Aktuelle Urol 2021; 52(05): 452-463
DOI: 10.1055/a-1517-6259
Übersicht

Biomarker: der Weg zur individualisierten Therapie bei Nierenzelltumoren

Biomarkers for renal cell tumours
Klinik für Urologie und Kinderurologie, Universitätsklinikum des Saarlandes, Homburg/Saar
,
Angela Zaccagnino
Klinik für Urologie und Kinderurologie, Universitätsklinikum des Saarlandes, Homburg/Saar
,
Klinik für Urologie und Kinderurologie, Universitätsklinikum des Saarlandes, Homburg/Saar
› Author Affiliations

Zusammenfassung

In den letzten drei Jahrzehnten wurden Nierentumore, basierend auf histopathologischen und molekularen Merkmalen, immer umfassender differenziert. Dies hat inzwischen eine zunehmend größere Bedeutung für die klinische Praxis, da differenzierte Therapieoptionen sowohl für die organbegrenzten als auch für die metastasierten Nierenzelltumore zur Verfügung stehen. Die Kenntnis der molekularen Veränderungen ist Voraussetzung für die Entwicklung, aber auch für die differenzierte Anwendung zielgerichteter systemischer Therapieverfahren. Diese Arbeit gibt einerseits einen Überblick über die molekulare Differenzierung der Nierentumore, andererseits werden molekulare Biomarker zur Diagnose, Prognosebewertung und Therapieentscheidung vorgestellt und kritisch diskutiert.

Abstract

During the last three decades, renal tumours have become increasingly well differentiated on the basis of their histopathological and molecular features. This subtyping has increasingly impacted clinical practice because more therapeutic options are available in organ-confined and metastatic renal cell tumours. The knowledge of the underlying molecular alterations is essential to develop molecular targeted therapies and to select the most effective systemic therapy for each patient. This manuscript gives an overview of the molecular differentiation on the one hand, and on diagnostic, prognostic and predictive biomarkers on the other hand.



Publication History

Article published online:
22 June 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Referenzen

