/files/2019_anti-doping_testing_figures_en.pdf accessed 23.12.2020
  • 26 Schulze JJ, Lundmark J, Garle M. et al. Doping test results dependent on genotype of uridine diphospho-glucuronosyl transferase 2B17, the major enzyme for testosterone glucuronidation. J Clin Endocrinol Metab 2008; 93: 2500-2506
  • 27 Strahm E, Mullen JE, Garevik N. et al. Dose-dependent testosterone sensitivity of the steroidal passport and GC-C-IRMS analysis in relation to the UGT2B17 deletion polymorphism. Drug Test Anal 2015; 7: 1063-1070
  • 28 Nair VS, Husk J, Miller GD. et al. Evaluation of longitudinal steroid profiling with the ADAMS adaptive model for detection of transdermal, intramuscular, and subcutaneous testosterone administration. Drug Test Anal 2020; 12: 1419-1431
  • 29 Mullen J, Börjesson A, Hopcraft O. et al. Sensitivity of doping biomarkers after administration of a single dose testosterone gel. Drug Test Anal 2018; 10: 839-848
  • 30 Buisson C, Frelat C, Privat K. et al. Metabolic and isotopic signature of short-term DHEA administration in women: Comparison with findings in men. Drug Test Anal 2018; 10: 1744-1754
  • 31 Geyer H, Fusshoeller G, Haenelt N et al.. The ratio 5aAdiol/E as indicator for the detection of T-doping in athletes with naturally low T/E – a case study. In: Thevis M, Geyer H, Mareck U Eds Recent Advances In Doping Analysis (28). Köln: Sport und Buch Strauß; 2020. in press
  • 32 Mareck-Engelke U, Geyer H, Donike M. Stability of steroid profiles. In: Donike M, Geyer H, Gotzmann A et al. Eds. Recent Advances in Doping Analysis. Köln: Sport und Buch Strauß; 1993: 87-89
  • 33 Mareck-Engelke U, Geyer H, Donike M. et al. Stability of Steroid Profiles (4): The circadian rhythm of urinary ratios and excretion rates of endogenous steroids in female and its menstrual dependency. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U Eds. Recent Advances in Doping Analysis (2). Köln: Sport und Buch Strauß; 1995: 135-155
  • 34 Mareck-Engelke U, Flenker U, Schänzer W. et al. Stability of steroid profiles (6): The Influence of oral contraceptives on steroid profiles. In: Schänzer W, Geyer H, Gotzmann A et al. Eds Recent Advances in Doping Analysis (4). Köln: Sport und Buch Strauß; 1997: 139-157
  • 35 Ekström L, Knutsson JE, Mullen J. et al. Impact of hormonal contraceptives on urinary steroid profile in relation to serum hormone changes and CYP17A1 polymorphism. Drug Test Anal 2019; 11: 1284-1289
  • 36 Schulze J, Suominen T, Bergström H. et al. Urinary steroid profile in relation to the menstrual cycle. Drug Test Anal 2020; DOI: 10.1002/dta.2960.
  • 37 Southan GJ, Brooks RV, Cowan DA. et al. Possible indices for the detection of the administration of dihydrotestosterone to athletes. J Steroid Biochem Molec Biol 1992; 42: 87-94
  • 38 Kicman AT, Coutts SB, Walker CJ. et al. Proposed confirmatory procedure for detecting 5α-dihydrotestosterone doping in male athletes. Clin Chem 1995; 41: 1617-1627
  • 39 Piper T, Putz M, Schänzer W. et al. Epiandrosterone sulfate prolongs the detectability of testosterone, 4-androstenedione, and dihydrotestosterone misuse by means of carbon isotope ratio mass spectrometry. Drug Test Anal 2017; 9: 1695-1703
  • 40 Mareck U, Geyer H, Opfermann G. et al. Factors influencing the steroid profile in doping control analysis. J Mass Spectrom 2008; 43: 877-891
  • 41 Kuuranne T, Saugy M, Baume N. Confounding factors and genetic polymorphism in the evaluation of individual steroid profiling. Br J Sports Med 2014; 48: 848-855
