Int J Sports Med 2021; 42(13): 1143-1158
DOI: 10.1055/a-1524-2095
Review

The Athlete and Gut Microbiome: Short-chain Fatty Acids as Potential Ergogenic Aids for Exercise and Training

Tindaro Bongiovanni
1   Biomedical Sciences for Health, University of Milan, Milano, Italy
,
Marilyn Ong Li Yin
2   School of Health Sciences, Universiti Sains Malaysia,Minden, Malaysia
,
Liam M. Heaney
3   School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom of Great Britain and Northern Ireland
› Institutsangaben

Abstract

Short-chain fatty acids (SCFAs) are metabolites produced in the gut via microbial fermentation of dietary fibers referred to as microbiota-accessible carbohydrates (MACs). Acetate, propionate, and butyrate have been observed to regulate host dietary nutrient metabolism, energy balance, and local and systemic immune functions. In vitro and in vivo experiments have shown links between the presence of bacteria-derived SCFAs and host health through the blunting of inflammatory processes, as well as purported protection from the development of illness associated with respiratory infections. This bank of evidence suggests that SCFAs could be beneficial to enhance the athlete’s immunity, as well as act to improve exercise recovery via anti-inflammatory activity and to provide additional energy substrates for exercise performance. However, the mechanistic basis and applied evidence for these relationships in humans have yet to be fully established. In this narrative review, we explore the existing knowledge of SCFA synthesis and the functional importance of the gut microbiome composition to induce SCFA production. Further, changes in gut microbiota associated with exercise and various dietary MACs are described. Finally, we provide suggestions for future research and practical applications, including how these metabolites could be manipulated through dietary fiber intake to optimize immunity and energy metabolism.



Publikationsverlauf

Eingereicht: 22. März 2021

Angenommen: 26. Mai 2021

Artikel online veröffentlicht:
13. Juli 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Koh A, De Vadder F, Kovatcheva-Datchary P. et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016; 165: 1332-1345 doi:10.1016/j.cell.2016.05.041
  • 2 Frampton J, Murphy KG, Frost G. et al. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab 2020; 2: 840-848 doi:10.1038/s42255-020-0188-7
  • 3 Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489: 242-249 doi:10.1038/nature11552
  • 4 Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 2014; 20: 779-786 doi:10.1016/j.cmet.2014.07.003
  • 5 Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol 2020; 19: 77-94 doi:10.1038/s41579-020-0438-4
  • 6 Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 2001; 81: 1031-1064 doi:10.1152/physrev.2001.81.3.1031
  • 7 Świątecka Narbad D, Narbad D, Ridgway A, Kostyra KPH. The study on the impact of glycated pea proteins on human intestinal bacteria. Int J Food Microbiol 2011; 145: 267-272 doi:10.1016/j.iifoodmicro.2011.01.002
  • 8 Moreno-Indias I, Sànchez-Alcoholado L, Pérez-Martìnez P. et al. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Func 2016; 7: 1775-1787 doi:10.1039/c5fo00886g
  • 9 Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016; 7: 189-200 doi:10.1080/19490976.2015.1134082
  • 10 Cantarel BL, Coutinho PM, Rancurel C. et al. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res 2009; 37: 233-238 doi:10.1093/nar/gkn663
  • 11 Martens EC, Lowe EC, Chiang H. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 2011; 9: e1001221 doi:10.1371/journal.pbio.1001221
  • 12 Cummings JH, Pomare EW, Branch WJ. et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28: 1221-1227 doi:10.1136/gut.28.10.1221
  • 13 Brown AJ, Goldsworthy SM, Barnes AA. et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278: 11312-11319 doi:10.1074/jbc.M211609200
  • 14 Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 1990; 70: 567-590 doi:10.1152/physrev.1990.70.2.567
  • 15 Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr 2003; 133: 2485-2493 doi:10.1093/jn/133.7.2485S
  • 16 De Vadder F, Kovatcheva-Datchary P, Goncalves D. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014; 156: 84-96 doi:10.1016/j.cell.2013.12.016
  • 17 Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015; 11: 577-591 doi:10.1038/nrendo.2015.128
  • 18 Mandaliya DK, Seshadri S. Short chain fatty acids, pancreatic dysfunction and type 2 diabetes. Pancreatology 2019; 19: 280-284 doi:10.1016/j.pan.2019.01.021