  • 1 Moch HHP, Ulbright TM, Reuter VE. WHO Classification of Tumours of the Urinary System and Male Genital Organs. Lyon, France: International Agency for Research on Cancer Publications; 2016
  • 2 Junker K, Weirich G, Amin MB. et al. Genetic subtyping of renal cell carcinoma by comparative genomic hybridization. Recent Results Cancer Res 2003; 162: 169-175
  • 3 Sanjmyatav J, Hauke S, Gajda M. et al. Establishment of a multicolour fluorescence in situ hybridisation-based assay for subtyping of renal cell tumours. European urology 2013; 64: 689-691 DOI: 10.1016/j.eururo.2013.06.007.
  • 4 Cheng L, Zhang S, MacLennan GT. et al. Molecular and cytogenetic insights into the pathogenesis, classification, differential diagnosis, and prognosis of renal epithelial neoplasms. Human pathology 2009; 40: 10-29
  • 5 Wach S, Theil A, Stoehr C. et al. MicroRNA expression profiles classify renal cell carcinoma subtypes. Cancer research 2012; 72 DOI: 10.1158/1538-7445.AM2012-5035.
  • 6 Youssef YM, White NM, Grigull J. et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature. European urology 2011; 59: 721-730 DOI: 10.1016/j.eururo.2011.01.004.
  • 7 Marconi L, Dabestani S, Lam TB. et al. Systematic Review and Meta-analysis of Diagnostic Accuracy of Percutaneous Renal Tumour Biopsy. European urology 2016; 69: 660-673
  • 8 Chyhrai A, Sanjmyatav J, Gajda M. et al. Multi-colour FISH on preoperative renal tumour biopsies to confirm the diagnosis of uncertain renal masses. World journal of urology 2010; 28: 269-274 DOI: 10.1007/s00345-010-0551-5.
  • 9 Linehan WM, Pinto PA, Srinivasan R. et al. Identification of the genes for kidney cancer: opportunity for disease-specific targeted therapeutics. Clinical cancer research : an official journal of the American Association for Cancer Research 2007; 13: 671s-679s
  • 10 Ricketts C, Woodward ER, Killick P. et al. Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst 2008; 100: 1260-1262
  • 11 Zisman A, Pantuck AJ, Dorey F. et al. Improved prognostication of renal cell carcinoma using an integrated staging system. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2001; 19: 1649-1657
  • 12 Leibovich BC, Blute ML, Cheville JC. et al. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 2003; 97: 1663-1671 DOI: 10.1002/cncr.11234.
  • 13 Frank I, Blute ML, Cheville JC. et al. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. The Journal of urology 2002; 168: 2395-2400 DOI: 10.1097/01.ju.0000035885.91935.d5.
  • 14 Ravaud A, Motzer RJ, Pandha HS. et al. Adjuvant Sunitinib in High-Risk Renal-Cell Carcinoma after Nephrectomy. The New England journal of medicine 2016; 375: 2246-2254 DOI: 10.1056/NEJMoa1611406.
  • 15 Haas NB, Manola J, Uzzo RG. et al. Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): a double-blind, placebo-controlled, randomised, phase 3 trial. Lancet 2016; 387: 2008-2016 DOI: 10.1016/S0140-6736(16)00559-6.
  • 16 Motzer RJ, Haas NB, Donskov F. et al. Randomized Phase III Trial of Adjuvant Pazopanib Versus Placebo After Nephrectomy in Patients With Localized or Locally Advanced Renal Cell Carcinoma. Journal of Clinical Oncology 2017; DOI: 10.1200/Jco.2017.73.5324.
  • 17 Sanjmyatav J, Matthes S, Muehr M. et al. Identification of high-risk patients with clear cell renal cell carcinoma based on interphase-FISH. British journal of cancer 2014; 110: 2537-2543 DOI: 10.1038/bjc.2014.159.
  • 18 Grimm J, Zeuschner P, Janssen M. et al. Metastatic risk stratification of clear cell renal cell carcinoma patients based on genomic aberrations. Genes, chromosomes & cancer 2019; 58: 612-618
  • 19 Turajlic S, Xu H, Litchfield K. et al. Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal. Cell 2018; 173: 581-594.e512
