Exp Clin Endocrinol Diabetes 2022; 130(02): 134-140
DOI: 10.1055/a-1522-8535
Article

Design and Characterization of a Fluorescent Reporter Enabling Live-cell Monitoring of MCT8 Expression

Adina Sophie Graffunder
1   Institute of Experimental Pediatric Endocrinology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
,
Sarah Paisdzior
1   Institute of Experimental Pediatric Endocrinology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
,
Robert Opitz
1   Institute of Experimental Pediatric Endocrinology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
,
Kostja Renko
2   German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
,
Peter Kühnen
1   Institute of Experimental Pediatric Endocrinology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
,
Heike Biebermann
1   Institute of Experimental Pediatric Endocrinology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
› Author Affiliations

Abstract

The monocarboxylate transporter 8 (MCT8) is a specific thyroid hormone transporter and plays an essential role in fetal development. Inactivating mutations in the MCT8 encoding gene SLC16A2 (solute carrier family 16, member 2) lead to the Allan-Herndon-Dudley syndrome, a condition presenting with severe endocrinological and neurological phenotypes. However, the cellular distribution pattern and dynamic expression profile are still not well known for early human neural development.

Objective Development and characterization of fluorescent MCT8 reporters that would permit live-cell monitoring of MCT8 protein expression in vitro in human induced pluripotent stem cell (hiPSC)-derived cell culture models.

Methods A tetracysteine (TC) motif was introduced into the human MCT8 sequence at four different positions as binding sites for fluorescent biarsenical dyes. Human Embryonic Kidney 293 cells were transfected and stained with fluorescein-arsenical hairpin-binder (FlAsH). Counterstaining with specific MCT8 antibody was performed. Triiodothyronine (T3) uptake was indirectly measured with a T3 responsive luciferase-based reporter gene assay in Madin-Darby Canine Kidney 1 cells for functional characterization.

Results FlAsH staining and antibody counterstaining of all four constructs showed cell membrane expression of all MCT8 constructs. The construct with the tag after the first start codon demonstrated comparable T3 uptake to the MCT8 wildtype.

Conclusion Our data indicate that introduction of a TC-tag directly after the first start codon generates a MCT8 reporter with suitable characteristics for live-cell monitoring of MCT8 expression. One promising future application will be generation of stable hiPSC MCT8 reporter lines to characterize MCT8 expression patterns during in vitro neuronal development.