  • 19 Zhou D, Fan JG. Microbial metabolites in non-alcoholic fatty liver disease. World J Gastroenterol 2019; 25: 2019-2028 doi:10.3748/wjg.v25.i17.2019
  • 20 Lewis K, Lutgendorff F, Phan V. et al. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis 2010; 16: 1138-1148 doi:10.1002/ibd.21177
  • 21 Peng L, Li ZR, Green RS. et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 2009; 139: 1619-1625 doi:10.3945/jn.109.104638
  • 22 Johansson ME, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 2013; 10: 352-361 doi:10.1038/nrgastro.2013.35
  • 23 Husted AS, Trauelsen M, Rudenko O. et al. GPCR-mediated signaling of metabolites. Cell Metab 2017; 25: 777-796 doi:10.1016/j.cmet.2017.03.008
  • 24 Smith PM, Howitt MR, Panikov N. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569-573 doi:10.1126/science.1241165
  • 25 Bachem A, Makhlouf C, Binger KJ. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8. Immunity 2019; 51: 285-297 doi:10.1016/j.immuni.2019.06.002
  • 26 Donohoe DR, Garge N, Zhang X. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011; 13: 517-526 doi:10.1016/j.cmet.2011.02.018
  • 27 Kaiko GE, Ryu SH, Koues OI. et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 2016; 165: 1708-1720 doi:10.1016/j.cell.2016.05.018
  • 28 Kim M, Friesen L, Park J. et al. Microbial metabolites, short–chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice. Eur J Immunol 2018; 48: 1235-1247 doi:10.1002/eji.201747122
  • 29 Heaney LM. Applying mass spectrometry-based assays to explore gut microbial metabolism and associations with disease. Clin Chem Lab Med 2020; 58: 719-732 doi:10.1515/cclm-2019-0974
  • 30 Hernández-Granados MJ, Franco-Robles E. Postbiotics in human health: Possible new functional ingredients?. Food Res Int 2020; 137: 109660 doi:10.1016/j.foodres.2020.109660
  • 31 Heaney LM, Davies OG, Selby NM. Gut microbial metabolites as mediators of renal disease: do short-chain fatty acids offer some hope?. Future Sci OA 2019; 5: FSO384 doi:10.4155/fsoa-2019-0013
  • 32 Takagi R, Sasaki K, Sasaki D. et al. A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS One 2016; 11: e0160533 doi:10.1371/journal.pone.0160533
  • 33 Kelly CJ, Zheng L, Campbell EL. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015; 17: 662-671 doi:10.1016/j.chom.2015.03.005
  • 34 Lotti C, Rubert J, Fava F. et al. Development of a fast and cost-effective gas chromatography–mass spectrometry method for the quantification of short-chain and medium-chain fatty acids in human biofluids. Anal Bioanal Chem 2017; 409: 5555-5567 doi:10.1007/s00216-017-0493-5
  • 35 Juanola O, Ferrusquìa-Acosta J, Garcìa-Villalba R. et al. Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis. FASEB J 2019; 33: 11595-11605 doi:10.1096/fj.201901327R
  • 36 Miller TL, Wolin MJ. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 1996; 62: 1589-1592 doi:10.1128/AEM.62.5.1589-1592.1996
  • 37 Flint HJ, Duncan SH, Scott KP. et al. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 2015; 74: 13-22 doi:10.1017/S0029665114001463
  • 38 Martínez I, Kim J, Duffy PR. et al. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 2010; 5: e15046 doi:10.1371/journal.pone.0015046
  • 39 Davis LM, Martìnez I, Walter J. et al. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS One 2011; 6: e25200 doi:10.1371/journal.pone.0025200
  • 40 Ze X, Le Mougen FL, Duncan SH. et al. Some are more equal than others: the role of “keystone” species in the degradation of recalcitrant substrates. Gut Microbes 2013; 4: 236-240 doi:10.4161/gmic.23998
  • 41 Ze X, Duncan SH, Louis P. et al. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 2012; 6: 1535-1543 doi:10.1038/ismej.2012.4
  • 42 Flint HJ, Scott KP, Duncan SH. et al. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012; 3: 289-306 doi:10.4161/gmic.19897
  • 43 Flint HJ, Scott KP, Louis P. et al. The role of microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 2012; 9: 577-589 doi:10.1038/nrgastro.2012.156
  • 44 Holscher HD. Diet affects the gastrointestinal microbiota and health. J Acad Nutr Diet 2020; 120: 495-499 doi:10.1016/j.jand.2019.12.016
  • 45 Blaak EE, Canfora EE, Theis S. et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes 2020; 11: 411-455 doi:10.3920/BM2020.0057
  • 46 Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta 2008; 1784: 1873-1898 doi:10.1016/j.bbapap.2008.08.012
  • 47 Frost G, Sleeth ML, Sahuri-Arisoylu M. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 2014; 5: 3611 doi:10.1038/ncomms4611