  • 20 Rini B, Goddard A, Knezevic D. et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. Lancet Oncol 2015; 16: 676-685 DOI: 10.1016/S1470-2045(15)70167-1.
  • 21 Brooks SA, Brannon AR, Parker JS. et al. ClearCode34: A Prognostic Risk Predictor for Localized Clear Cell Renal Cell Carcinoma. European urology 2014; 66: 77-84 DOI: 10.1016/j.eururo.2014.02.035.
  • 22 Buttner F, Winter S, Rausch S. et al. Survival Prediction of Clear Cell Renal Cell Carcinoma Based on Gene Expression Similarity to the Proximal Tubule of the Nephron. European urology 2015; 68: 1016-1020 DOI: 10.1016/j.eururo.2015.05.045.
  • 23 Buttner F, Winter S, Rausch S. et al. Clinical utility of the S3-score for molecular prediction of outcome in non-metastatic and metastatic clear cell renal cell carcinoma. BMC Med 2018; 16: 108
  • 24 Heinzelmann J, Arndt M, Pleyers R. et al. 4-miRNA Score Predicts the Individual Metastatic Risk of Renal Cell Carcinoma Patients. Annals of surgical oncology 2019; 26: 3765-3773
  • 25 Wu XW, Weng LH, Li XJ. et al. Identification of a 4-microRNA Signature for Clear Cell Renal Cell Carcinoma Metastasis and Prognosis. PloS one 2012; 7: e35661 DOI: 10.1371/journal.pone.0035661.
  • 26 Lokeshwar SD, Talukder A, Yates TJ. et al. Molecular Characterization of Renal Cell Carcinoma: A Potential Three-MicroRNA Prognostic Signature. Cancer Epidem Biomar 2018; 27: 464-472 DOI: 10.1158/1055-9965.EPI-17-0700.
  • 27 Kowalik CG, Palmer DA, Sullivan TB. et al. Profiling microRNA from nephrectomy and biopsy specimens: predictors of progression and survival in clear cell renal cell carcinoma. BJU international 2017; 120: 428-440
  • 28 El Khoury LY, Fu S, Hlady RA. et al. Identification of DNA methylation signatures associated with poor outcome in lower-risk Stage, Size, Grade and Necrosis (SSIGN) score clear cell renal cell cancer. Clinical epigenetics 2021; 13 DOI: 10.1186/S13148-020-00998-Z.
  • 29 Linehan WM, Spellman PT, Ricketts CJ. et al. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. New Engl J Med 2016; 374: 135-145 DOI: 10.1056/Nejmoa1505917.
  • 30 Gerlinger M, Rowan AJ, Horswell S. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England journal of medicine 2012; 366: 883-892 DOI: 10.1056/NEJMoa1113205.
  • 31 Gulati S, Martinez P, Joshi T. et al. Systematic evaluation of the prognostic impact and intratumour heterogeneity of clear cell renal cell carcinoma biomarkers. European urology 2014; 66: 936-948 DOI: 10.1016/j.eururo.2014.06.053.
  • 32 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Diagnostik, Therapie und Nachsorge des Nierenzellkarzinoms, Langversion 2.0, 2020, AWMF Registernummer: 043/017OL. AWMF; 2021 https://www.leitlinienprogramm-onkologie.de/leitlinien/nierenzellkarzinom/
  • 33 Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252-264 DOI: 10.1038/nrc3239.
  • 34 Rini BI, Plimack ER, Stus V. et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. New England Journal of Medicine 2019; 380: 1116-1127 DOI: 10.1056/NEJMoa1816714.
  • 35 Motzer RJ, Rini BI, McDermott DF. et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. The Lancet Oncology 2019; 20: 1370-1385 DOI: 10.1016/S1470-2045(19)30413-9.
  • 36 Motzer RJ, Penkov K, Haanen J. et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med 2019; 380: 1103-1115 DOI: 10.1056/NEJMoa1816047.
  • 37 Iacovelli R, Nolè F, Verri E. et al. Prognostic Role of PD-L1 Expression in Renal Cell Carcinoma. A Systematic Review and Meta-Analysis. Targeted Oncology 2016; 11: 143-148 DOI: 10.1007/s11523-015-0392-7.
