Subscribe to RSS
DOI: 10.1055/a-1525-7029
Value of PET imaging for radiation therapy[*]
Wertigkeit der PET-Bildgebung für die Radioonkologie
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Zusammenfassung
Diese umfassende Übersichtsarbeit, die von Experten auf ihrem Gebiet verfasst wurde, zeigt den aktuellen Stand hinsichtlich der Einbeziehung der Positronen-Emissions-Tomografie (PET) in die Strahlenbehandlungsplanung. Darüber hinaus werden laufende Studien zur Behandlungsindividualisierung und zur Überwachung des Tumoransprechens pro Behandlung bei verschiedenen Primärtumoren vorgestellt. Neuartige Tracer und Bildanalyseverfahren werden diskutiert. Die Autoren sind der Meinung, dass dieser Beitrag sowohl für Experten auf diesem Gebiet als auch für politische Entscheidungsträger, die über die Kostenerstattung dieser leistungsstarken Bildgebungsmodalität bestimmen, von entscheidendem Wert ist.
* This article is co-published in the journals Strahlentherapie und Onkologie and Nuklearmedizin – Nuclear Medicine Molecular Imaging and Therapy. https://doi.org/10.1007/s00066-021-01812-2 or https://doi.org/10.1055/a-1525-7029.
Publication History
Received: 30 May 2021
Accepted: 08 June 2021
Article published online:
14 July 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Takenaka S, Asano Y, Shinoda J. et al. Comparison of 11C-methionine, 11C-choline, and 18F-fluorodeoxyglucose-positron emission tomography for distinguishing glioma recurrence from radiation necrosis. Neurologia medico-chirurgica 2014; 54 (04) 280-289
- 2 Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic Accuracy of PET for Recurrent Glioma Diagnosis: A Meta-Analysis. American Journal of Neuroradiology 2013; 34 (05) 944
- 3 Karunanithi S, Sharma P, Kumar A. et al. 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with 18F-FDG PET/CT. European Journal of Nuclear Medicine and Molecular Imaging 2013; 40 (07) 1025-1035
- 4 Albert NL, Weller M, Suchorska B. et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology 2016; 18 (09) 1199-1208
- 5 Galldiks N, Langen K-J, Albert NL. et al. PET imaging in patients with brain metastasis—report of the RANO/PET group. Neuro-Oncology 2019; 21 (05) 585-595
- 6 Galldiks N, Albert NL, Sommerauer M. et al. PET imaging in patients with meningioma—report of the RANO/PET Group. Neuro-Oncology 2017; 19 (12) 1576-1587
- 7 Kracht LW, Miletic H, Busch S. et al. Delineation of brain tumor extent with [11C]l-methionine positron emission tomography. Clinical Cancer Research 2004; 10 (21) 7163
- 8 Pauleit D, Floeth F, Hamacher K. et al. O-(2-[18F]fluoroethyl)-l-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128 (03) 678-687
- 9 Pafundi DH, Laack NN, Youland RS. et al. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro-Oncology 2013; 15 (08) 1058-1067
- 10 Roodakker KR, Alhuseinalkhudhur A, Al-Jaff M. et al. Region-by-region analysis of PET, MRI, and histology in en bloc-resected oligodendrogliomas reveals intra-tumoral heterogeneity. European Journal of Nuclear Medicine and Molecular Imaging 2019; 46 (03) 569-579
- 11 Verburg N, Koopman T, Yaqub MM. et al. Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study. Neuro-Oncology 2019; 22 (03) 412-422
- 12 Schön SCJ, Liesche-Starnecker F, Molina-Romero M. et al. Imaging glioma biology: spatial comparison of amino acid PET, amide proton transfer, and perfusion-weighted MRI in newly diagnosed gliomas. Eur J Nucl Med Mol Imaging 2020; 47 (06) 1468-1475