  • 48 Hetzel M, Brock M, Selmer T. et al. Acryloyl-CoA reductase from Clostridium propionicum. An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein. Eur J Biochem 2003; 270: 902-910 doi:10.1046/j.1432-1033.2003.03450.x
  • 49 Scott KP, Martin JC, Campbell G. et al. Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium "Roseburia inulinivorans". J Bacteriol 2006; 188: 4340-4349 doi:10.1128/JB.00137-06
  • 50 Reichardt N, Duncan SH, Young P. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 2014; 8: 1323-1335 doi:10.1038/ismeij.2014.14
  • 51 Louis P, Duncan SH, McCrae SI. et al. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 2004; 186: 2099-2106 doi:10.1128/jb.186.7.2099-2106.2004
  • 52 Duncan SH, Barcenilla A, Stewart CS. et al. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 2002; 68: 5186-5190 doi:10.1128/aem.68.10.5186-5190.2002
  • 53 Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio 2014; 5: e00889 doi:10.1128/mBio.00889-14
  • 54 Trompette A, Gollwitzer ES, Yadava K. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014; 20: 159-166 doi:10.1038/nm.3444
  • 55 Maslowski KM, Vieira AT, Ng A. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009; 461: 1282-1286 doi:10.1038/nature08530
  • 56 Kim M, Qie Y, Park J. et al. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 2016; 20: 202-214 doi:10.1016/j.chom.2016.07.001
  • 57 Chang PV, Hao L, Offermanns S. et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 2014; 111: 2247-2252 doi:10.1073/pnas.1322269111
  • 58 Millard AL, Mertes PM, Ittelet D. et al. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin Exp Immunol 2002; 130: 245-255 doi:10.1046/j.0009-9104.2002.01977.x
  • 59 Vinolo MA, Hatanaka E, Lambertucci RH. et al. Effects of short chain fatty acids on effector mechanisms of neutrophils. Cell Biochem Funct 2009; 27: 48-55 doi:10.1002/cbf.1533
  • 60 Arpaia N, Campbell C, Fan X. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504: 451-455 doi:10.1038/nature12726
  • 61 Furusawa Y, Obata Y, Fukuda S. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446-450 doi:10.1038/nature12721
  • 62 Balmer ML, Ma EH, Bantug GR. et al. Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 2016; 44: 1312-1324 doi:10.1016/j.immuni.2016.03.016
  • 63 Li M, van Esch BCAM, Wagenaar GTM. et al. Pro-and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol 2018; 831: 52-59 doi:10.1016/j.ejphar.2018.05.003
  • 64 Wang HB, Wang PY, Wang X. et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci 2012; 57: 3126-3135 doi:10.1007/s10620-012-2259-4
  • 65 Tolhurst G, Heffron H, Lam YS. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61: 364-371 doi:10.2337/db11-1019
  • 66 Tang C, Ahmed K, Gille A. et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 2015; 21: 173-177 doi:10.1038/nm.3779
  • 67 Ratajczak W, Ryl A, Mizerski A. et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol 2019; 66: 1-12 doi:10.18388/abp.2018_2648
  • 68 Clarke G, Stilling RM, Kennedy PJ. et al. Minireview: Gut microbiota: the neglected endocrine organ. Mol Endocrinol 2014; 28: 1221-1238 doi:10.1210/me.2014-1108
  • 69 Wang Z, Zhang X, Zhu L. et al. Inulin alleviates inflammation of alcoholic liver disease via SCFAs-inducing suppression of M1 and facilitation of M2 macrophages in mice. Int Immunopharmacol 2020; 78: 106062 doi: 10.1016/j.intimp.2019.106062
  • 70 Zhao L, Liu S, Zhang Z. et al. Low and high concentrations of butyrate regulate fat accumulation in chicken adipocytes via different mechanisms. Adipocyte 2020; 9: 120-131 doi:10.1080/21623945.2020.1738791
  • 71 Weitkunat K, Schumann S, Nickel D. et al. Importance of propionate for the repression of hepatic lipogenesis and improvement of insulin sensitivity in high-fat diet-induced obesity. Mol Nutr Food Res 2016; 60: 2611-2621 doi:10.1002/mnfr.2011600305
  • 72 Walsh ME, Bhattacharya A, Sataranatarajan K. et al. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell 2015; 14: 957-970 doi:10.1111/acel.12387
  • 73 Lahiri S, Kim H, Garcia-Perez I. et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med 2019; 11: eaan5662 doi:10.1126/scitranslmed.aan5662
  • 74 Khan S, Jena G. Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food Chem Toxicol 2014; 73: 127-139 doi:10.1016/j.fct.2014.08.010
  • 75 Machado RA, de Souza Constantino L, Tomasi CD. et al. Sodium butyrate decreases the activation of NF-κB reducing inflammation and oxidative damage in the kidney of rats subjected to contrast-induced nephropathy. Nephrol Dial Transplant 2012; 27: 3136-3140 doi:10.1093/ndt/gfr807
  • 76 McLoughlin RF, Berthon BS, Jensen ME. et al. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. Am J Clin Nutr 2017; 106: 930-945 doi:10.3945/ajcn.117.156265