  • 38 Lalani A-KA, Gray KP, Albiges L. et al. Differential expression of c-Met between primary and metastatic sites in clear-cell renal cell carcinoma and its association with PD-L1 expression. Oncotarget 2017; 8: 103428-103436 DOI: 10.18632/oncotarget.21952.
  • 39 Callea M, Albiges L, Gupta M. et al. Differential Expression of PD-L1 between Primary and Metastatic Sites in Clear-Cell Renal Cell Carcinoma. Cancer Immunol Res 2015; 3: 1158-1164
  • 40 Miao D, Margolis CA, Gao W. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 2018; 359: 801-806 DOI: 10.1126/science.aan5951.
  • 41 Liu XD, Kong W, Peterson CB. et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nature communications 2020; 11: 2135 DOI: 10.1038/s41467-020-15959-6.
  • 42 Voss MH, Reising A, Cheng Y. et al. Genomically annotated risk model for advanced renal-cell carcinoma: a retrospective cohort study. The Lancet Oncology 2018; 19: 1688-1698 DOI: 10.1016/s1470-2045(18)30648-x.
  • 43 Hsieh JJ, Chen D, Wang PI. et al. Genomic Biomarkers of a Randomized Trial Comparing First-line Everolimus and Sunitinib in Patients with Metastatic Renal Cell Carcinoma. European urology 2017; 71: 405-414 DOI: 10.1016/j.eururo.2016.10.007.
  • 44 Beuselinck B, Job S, Becht E. et al. Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clinical cancer research : an official journal of the American Association for Cancer Research 2015; 21: 1329-1339 DOI: 10.1158/1078-0432.CCR-14-1128.
  • 45 Epaillard N, Simonaggio A, Elaidi R. et al. BIONIKK: A phase 2 biomarker driven trial with nivolumab and ipilimumab or VEGFR tyrosine kinase inhibitor (TKI) in naïve metastatic kidney cancer. Bulletin du Cancer 2020; 107: eS22-eS27 DOI: 10.1016/S0007-4551(20)30283-6.
  • 46 Vano Y, Elaidi RT, Bennamoun M. et al. LBA25 Results from the phase II biomarker driven trial with nivolumab (N) and ipilimumab or VEGFR tyrosine kinase inhibitor (TKI) in naïve metastatic kidney cancer (m-ccRCC) patients (pts): The BIONIKK trial. Annals of Oncology 2020; 31: S1157 DOI: 10.1016/j.annonc.2020.08.2254.
  • 47 Hakimi AA, Voss MH, Kuo F. et al. Transcriptomic Profiling of the Tumor Microenvironment Reveals Distinct Subgroups of Clear Cell Renal Cell Cancer: Data from a Randomized Phase III Trial. Cancer Discov 2019; 9: 510-525 DOI: 10.1158/2159-8290.CD-18-0957.
  • 48 McDermott DF, Huseni MA, Atkins MB. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nature medicine 2018; 24: 749-757 DOI: 10.1038/s41591-018-0053-3.
  • 49 Motzer RJ, Banchereau R, Hamidi H. et al. Molecular Subsets in Renal Cancer Determine Outcome to Checkpoint and Angiogenesis Blockade. Cancer cell 2020; DOI: 10.1016/j.ccell.2020.10.011.
  • 50 Motzer RJ, Robbins PB, Powles T. et al. Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial. Nature medicine 2020; 26: 1733-1741 DOI: 10.1038/s41591-020-1044-8.
  • 51 Motzer RJ, Choueiri TK, McDermott DF. et al. Biomarker analyses from the phase III CheckMate 214 trial of nivolumab plus ipilimumab (N+I) or sunitinib (S) in advanced renal cell carcinoma (aRCC). Journal of Clinical Oncology 2020; 38: 5009-5009 DOI: 10.1200/JCO.2020.38.15_suppl.5009.
  • 52 Lalani A-KA, Xie W, Martini DJ. et al. Change in neutrophil-to-lymphocyte ratio (NLR) in response to immune checkpoint blockade for metastatic renal cell carcinoma. Journal for ImmunoTherapy of Cancer 2018; 6: 5 DOI: 10.1186/s40425-018-0315-0.
  • 53 Ishihara H, Tachibana H, Takagi T. et al. Predictive Impact of Peripheral Blood Markers and C-Reactive Protein in Nivolumab Therapy for Metastatic Renal Cell Carcinoma. Targeted Oncology 2019; 14: 453-463 DOI: 10.1007/s11523-019-00660-6.
  • 54 Pourmir I, Noel J, Simonaggio A. et al. Update on the most promising biomarkers of response to immune checkpoint inhibitors in clear cell renal cell carcinoma. World journal of urology 2021; DOI: 10.1007/s00345-020-03528-x.