- 13 Fleischmann DF, Unterrainer M, Schön R. et al. Margin reduction in radiotherapy for glioblastoma through 18F-fluoroethyltyrosine PET? – A recurrence pattern analysis. Radiotherapy and Oncology 2020; 145: 49-55
- 14 Møller S, Munck af Rosenschöld P, Costa J. et al. Toxicity and efficacy of re-irradiation of high-grade glioma in a phase I dose- and volume escalation trial. Radiotherapy and Oncology 2017; 125 (02) 223-227
- 15 Grosu AL, Astner ST, Riedel E. et al. An Interindividual Comparison of O-(2- [18F]Fluoroethyl)-L-Tyrosine (FET)– and L-[Methyl-11C]Methionine (MET)-PET in Patients With Brain Gliomas and Metastases. International Journal of Radiation Oncology*Biology*Physics 2011; 81 (04) 1049-1058
- 16 Popp I, Bott S, Mix M. et al. Diffusion-weighted MRI and ADC versus FET-PET and GdT1w-MRI for gross tumor volume (GTV) delineation in re-irradiation of recurrent glioblastoma. Radiotherapy and Oncology 2019; 130: 121-131
- 17 Grosu AL, Weber WA, Franz M. et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. International Journal of Radiation Oncology*Biology*Physics 2005; 63 (02) 511-519
- 18 Oehlke O, Mix M, Graf E. et al. Amino-acid PET versus MRI guided re-irradiation in patients with recurrent glioblastoma multiforme (GLIAA) – protocol of a randomized phase II trial (NOA 10/ARO 2013-1). BMC Cancer 2016; 16 (01) 769
- 19 Gehler B, Paulsen F, Öksüz MÖ. et al. [68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning. Radiation Oncology 2009; 4 (01) 56
- 20 Nyuyki F, Plotkin M, Graf R. et al. Potential impact of 68Ga-DOTATOC PET/CT on stereotactic radiotherapy planning of meningiomas. European Journal of Nuclear Medicine and Molecular Imaging 2010; 37 (02) 310-318
- 21 Kunz WG, Jungblut LM, Kazmierczak PM. et al. Improved detection of transosseous meningiomas using 68Ga-DOTATATE PET/CT compared with contrast-enhanced MRI. Journal of Nuclear Medicine 2017; 58 (10) 1580
- 22 Galldiks NNM, Grosu AL, Kocher M. et al Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients – a report of the PET/RANO group. Neuro Oncol 2021; 23 (06) 881-893
- 23 Spence AM, Muzi M, Graham MM. et al. 2-[18F]Fluoro-2-deoxyglucose and Glucose Uptake in Malignant Gliomas before and after Radiotherapy. Clinical Cancer Research 2002; 8 (04) 971
- 24 Charnley N, West CM, Barnett CM. et al. Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy. International Journal of Radiation Oncology*Biology*Physics 2006; 66 (02) 331-338
- 25 Galldiks N, Langen KJ, Holy R. et al. Assessment of treatment response in patients with glioblastoma using O-(2-18F-Fluoroethyl)-l-Tyrosine PET in comparison to MRI. Journal of Nuclear Medicine 2012; 53 (07) 1048
- 26 Piroth MD, Pinkawa M, Holy R. et al. Prognostic Value of Early [18F]Fluoroethyltyrosine Positron Emission Tomography After Radiochemotherapy in Glioblastoma Multiforme. International Journal of Radiation Oncology*Biology*Physics 2011; 80 (01) 176-184
- 27 Wang Y, Rapalino O, Heidari P. et al. C11 Methionine PET (MET-PET) Imaging of Glioblastoma for Detecting Postoperative Residual Disease and Response to Chemoradiation Therapy. International Journal of Radiation Oncology*Biology*Physics 2018; 102 (04) 1024-1028
- 28 Miller S, Li P, Schipper M. et al. Metabolic tumor volume response assessment using (11) C-methionine positron emission tomography identifies glioblastoma tumor subregions that predict progression better than baseline or anatomic magnetic resonance imaging alone. Advances in Radiation Oncology 2020; 5 (01) 53-61