  • 77 Cerqueira É, Marinho DA, Neiva HP. et al. Inflammatory effects of high and moderate intensity exercise—a systematic review. Front Physiol 2020; 10: 1550 doi:10.3389/fphys.2019.01550
  • 78 Andrade-Oliveira V, Amano MT, Correa-Costa M. et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol 2015; 26: 1877-1888 doi:10.1681/ASN.2014030288
  • 79 Matsumoto N, Riley S, Fraser D. et al. Butyrate modulates TGF-β1 generation and function: potential renal benefit for Acacia(sen) SUPERGUM™ (gum arabic)?. Kidney Int 2006; 69: 257-265 doi:10.1038/sj.ki.5000028
  • 80 Allen JM, Mailing LJ, Niemiro GM. et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc 2018; 50: 747-757 doi:10.1249/MSS.0000000000001495
  • 81 den Besten G, van Eunen K, Groen AK. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54: 2325-2340 doi:10.1194/jlr.R036012
  • 82 Nieman DC. Risk of upper respiratory tract infection in athletes: an epidemiologic and immunologic perspective. J Athl Train 1997; 32: 344-349
  • 83 Trompette A, Gollwitzer ES, Pattaroni C. et al. Dietary fiber confers protection against flu by shaping Ly6c- patrolling monocyte hematopoiesis and CD8+ cell metabolism. Immunity 2018; 48: 992-1005 doi:10.1016/j.immuni.2018.04.022
  • 84 Sencio V, Barthelemy A, Tavares LP. et al. Gut dysbiosis during influenza contributes to pulmonary pneumococcal superinfection through altered short-chain fatty acid production. Cell Rep 2020; 30: 2934-2947 doi:10.1016/j.celrep.2020.02.013
  • 85 Gleeson M, Bishop NC, Oliveira M. et al. Daily probiotic's (Lactobacillus casei Shirota) reduction of infection incidence in athletes. Int J Sport Nutr Exerc Metab 2011; 21: 55-64 doi:10.1123/ijsnem.21.1.55
  • 86 Tang Q, Jin G, Wang G. et al. Current sampling methods for gut microbiota: a call for more precise devices. Front Cell Infect Microbiol 2020; 10: 151 doi:10.3389/fcimb.2020.00151
  • 87 Scheiman J, Luber JM, Chavkin TA. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med 2019; 25: 1104-1109 doi:10.1038/s41591-019-0485-4
  • 88 Kimura I, Inoue D, Maeda T. et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci USA 2011; 108: 8030-8035 doi:10.1073/pnas.101688108
  • 89 O’Donovan CM, Madigan SM, Garcia-Perez I. et al. Distinct microbiome composition and metabolome exists across subgroups of elite Irish athletes. J Sci Med Sport 2020; 23: 63-68 doi:10.1016/j.sams.2019.08.290
  • 90 Barton W, Penney NC, Cronin O. et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 2018; 67: 625-633 doi:10.1136/gutjnl-2016-313627
  • 91 Moreno-Pérez D, Bressa C, Bailén M. et al. Effect of a protein supplement on the gut microbiota of endurance athletes: A randomized, controlled, double-blind pilot study. Nutrients 2018; 10: 337 doi:10.3390/nu10030337
  • 92 Gaudier E, Forestier L, Gouyer V. et al. Butyrate regulation of glycosylation-related gene expression: evidence for galectin-1 upregulation in human intestinal epithelial goblet cells. Biochem Biophys Res Commun 2004; 325: 1044-1051 doi:10.1016/j.bbrc.2004.10.141
  • 93 Makki K, Deehan EC, Walter J. et al. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018; 23: 705-715 doi:10.1016/j.chom.2018.05.012
  • 94 Okamoto T, Morino K, Ugi S. et al. Microbiome potentiates endurance exercise through intestinal acetate production. Am J Physiol Endocrinol Metab 2019; 316: E956-E966 doi:10.1152/ajpendo.00510.2018
  • 95 Nieman DC. Exercise, infection, and immunity. Int J Sports Med 1994; 15: S131-S141 doi:10.1055/s-2007-1021128
  • 96 Walsh NP. Nutrition and athlete immune health: new perspectives on an old paradigm. Sports Med 2019; 49: 153-168 doi:10.1007/s40279-019-01160-3
  • 97 Stephen AM, Champ MM-J, Cloran SJ. et al. Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr Res Rev 2017; 30: 149-190 doi:10.1017/S095442241700004X
  • 98 Healey G, Murphy R, Butts C. et al. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br J Nutr 2018; 119: 176-189 doi:10.1017/S0007114517003440
  • 99 Shanahan F. Fiber man meets microbial man. Am J Clin Nutr 2015; 101: 1-2 doi:10.3945/ajcn.114.101550
  • 100 Yin R, Kuo HC, Hudlikar R. et al. Gut microbiota, dietary phytochemicals and benefits to human health. Curr Pharmacol Rep 2019; 5: 332-344 doi:10.1007/s40495-019-00196-3
  • 101 Eswaran S, Muir J, Chey WD. Fiber and functional gastrointestinal disorders. Am J Gastroenterol 2013; 108: 718-727 doi:10.1038/ajg.2013.63
  • 102 Scientific Advisory Committee on Nutrition Carbohydrates and Health Report. London: TSO; 2015