  • 42 Cronholm T, Sjövall J. Effect of ethanol on the concentrations of solvolyzable plasma steroids. Biochim Biophys Acta 1968; 152: 233-236
  • 43 Falk O, Palonek E, Björkhem I. Effect of Ethanol on the Ratio between Testosterone and Epitestosterone in Urine. Clin Chem 1988; 34: 1462-1464
  • 44 Mareck-Engelke U, Geyer H. et al. Influence of ethanol on steroid profile parameters. In: Donike M, Geyer H, Gotzmann A et al. Eds. Recent Advances in Doping Analysis (3). Köln: Sport und Buch Strauß; 1996: 143-155
  • 45 Seppenwoolde-Waasdorp TJA, de Boer D, Van Engelen HMJ. et al. Evaluation of endogenous steroid profiles in urine (2) effects of ethanol intake reinvestigated. In: Donike M, Geyer H, Gotzmann A, et al. Eds Recent Advances in Doping Analysis (3). Köln: Sport und Buch Strauß; 1996: 157-165
  • 46 Thieme D, Grosse J, Keller L, Graw M. Urinary concentrations of ethyl glucuronide and ethyl sulfate as thresholds to determine potential ethanol-induced alteration of steroid profiles. Drug Test Anal 2011; 3: 851-856
  • 47 Albeiroti S, Ahrens BD, Sobolevskii T. et al. The influence of small doses of ethanol on the urinary testosterone to epitestosterone ratio in men and women. Drug Test Anal 2018; 10: 575-583
  • 48 Geyer H, Mareck U, Haenelt N. et al. Atypical steroid profiles in connection with ethanol findings in urine. In: Schänzer W, Geyer H, Gotzmann A et al. Eds. Recent Advances In Doping Analysis (17). Köln: Sport und Buch Strauß; 2009: 261-264
  • 49 Mullen JE, Thörngren JO, Schulze JJ. et al. Urinary steroid profile in females - the impact of menstrual cycle and emergency contraceptives. Drug Test Anal 2017; 9: 1034-1042
  • 50 Freeman DA. Steroid hormone-producing tumors in man. Endocr Rev 1986; 2: 204-220
  • 51 Bassi F, Giusti G, Borsi L. et al. Plasma androgens in women with hyperprolactiaemic amenorrhoea. Clin Endocrinol 1977; 6: 5-10
  • 52 Lobo RA, Kletzky OA. Normalization of androgen and sex hormone-binding globulin levels after treatment of hyperprolactinemia. J Clin Endocrinol Metab 1983; 56: 562-566
  • 53 Lee SH, Nam SY, Chung BC. Altered profile of endogeneous steroids in the urine of patients with prolactinoma. Clin Biochem 1998; 31: 529-535
  • 54 Magrini G, Ebiner JR, Burckhardt P. et al. Study on the relationship between plasma prolactin levels and androgen metabolism in man. J Clin Endocrinol Metab 1976; 43: 944-947
  • 55 Bernini GP, Gasperi M, Franchi F. et al. Effects of sulpiride induced hyperprolactinemia on testosterone secretion and metabolism before and after HCG in normal men. J Endocrinol Invest 1983; 6: 287-291
  • 56 Roke Y, van Harten PN, Buitelaar JK. et al. Antipsychotic-induced hyperprolactinemia and testosterone levels in boys. Horm Res Paediatr 2012; 77: 235-240
  • 57 La Torre D, Falorni A. Pharmacological causes of hyperprolactinemia. Ther Clin Risk Manag 2007; 3: 929-951
  • 58 Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 2000; 21: 55-89
  • 59 Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annu Rev Physiol 2005; 67: 259-284
  • 60 Romero LM, Butler LK. Endocrinology of stress. Int J Comp Psychol 2007; 20: 89-95
  • 61 Cuezennec CY, Lafarge JP, Bricout VA. et al. Effect of competition stress on tests used to assess testosterone administration in athletes. Int J Sports Med 1995; 16: 368-372
  • 62 Neave N, Wolfson S. Testosterone, territoriality, and the ‘home advantage’. Physiol Behav 2003; 78: 269-275