  • 55 Gámez-Pozo A, Antón-Aparicio LM, Bayona C. et al. MicroRNA expression profiling of peripheral blood samples predicts resistance to first-line sunitinib in advanced renal cell carcinoma patients. Neoplasia (New York, NY) 2012; 14: 1144-1152 DOI: 10.1593/neo.12734.
  • 56 He J, He J, Min L. et al. Extracellular vesicles transmitted miR-31-5p promotes sorafenib resistance by targeting MLH1 in renal cell carcinoma. International journal of cancer Journal international du cancer 2020; 146: 1052-1063 DOI: 10.1002/ijc.32543.
  • 57 Zining J, Lu X, Caiyun H. et al. Genetic polymorphisms of mTOR and cancer risk: a systematic review and updated meta-analysis. Oncotarget 2016; 7: 57464-57480 DOI: 10.18632/oncotarget.10805.
  • 58 Diekstra MHM, Swen JJ, Gelderblom H. et al. A decade of pharmacogenomics research on tyrosine kinase inhibitors in metastatic renal cell cancer: a systematic review. Expert Review of Molecular Diagnostics 2016; 16: 605-618 DOI: 10.1586/14737159.2016.1148601.
  • 59 Salgia NJ, Bergerot PG, Maia MC. et al. Stool Microbiome Profiling of Patients with Metastatic Renal Cell Carcinoma Receiving Anti–PD-1 Immune Checkpoint Inhibitors. European urology 2020; 78: 498-502 DOI: 10.1016/j.eururo.2020.07.011.
  • 60 Derosa L, Hellmann MD, Spaziano M. et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Annals of oncology : official journal of the European Society for Medical Oncology 2018; 29: 1437-1444
  • 61 Routy B, Le Chatelier E, Derosa L. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science (New York, NY) 2018; 359: 91-97
  • 62 Liu S, Tian Z, Zhang L. et al. Combined cell surface carbonic anhydrase 9 and CD147 antigens enable high-efficiency capture of circulating tumor cells in clear cell renal cell carcinoma patients. Oncotarget 2016; 7: 59877-59891
  • 63 Hauser S, Zahalka T, Ellinger J. et al. Cell-free circulating DNA: Diagnostic value in patients with renal cell cancer. Anticancer research 2010; 30: 2785-2789
  • 64 Yamamoto Y, Uemura M, Fujita M. et al. Clinical significance of the mutational landscape and fragmentation of circulating tumor DNA in renal cell carcinoma. Cancer science 2019; 110: 617-628 DOI: 10.1111/cas.13906.
  • 65 Maia MC, Bergerot PG, Dizman N. et al. Association of circulating tumor DNA (ctDNA) detection in metastatic renal cell carcinoma (mRCC) with tumor burden. Journal of Clinical Oncology 2017; 35 DOI: 10.1200/Jco.2017.35.15_Suppl.4582.
  • 66 Heinemann FG, Tolkach Y, Deng M. et al. Serum miR-122-5p and miR-206 expression: non-invasive prognostic biomarkers for renal cell carcinoma. Clinical epigenetics 2018; 10 DOI: 10.1186/s13148-018-0444-9.
  • 67 Chanudet E, Wozniak MB, Bouaoun L. et al. Large-scale genome-wide screening of circulating microRNAs in clear cell renal cell carcinoma reveals specific signatures in late-stage disease. International journal of cancer 2017; 141: 1730-1740
  • 68 Yadav S, Khandelwal M, Seth A. et al. Serum microRNA Expression Profiling: Potential Diagnostic Implications of a Panel of Serum microRNAs for Clear Cell Renal Cell Cancer. Urology 2017; 104: 64-69
  • 69 Schubert M, Junker K, Heinzelmann J. Prognostic and predictive miRNA biomarkers in bladder, kidney and prostate cancer: Where do we stand in biomarker development?. J Cancer Res Clin 2016; 142: 1673-1695 DOI: 10.1007/s00432-015-2089-9.
  • 70 Linxweiler J, Junker K. Extracellular vesicles in urological malignancies: an update. Nat Rev Urol 2020; 17: 11-27 DOI: 10.1038/s41585-019-0261-8.
  • 71 Hartmann A, Stohr CG, Junker K. Hereditary renal cell carcinomas. Pathologe 2010; 31: 455-463 DOI: 10.1007/s00292-010-1357-3.