  • 103 Slavin JL. Position of the American Dietetic Association: health implications of dietary fiber. J Am Diet Assoc 2008; 108: 1716-1731 doi:10.1016/j.jada.2008.08.007
  • 104 Nebl J, Schuchardt JP, Wasserfurth P. et al. Characterization, dietary habits and nutritional intake of omnivorous, lacto-ovo vegetarian and vegan runners – a pilot study. BMC Nutr 2019; 5: 51 doi:10.1186/s40795-019-0313-8
  • 105 Gomez-Hixson K, Biagioni E, Brown ML. Significant differences in dietary intake of NCAA Division III soccer players compared to recommended levels. J Am Coll Health 2020; 26: 1-8 doi:10.1080/07448481.2020.1728279
  • 106 Naughton RJ, Drust B, O'Boyle A. et al. Free-sugar, total-sugar, fibre, and micronutrient intake within elite youth British soccer players: a nutritional transition from schoolboy to fulltime soccer player. Appl Physiol Nutr Metab 2017; 42: 517-522 doi:10.1139/apnm-2016-0459
  • 107 O'Grady J, O'Connor EM, Shanahan F. Review article: Dietary fibre in the era of microbiome science. Aliment Pharmacol Ther 2019; 49: 506-515 doi:10.1111/apt.15129
  • 108 Vanegas SM, Meydani M, Barnett JB. et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr 2017; 105: 635-650 doi:10.3945/ajcn.116.146928
  • 109 Sandberg J, Kovatcheva-Datchary P, Björck I. et al. Abundance of gut Prevotella at baseline and metabolic response to barley prebiotics. Eur J Nutr 2019; 58: 2365-2376 doi:10.1007/s00394-018-1788-9
  • 110 Kovatcheva-Datchary P, Nilsson A, Akrami R. et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metab 2015; 22: 971-982 doi:10.1016/j.cmet.2015.10.001
  • 111 Chen T, Long W, Zhang C. et al. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep 2017; 7: 2594 doi:10.1038/s41598-017-02995-4
  • 112 So D, Whelan K, Rossi M. et al. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am J Clin Nutr 2018; 107: 965-983 doi:10.1093/ajcn/nqy041
  • 113 Vandeputte D, Falony G, Vieira-Silva S. et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 2017; 66: 1968-1974 doi:10.1136/gutjnl-2016-313271
  • 114 Lordan C, Thapa D, Ross RP. et al. Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes 2020; 11: 1-20 doi:10.1080/19490976.2019.1613124
  • 115 Dewulf EM, Cani PD, Claus SP. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013; 62: 1112-1121 doi:10.1136/gutjnl-2012.303304
  • 116 Ramirez-Farias C, Slezak K, Fuller Z. et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 2009; 101: 541-550 doi:10.1017/S0007114508019880
  • 117 Azcarate-Peril MA, Ritter AJ, Savaiano D. et al. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc Natl Acad Sci U S A 2017; 114: 367-375 doi:10.1073/pnas.1606722113
  • 118 Liu F, Li P, Chen M. et al. Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase Bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population. Sci Rep 2017; 7: 11789 doi:10.1038/s41598-017-10722-2
  • 119 Gibson GR, Hutkins R, Sanders ME. et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14: 491-502 doi:10.1038/nrgastro.2017.75
  • 120 Neyrinck AM, Possemiers S, Druart C. et al. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS One 2011; 6: e20944 doi:10.1371/journal.pone.0020944
  • 121 Van Craeyveld V, Swennen K, Dornez E. et al. Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. J Nutr 2008; 138: 2348-2355 doi:10.3945/jn.108.094367
  • 122 Benítez-Páez A, Kjølbaek L, Del Pulgar EM. et al. A multi-omics approach to unraveling the microbiome-mediated effects of arabinoxylan oligosaccharides in overweight humans. mSystems 2019; 4: e00209-e00219 doi:10.1128/mSystems.00209-19
  • 123 Hald S, Schioldan AG, Moore ME. et al. Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: a randomised crossover study. PLoS One 2016; 11: e0159223 doi:10.1371/journal.pone.0159223
  • 124 Tan H, Chen W, Liu Q. et al. Pectin oligosaccharides ameliorate colon cancer by regulating oxidative stress- and inflammation-activated signaling pathways. Front Immunol 2018; 9: 1504 doi:10.3389/fimmu.2018.01504
  • 125 Chung WSF, Meijerink M, Zeuner B. et al. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol 2017; 93 doi:10.1093/femsec/fix127
  • 126 Lopez-Siles M, Khan TM, Duncan SH. et al. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 2012; 78: 420-428 doi:10.1128/AEM.06858-11
  • 127 Koutsos A, Lima M, Conterno L. et al. Effects of commercial apple varieties on human gut microbiota composition and metabolic output using an in vitro colonic model. Nutrients 2017; 9: 533 doi:10.3390/nu9060533
  • 128 Moniz P, Ho AL, Duarte LC. et al. Assessment of the bifidogenic effect of substituted xylo-oligosaccharides obtained from corn straw. Carbohydr Polym 2016; 136: 466-473 doi:10.1016/j.carbpol.2015.09.046