  • 63 Carré JM. No Place Like Home: Testosterone Responses to Victory Depend on Game Location. Am J Hum Biol 2009; 21: 392-394
  • 64 R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria URL Accessed 07.12.2020
  • 65 Kjeld JM, Puah CM, Joplin GF. Rise of unconjugated sex hormones in human urine on storage. Clin Chim Acta 1977; 80: 285-291
  • 66 Hemmersbach P, Birkeland KI, Norli HR. et al. Urine storage conditions and steroid profile analysis. In: Schänzer W, Geyer H, Gotzmann A et al. Eds Recent Advances in Doping Analysis (4). Köln: Sport und Buch Strauß; 1997: 99-107
  • 67 Ayotte C, Charlebois A, Lapointe S. et al. Validity of urine samples: microbial degradation. In: Schänzer W, Geyer H, Gotzmann A et al. Eds Recent Advances in Doping Analysis (4). Köln: Sport und Buch Strauß; 1997: 127-137
  • 68 De la Torre R, de la Torre X, Alia C. et al. Changes in androgenic steroid profile due to urine contamination by microorganisms: A prospective study in the context of doping control. Anal Biochem 2001; 289: 116-123
  • 69 Tsivou M, Livadra D, Georgakopoulos DG. et al. Stabilization of human urine doping control samples: II. Microbial degradation of steroids. Anal Biochem 2009; 388: 146-154
  • 70 Ojanperä S, Leinonen A, Apajalahti J. et al. Characterization of microbial contaminants in urine. Drug Test Anal 2010; 2: 576-581
  • 71 Mazzarino M, Abate MG, Alocci R. et al. Urine stability and steroid profile: Towards a screening index of urine sample degradation for anti-doping purpose. Anal Chim Acta 2011; 683: 221-226
  • 72 Piper T, Geyer H, Schänzer W. Degradation of urine samples and its influence on the 13C/12C ratios of excreted steroids. Drug Test Anal 2010; 2: 620-629
  • 73 WADA Laboratory Expert Group. WADA Technical Document – TD2019IRMS https://www.wada-ama.org/sites/default/files/td2019irms_final_eng_clean.pdf accessed 15.12.2020
  • 74 Coll S, Matabosch X, Garrotas L. et al. Effect of glucocorticoid administration on the steroid profile. Drug Test Anal 2018; 10: 947-955
  • 75 Mazzarino M, Bragano MC, de la Torre X. et al. Relevance of the selective oestrogen receptor modulators tamoxifen, toremifene and clomiphene in doping field: endogenous steroids urinary profile after multiple oral doses. Steroids 2011; 76: 1400-1406
  • 76 Coll S, Matabosch X, Garrotas L. et al. The effect of tea consumption on the steroid profile. Drug Test Anal 2018; 10: 1438-1447
  • 77 Piper T, Heimbach S, Adamczewski M. et al. An in vitro assay approach to investigate the potential impact of different doping agents on the steroid profile. Drug Test Anal 2020; 1-13. Online ahead of print DOI: 10.1002/dta.2991.
  • 78 Thevis M, Geyer H, Mareck U. et al. Doping-control analysis of the 5α-reductase inhibitor finasteride: determination of its influence on urinary steroid profiles and detection of its major urinary metabolites. Ther Drug Monit 2007; 29: 236-247
  • 79 World Anti-Doping Agency. Prohibited List – January 2020 Accessed 08.12.2020
  • 80 Thevis M, Geyer H, Sigmund G. et al. Sports drug testing: Analytical aspects of selected cases of suspected, purported, and proven urine manipulation. J Pharm Biomed Anal 2012; 57: 26-32
  • 81 Thevis M, Krug O, Geyer H. et al. Analytical challenges in sports drug testing. Anal Bioanal Chem 2018; 410: 2275-2281
  • 82 Geyer H, Berschick P, Mareck-Engelke U. et al. DNA Typing for the confirmation of manipulation in dope control. In: Schänzer W, Geyer H, Gotzmann A et al. Eds Recent advances in doping analysis (5). Köln: Sport und Buch Strauß; 1998. 301.