Supplementary Material



Publication History

Received: 16 November 2020
Received: 18 May 2021

Accepted: 28 May 2021

Article published online:
05 August 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Grüters A, Krude H.. Update on the management of congenital hypothyroidism. Horm Res Paediatr 2007; 68: 107-111
  • 2 Friesema EC, Ganguly S, Abdalla A. et al Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 2003; 278: 40128-40135
  • 3 Groeneweg S, van Geest FS, Peeters RP. et al Thyroid hormone transporters. Endocr Rev 2020; 41: 146-201
  • 4 Kinne A, Schülein R, Krause G.. Primary and secondary thyroid hormone transporters. Thyroid Res 2011; 4: S7
  • 5 Braun D, Schweizer U.. Thyroid hormone transport and transporters. In, Vitamins and Hormones: Elsevier; 2018: 19-44
  • 6 Kleinau G, Schweizer U, Kinne A. et al Insights into molecular properties of the human monocarboxylate transporter 8 by combining functional with structural information. Thyroid Res 2011; 4: S4
  • 7 Protze J, Braun D, Hinz KM. et al Membrane-traversing mechanism of thyroid hormone transport by monocarboxylate transporter 8. Cell Mol Life Sci 2017; 74: 2299-2318
  • 8 Kinne A, Kleinau G, Hoefig CS. et al Essential molecular determinants for thyroid hormone transport and first structural implications for monocarboxylate transporter 8. J Biol Chem 2010; 285: 28054-28063
  • 9 Friesema EC, Grueters A, Biebermann H. et al Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 2004; 364: 1435-1437
  • 10 Dumitrescu AM, Liao X-H, Best TB. et al A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 2004; 74: 168-175
  • 11 Visser WE, Vrijmoeth P, Visser FE. et al Identification, functional analysis, prevalence and treatment of monocarboxylate transporter 8 (MCT 8) mutations in a cohort of adult patients with mental retardation. Clin Endocrinol 2013; 78: 310-315
  • 12 Frints SGM, Lenzner S, Bauters M. et al MCT8 mutation analysis and identification of the first female with Allan–Herndon–Dudley syndrome due to loss of MCT8 expression. Eur J Hum Genet 2008; 16: 1029-1037
  • 13 Visser WE, Jansen J, Friesema EC. et al Novel pathogenic mechanism suggested by ex vivo analysis of MCT8 (SLC16A2) mutations. Hum Mutat 2009; 30: 29-38
  • 14 Friesema EC, Visser WE, Visser TJ.. Genetics and phenomics of thyroid hormone transport by MCT8. Mol Cell Endocrinol 2010; 322: 107-113
  • 15 López-Espíndola D, Morales-Bastos C, Grijota-Martínez C. et al Mutations of the thyroid hormone transporter MCT8 cause prenatal brain damage and persistent hypomyelination. J Clin Endocrinol Metab 2014; 99: E2799-E2804
  • 16 Allan W, Herndon CN, Dudley FC.. Some examples of the inheritance of mental deficiency: apparently sex-linked idiocy and microcephaly. Am J Ment Defic 1944; 48: 325-334
  • 17 Wirth EK, Roth S, Blechschmidt C. et al Neuronal 3′, 3, 5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan–Herndon–Dudley syndrome. J Neurosci 2009; 29: 9439-9449
  • 18 Vatine GD, Zada D, Lerer-Goldshtein T. et al Zebrafish as a model for monocarboxyl transporter 8-deficiency. J Biol Chem 2013; 288: 169-180
  • 19 Lopez-Espindola D, Garcia-Aldea A, Gomez de la Riva I. et al Thyroid hormone availability in the human fetal brain: novel entry pathways and role of radial glia. Brain Struct Funct 2019; 224: 2103-2119
  • 20 Trajkovic M, Visser TJ, Mittag J. et al Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest 2007; 117: 627-635
  • 21 Krude H, Biebermann H, Schuelke M. et al Allan-Herndon-Dudley-Syndrome: Considerations about the Brain Phenotype with Implications for Treatment Strategies. Exp Clin Endocrinol Diabetes 2020; 128: 414-422
  • 22 Biebermann H, Brix K, Führer D.. Seven Years of Active Thyroid Hormone Research in Germany: Thyroid Hormone Action beyond Classical Concepts. Exp Clin Endocrinol Diabetes 2020; 128: 355-357
  • 23 Ahmed OM, El-Gareib A, El-Bakry A. et al Thyroid hormones states and brain development interactions. Int J Dev Neurosci 2008; 26: 147-209
  • 24 Watanabe M, Buth JE, Vishlaghi N. et al Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep 2017; 21: 517-532
  • 25 Kersseboom S, Kremers G-J, Friesema EC. et al Mutations in MCT8 in patients with Allan-Herndon-Dudley-syndrome affecting its cellular distribution. Mol Endocrinol 2013; 27: 801-813
  • 26 Ran FA, Hsu PD, Wright J. et al Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8: 2281-2308
  • 27 Hoffmann C, Gaietta G, Zürn A. et al Fluorescent labeling of tetracysteine-tagged proteins in intact cells. Nat Protoc 2010; 5: 1666
  • 28 Griffin BA, Adams SR, Tsien RY.. Specific covalent labeling of recombinant protein molecules inside live cells. Science 1998; 281: 269-272
  • 29 Venken KJ, Kasprowicz J, Kuenen S. et al Recombineering-mediated tagging of Drosophila genomic constructs for in vivo localization and acute protein inactivation. Nucleic Acids Res 2008; 36: e114-e114
  • 30 Hoffmann C, Gaietta G, Bünemann M. et al A FlAsH-based FRET approach to determine G protein–coupled receptor activation in living cells. Nat Methods 2005; 2: 171-176
  • 31 Fischer J, Kleinau G, Müller A. et al Modulation of monocarboxylate transporter 8 oligomerization by specific pathogenic mutations. J Mol Endocrinol 2015; 54: 39-50
  • 32 Wilpert N-M, Krueger M, Opitz R. et al Spatiotemporal changes of cerebral monocarboxylate transporter 8 expression. Thyroid 2020
  • 33 Hofmann PJ, Schomburg L, Köhrle J.. Interference of endocrine disrupters with thyroid hormone receptor–dependent transactivation. Toxicol Sci 2009; 110: 125-137
  • 34 Seiler CY, Park JG, Sharma A. et al DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research. Nucleic Acids Res 2014; 42: D1253-1260
  • 35 Fischer J, Kleinau G, Rutz C. et al Evidence of G-protein-coupled receptor and substrate transporter heteromerization at a single molecule level. Cell Mol Life Sci 2018; 75: 2227-2239
  • 36 Kinne A, Roth S, Biebermann H. et al Surface translocation and tri-iodothyronine uptake of mutant MCT8 proteins are cell type-dependent. J Mol Endocrinol 2009; 43: 263-271
  • 37 Zwanziger D, Schmidt M, Fischer J. et al The long N-terminus of the human monocarboxylate transporter 8 is a target of ubiquitin-dependent proteasomal degradation which regulates protein expression and oligomerization capacity. Mol Cell Endocrinol 2016; 434: 278-287
  • 38 Jansen J, Friesema EC, Milici C. et al Thyroid hormone transporters in health and disease. Thyroid 2005; 15: 757-768
  • 39 Finan B, Clemmensen C, Zhu Z. et al Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease. Cell 2016; 167: 843-857. e814
  • 40 Brandt S, Kleinert M, Tschöp M. et al Are peptide conjugates the golden therapy against obesity?. J Endocrinol 2018; 238: R109-R119
  • 41 Clemmensen C, Finan B, Müller TD. et al Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. Nat Rev Endocrinol 2019; 15: 90-104
  • 42 Quarta C, Clemmensen C, Zhu Z. et al Molecular integration of incretin and glucocorticoid action reverses immunometabolic dysfunction and obesity. Cell Metab 2017; 26: 620-632. e626
  • 43 Tejero R, Huang Y, Katsyv I. et al Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment. EBioMedicine 2019; 42: 252-269
  • 44 Paşca AM, Sloan SA, Clarke LE. et al Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 2015; 12: 671-678