  • 129 Li Z, Summanen PH, Komoriya T. et al. In vitro study of the prebiotic xylooligosaccharide (XOS) on the growth of Bifidobacterium spp and Lactobacillus spp. Int J Food Sci Nutr 2015; 66: 919-922
  • 130 Lecerf JM, Dépeint F, Clerc E. et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br J Nutr 2012; 108: 1847-1858 doi:10.17/S0007114511007252
  • 131 Finegold SM, Li Z, Summanen PH. et al. Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food Func 2014; 5: 436-445 doi:10.1039/c3fo60348b
  • 132 Hu Y, Ketabi A, Buchko A. et al. Metabolism of isomalto-oligosaccharides by Lactobacillus reuteri and bifidobacteria. Lett Appl Microbiol 2013; 57: 108-114 doi:10.1111/Iam.12076
  • 133 Goffin D, Delzenne N, Blecker C. et al. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit Rev Food Sci Nutr 2011; 51: 394-409 doi:10.1080/10408391003628955
  • 134 Gu F, Borewicz K, Richter B. et al. In vitro fermentation behavior of isomalto/malto-polysaccharides using human fecal inoculum indicates prebiotic potential. Mol Nutr Food Res 2018; 62: e1800232 doi:10.1002/mnfr.201800232
  • 135 Singh DP, Singh J, Boparai RK. et al. Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice. Pharmacol Res 2017; 123: 103-113 doi:10.1016/j.phrs.2017.06.015
  • 136 Singh DP, Singh S, Bijalwan V. et al. Co-supplementation of isomalto-oligosaccharides potentiates metabolic health benefits of polyphenol-rich cranberry extract in high fat diet-fed mice via enhanced gut butyrate production. Eur J Nutr 2018; 57: 2897-2911 doi:10.1007/s00394-017-1561
  • 137 Walsh C, Lane JA, van Sinderen D. et al. Human milk oligosaccharides: shaping the infant gut microbiota and supporting health. J Funct Foods 2020; 72: 104074 doi:10.1016/j.jff.2020.104074
  • 138 Vandenplas Y, Berger B, Carnielli VP. et al. Human milk oligosaccharides: 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 2018; 10: 1161 doi:10.3390/nu10091161
  • 139 Ward RE, Niñonuevo M, Mills DA. et al. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol Nutr Food Res 2007; 51: 1398-1405 doi:10.1002/mnfr.200700150
  • 140 Elison E, Vigsnaes LK, Krogsgaard LR. et al. Oral supplementation of healthy adults with 2'-O-fucosyllactose and lacto-N-neotetraose is well tolerated and shifts the intestinal microbiota. Br J Nutr 2016; 116: 1356-1368 doi:10.1017/A0007114516003354
  • 141 Rycroft CE, Jones MR, Gibson GR. et al. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol 2001; 91: 878-887 doi:10.1046/j.1365-2672.2001.01446.x
  • 142 Zheng J, Li H, Zhang X. et al. Prebiotic mannan-oligosaccharides augment the hypoglycemic effects of metformin in correlation with modulating gut microbiota. J Agric Food Chem 2018; 66: 5821-5831 doi:10.1021/acs.jafc.8b00829
  • 143 Kurotani K, Takimoto H. Soy intake and health. BMJ 2020; 368: m247 doi:10.1136/bmj.m247
  • 144 Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 1991; 70: 443-459 doi:10.1111/j.1365-2672-1991.tb.02739.x
  • 145 Desai MS, Seekatz AM, Koropatkin NM. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016; 167: 1339-1353 doi:10.1016/j.cell.2016.10.043
  • 146 Zou J, Chassaing B, Singh V. et al. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 2018; 23: 41-53 doi:10.1016/j.chom.2017.11.003
  • 147 Venkataraman A, Sieber JR, Schmidt AW. et al. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome 2016; 4: 33 doi:10.1186/s40168-016-0178-x
  • 148 Welters CF, Heineman E, Thunnissen FBJ. et al. Effect of dietary inulin supplementation on inflammation of pouch mucosa in patients with an ileal pouch-anal anastomosis. Dis Colon Rectum 2002; 45: 621-627 doi:10.1007/s10350-004-6257-2
  • 149 Baxter NT, Schmidt AW, Venkataraman A. et al. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio 2019; 10: e02566-18 doi:10.1128/mBio.02566-18
  • 150 Hallert C, Björck I, Nyman M. et al. Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study. Inflamm Bowel Dis 2003; 9: 116-121 doi:10.1097/00054725-200303000-00005
  • 151 Mari A, Backer FA, Mahamid M. et al. Bloating and abdominal distension: clinical approach and management. Adv Ther 2019; 36: 1075-1084 doi:10.1007/s12325-019-00924-7
  • 152 Tosh SM, Farnworth ER, Brummer Y. et al. Nutritional profile and carbohydrate characterization of spray-dried lentil, pea and chickpea ingredients. Foods 2013; 2: 338-349 doi:10.3390/foods2030338
  • 153 Caetano BFR, de Moura NA, Almeida APS. et al. Yacon (Smallanthus sonchifolius) as a food supplement: health-promoting benefits of fructooligosaccharides. Nutrients 2016; 8: 436 doi:10.3390/nu8070436.