  • 83 Thevis M, Geyer H, Mareck U. et al. Detection of manipulation in doping control urine sample collection: a multidisciplinary approach to determine identical urine samples. Anal Bioanal Chem 2007; 399: 1539-1543
  • 84 van Renterghem P, van Eenoo P, Geyer H. et al. Reference ranges of urinary concentrations and ratios of endogenous steroids, which can be used as markers for steroid misuse, in a Caucasian population of athletes. Steroids 2010; 75: 154-163
  • 85 van Renterghem van Eenoo P, Sottas PE. et al. A pilot study on subject-based comprehensive steroid profiling: novel biomarkers to detect testosterone misuse in sports. Clin Endocrinol (Oxf) 2011; 75: 134-140
  • 86 Polet M, Van Renterghem P, Van Gansbeke W et al. Studies on the minor metabolite 6α-hydroxy-androstenedione for doping control puposes and ist contribution to the steroid profile. Drug Test Anal 2014; 6: 978-984
  • 87 Kotronoulasa A, Gomez-Gómez À, Fabregat A. et al. Evaluation of markers out of the steroid profile for the screening of testosterone misuse. Part I: transdermal administration. Drug Test Anal 2018; 10: 821-831
  • 88 Esquivel A, Alechaga E, Monfort N. et al. Evaluation of sulfate metabolites as markers of intramuscular testosterone administration in Caucasian and Asian populations. Drug Test Anal 2019; 11: 1218-1230
  • 89 Amante E, Pruner S, Alladio E. et al. Multivariate interpretation of the urinary steroid profile and training-induced modifications. The case study of a marathon runner. Drug Test Anal 2019; 11: 1556-1565
  • 90 Saad K, Vonaparti A, Athanasiadou I. et al. Population reference ranges of urinary endogenous sulfate steroids concentrations and ratios as complement to the steroid profile in sports antidoping. Steroids 2019; 152: 108477
  • 91 French D. Advances in bioanalytical techniques to measure steroid hormones in serum. Bioanalysis 2016; 8: 1203-1219
  • 92 Ponzetto F, Mehl F, Boccard J. et al. Longitudinal monitoring of endogenous steroids in human serum by UHPLC-MS/MS as a tool to detect testosterone abuse in sports. Anal Bioanal Chem 2016; 408: 705-719
  • 93 Handelsman DJ, Bermon S. Detection of testosterone doping in female athletes. Drug Test Anal 2019; 11: 1566-1571
  • 94 Elmongy H, Masquelier M, Ericsson M. Development and validation of a UHPLC-HRMS method for the simultaneous determination of the endogenous anabolic androgenic steroids in human serum. J Chromatogr A 2020; 1613: 460686
  • 95 Salamin O, Ponzetto F, Cauderay M. et al. Development and validation of an UHPLC–MS/MS method for extended serum steroid profiling in female populations. Bioanalysis 2020; 12: 753-768
  • 96 Knutsson JE, Andersson A, Baekken LV. et al. Disposition of urinary and serum steroid metabolites in response to testosterone administration in healthy women. J Clin Endocrinol Metab 2021; 106: 697-707
  • 97 Piper T, Geyer H, Nieschlag E. et al. Carbon isotope ratios of endogenous steroids found in human serum – method development, validation and reference population derived thresholds submitted to Anal Bioanal Chem.
  • 98 De la Torre X, Segura J, Polettini A et al. Detection of Testosterone Esters in Human Plasma by GC/MS and GC/MS/MS. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, Eds. Recent Advances in Doping Analysis (2). Köln: Sport und Buch Strauß; 1995: 59–80
  • 99 Forsdahl G, Vatne HK, Geisendorfer T. et al. Screening of testosterone esters in human plasma. Drug Test Anal 2013; 5: 826-833
  • 100 Tretzel L, Thomas A, Geyer H. et al. Use of dried blood spots in doping control analysis of anabolic steroid esters. J Pharm Biomed Anal 2014; 96: 21-30
  • 101 Forsdahl G, Erceg D, Geisendorfer T. et al. Detection of testosterone esters in blood. Drug Test Anal 2015; 7: 983-989
  • 102 De la Torre X, Iannone M, Botre F. Improving the detection of anabolic steroid esters in human serum by LC-MS. J Pharm Biomed Anal 2021; 194: 113807
  • 103 Cawley A, Collins M, Kazlauskas R. et al. Stable isotope ratio profiling of testosterone preparations. Drug Test Anal 2010; 2: 557-567
  • 104 Forsdahl G, Östreicher C, Koller M, Gmeiner G. Carbon isotope ratio determination and investigation of seized testosterone preparations. Drug Test Anal 2011; 3: 814-819
  • 105 de la Torre X, Gonzáles JC, Pichini S. et al. 13C/12C Isotope Ratio MS analysis of testosterone, in chemicals and pharmaceutical preparations. J Pharm Biomed Anal 2001; 24: 645-650
  • 106 Piper T, Thomas A, Thevis M. et al. Investigations on hydrogen isotope ratios of endogenous urinary steroids: reference population- based thresholds and proof-of-concept. Drug Test Anal 2012; 4: 717-727
  • 107 Jardines D, Botrè F, Colamonici C. et al. Longitudinal evaluation of the isotope ratio mass spectrometric data: towards the "isotopic module" of the athletic biological passport. Drug Test Analyis 2016; 8: 1212-1221
  • 108 Flenker U, Riemann P, Hülsemann F. et al. Intracrine androgen metabolism. Fundamentals and a new approach to make use of 13C/12C signals of endogenous Steroids. In: Thevis M, Geyer H, Mareck U Eds Recent Advances in Doping Analysis (26). Köln: Sportverlag Strauß; 2018: 36-42
  • 109 Harriss DJ, Macsween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817