  • 154 Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC. et al. Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol 2016; 36: 259-267 doi:10.3109/07388551.2014.953443
  • 155 Man S, Liu T, Yao Y. et al. Friend or foe? The roles of inulin-type fructans. Carbohydr Polym 2021; 252: 117155 doi:10.1016/j.carbpol.2020.117155
  • 156 McGovern PE, Zhang J, Tang J. et al. Fermented beverages of pre- and proto-historic China. Proc Natl Acad Sci USA 2004; 101: 17593-17598 doi:10.1073/pnas.0407921102
  • 157 Asarat M, Apostolopoulos V, Vasiljevic T. et al. Short-chain fatty acids produced by symbiotic mixtures in skim milk differentially regulate proliferation and cytokine production in peripheral blood mononuclear cells. Int J Food Sci Nutr 2015; 66: 755-765 doi:10.3109/09637486.2015.1088935
  • 158 Olšovská J, Vrzal T, Sterba K. et al. The chemical profiling of fatty acids during the brewing process. J Sci Food Agric 2019; 99: 1772-1779 doi:10.1002/jsfa.9369
  • 159 Hu R, Zeng F, Wu L. et al. Fermented carrot juice attenuates type 2 diabetes by mediating gut microbiota in rats. Food Func 2019; 10: 2935-2946 doi:10.1039/c9fo00475k
  • 160 Laurent-Babot C, Guyot JP. Should research on the nutritional potential and health benefits of fermented cereals focus more on the general health status of populations in developing countries?. Microorganisms 2017; 5: 40 doi:10.3390/microorganisms5030040
  • 161 Marco ML, Heeney D, Binda S. et al. Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 2017; 44: 94-102 doi:10.1016/j.copbio.2016.11.010
  • 162 LeBlanc JG, Chain F, Martìn R. et al. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact 2017; 16: 79 doi:10.1186/s12934-017-0691-z
  • 163 Rezac S, Kok CR, Heermann M. et al. Fermented foods as a dietary source of live organisms. Front Microbiol 2018; 9: 1785 doi:10.3389/fmicb.2018.01785
  • 164 Gaskins AJ, Pereira A, Quintiliano D. et al. Dairy intake in relation to breast and pubertal development in Chilean girls. Am J Clin Nutr 2017; 105: 1166-1175 doi:10.3945/ajcn.116.150359
  • 165 Han K, Bose S, Wang JH. et al. Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Mol Nutr Food Res 2015; 59: 1004-1008 doi:10.1002/mnfr.201400780
  • 166 An SY, Lee MS, Jeon JY. et al. Beneficial effects of fresh and fermented kimchi in prediabetic individuals. Ann Nutr Metab 2013; 63: 111-119 doi:10.1159/000353583
  • 167 van Hylckama Vlieg JE, Veiga P, Zhang C. et al. Impact of microbial transformation of food on health - from fermented foods to fermentation in the gastro-intestinal tract. Curr Opin Biotechnol 2011; 22: 211-219 doi:10.1016/j.copbio.2010.12.004
  • 168 Neumann U, Derwenskus F, Gille A. et al. Bioavailability and safety of nutrients from the microalgae Chlorella vulgaris, Nannochloropsis oceanica and Phaeodactylum tricornutum in C57BL/6 mice. Nutrients 2018; 10: 965 doi:10.3390/nu10080965
  • 169 Wolfe BE, Dutton RJ. Fermented foods as experimentally tractable microbial ecosystems. Cell 2015; 161: 49-55 doi:10.1016/j.cell.2015.02.034
  • 170 Bourrie BCT, Willing BP, Cotter PD. The microbiota and health promoting characteristics of the fermented beverage kefir. Front Microbiol 2016; 7: 647 doi:10.3389/fmicb.2016.00647
  • 171 Unno T, Choi JH, Hur HG. et al. Changes in human gut microbiota influenced by probiotic fermented milk ingestion. J Dairy Sci 2015; 98: 3568-3576 doi:10.3168/jds.2014-8943
  • 172 Pouteau E, Nguyen P, Ballèvre O. et al. Production rates and metabolism of short-chain fatty acids in the colon and whole body using stable isotopes. Proc Nutr Soc 2003; 62: 87-93 doi:10.1079/PNS2003208
  • 173 Li S, Li P, Feng F, Luo LX. Microbial diversity and their roles in the vinegar fermentation process. Appl Microbiol Biotechnol 2015; 99: 4997-5024 doi:10.1007/s00253-015-6659-1
  • 174 Cameleyre M, Lytra G, Tempere S. et al. 2-Methylbutyl acetate in wines: enantiomeric distribution and sensory impact on red wine fruity aroma. Food Chem 2017; 237: 364-371 doi:10.1016/j.foodchem.2017.05.093
  • 175 Pandey A, Srivastava S, Rai P. et al. Cheese whey to biohydrogen and useful organic acids: a non-pathogenic microbial treatment by L. acidophilus. Sci Rep 2019; 9: 8320 doi:10.1038/s41598-019-42752-3
  • 176 Kalo P, Kemppinen A, Ollilainen V. Determination of triacylglycerols in butterfat by normal-phase HPLC and electrospray-tandem mass spectrometry. Lipids 2009; 44: 169-195 doi:10.1007/s11745-008-3247-5
  • 177 Yang YJ, Sheu BS. Probiotics-containing yogurts suppress Helicobacter pylori load and modify immune response and intestinal microbiota in the Helicobacter pylori-infected children. Helicobacter 2012; 17: 297-304 doi:10.1111/j.1523-5378.2012.00941.x
  • 178 Nielsen ES, Garnas E, Jensen KJ. et al. Lacto-fermented sauerkraut improves symptoms in IBS patients independent of product pasteurisation - a pilot study. Food Func 2018; 9: 5323-5335 doi:10.1039/c8fo00968f
  • 179 Molan AL, Lila MA, Mawson J. et al. In vitro and in vivo evaluation of the prebiotic activity of water-soluble blueberry extracts. World J Microbiol Biotechnol 2009; 25: 1243-1249
  • 180 Lee S, Keirsey KI, Kirkland R. et al. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-fed rats. J Nutr 2018; 148: 209-219 doi:10.1093/jn/nxx027
  • 181 Pan P, Lam V, Salzman N. et al. Black raspberries and their anthocyanin and fiber fractions alter the composition and diversity of gut microbiota in F-344 rats. Nutr Cancer 2017; 69: 943-951 doi:10.1080/01635581.2017.1340491
  • 182 Matziouridou C, Marungruang N, Nguyen TD. et al. Lingonberries reduce atherosclerosis in Apoe(-/-) mice in association with altered gut microbiota composition and improved lipid profile. Mol Nutr Food Res 2016; 60: 1150-1160 doi:10.1002/mnfr.201500738
  • 183 Pierre JF, Heneghan AF, Feliciano RP. et al. Cranberry proanthocyanidins improve the gut mucous layer morphology and function in mice receiving elemental enteral nutrition. JPEN J Parenter Enteral Nutr 2013; 401-409 doi:10.1177/0148607112463076
  • 184 Fogliano V, Corollaro ML, Vitaglione P. et al. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Mol Nutr Food Res 2011; 55: 44-55 doi:10.1002/mnfr.201000360
  • 185 Lee HC, Jenner AM, Low CS. et al. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 2006; 157: 876-884 doi:10.1016/j.resmic.2006.07.004
  • 186 Zhang X, Zhu X, Sun Y. et al. Fermentation in vitro of EGCG, GCG and EGCG3"Me isolated from Oolong tea by human intestinal microbiota. Food Res Int 2013; 54: 1589-1595 doi:10.1016/j.foodres.2013.10.005
  • 187 Queipo-Ortuño MI, Boto-Ordonez M, Murri M. et al. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 2012; 95: 1323-1334 doi:10.3945/ajcn.111.027847
  • 188 Tzounis X, Vulevic J, Kuhnle GGC. et al. Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr 2008; 99: 782-792 doi:10.1017/S0007114507853384
  • 189 Baldwin J, Collins B, Wolf PG. et al. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice. J Nutr Biochem 2016; 27: 123-135 doi:10.1016/j.nutbio.2015.08.027
  • 190 Bongiovanni T, Pintus R, Dessì A. et al. Sportomics: Metabolomics applied to sports. The new revolution?. Eur Rev Med Pharmacol Sci 2019; 23: 11011-11019 doi:10.26355/eurrev_201912_19807
  • 191 Pintus R, Bongiovanni T, Corbu S. et al. Sportomics in professional soccer players: metabolomics results during preseason. J Sports Med Phys Fitness 2020; 61: 324-330 doi:10.23736/S0022-4707.20.11200-3