- 29 Fleischmann DF, Unterrainer M, Bartenstein P. et al. (18)F-FET PET prior to recurrent high-grade glioma re-irradiation-additional prognostic value of dynamic time-to-peak analysis and early static summation images?. J Neurooncol 2017; 132 (02) 277-286
- 30 Dhermain FG, Hau P, Lanfermann H. et al. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. The Lancet Neurology 2010; 9 (09) 906-920
- 31 Kumar AJ, Leeds NE, Fuller GN. et al. Malignant Gliomas: MR Imaging Spectrum of Radiation Therapy- and Chemotherapy-induced Necrosis of the Brain after Treatment. Radiology 2000; 217 (02) 377-384
- 32 Langen KJ, Galldiks N, Hattingen E. et al. Advances in neuro-oncology imaging. Nature Reviews Neurology 2017; 13 (05) 279-289
- 33 Galldiks N, Stoffels G, Filss C. et al. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro-Oncology 2015; 17 (09) 1293-1300
- 34 Pyka T, Hiob D, Preibisch C. et al. Diagnosis of glioma recurrence using multiparametric dynamic 18F-fluoroethyl-tyrosine PET-MRI. European Journal of Radiology 2018; 103: 32-37
- 35 Werner JM, Stoffels G, Lichtenstein T. et al. Differentiation of treatment-related changes from tumour progression: a direct comparison between dynamic FET PET and ADC values obtained from DWI MRI. European Journal of Nuclear Medicine and Molecular Imaging 2019; 46 (09) 1889-1901
- 36 Caldas-Magalhaes J, Kasperts N, Kooij N. et al. Validation of Imaging With Pathology in Laryngeal Cancer: Accuracy of the Registration Methodology. International Journal of Radiation Oncology*Biology*Physics 2012; 82 (02) e289-e298
- 37 Chatterjee S, Frew J, Mott J. et al. Variation in Radiotherapy Target Volume Definition, Dose to Organs at Risk and Clinical Target Volumes using Anatomic (Computed Tomography) versus Combined Anatomic and Molecular Imaging (Positron Emission Tomography/Computed Tomography): Intensity-modulated Radiotherapy Delivered using a Tomotherapy Hi Art Machine: Final Results of the VortigERN Study. Clinical Oncology 2012; 24 (10) e173-e179
- 38 Daisne JF, Duprez T, Weynand B. et al. Tumor Volume in Pharyngolaryngeal Squamous Cell Carcinoma: Comparison at CT, MR Imaging, and FDG PET and Validation with Surgical Specimen. Radiology 2004; 233 (01) 93-100
- 39 Geets X, Daisne JF, Tomsej M. et al. Impact of the type of imaging modality on target volumes delineation and dose distribution in pharyngo-laryngeal squamous cell carcinoma: comparison between pre- and per-treatment studies. Radiotherapy and Oncology 2006; 78 (03) 291-297
- 40 Guido A, Fuccio L, Rombi B. et al. Combined FDG-PET/CT Imaging in Radiotherapy Target Delineation for Head-and-Neck Cancer. International Journal of Radiation Oncology*Biology*Physics 2009; 73 (03) 759-763
- 41 Leclerc M, Lartigau E, Lacornerie T. et al. Primary tumor delineation based on 18FDG PET for locally advanced head and neck cancer treated by chemo-radiotherapy. Radiotherapy and Oncology 2015; 116 (01) 87-93
- 42 Wang D, Schultz CJ, Jursinic PA. et al. Initial experience of FDG-PET/CT guided IMRT of head-and-neck carcinoma. International Journal of Radiation Oncology*Biology*Physics 2006; 65 (01) 143-151
- 43 Löck S, Perrin R, Seidlitz A. et al. Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiotherapy and Oncology 2017; 124 (03) 533-540
- 44 Mortensen LS, Johansen J, Kallehauge J. et al. FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: Results from the DAHANCA 24 trial. Radiotherapy and Oncology 2012; 105 (01) 14-20
- 45 Troost EGC, Laverman P, Philippens MEP. et al. Correlation of [18F]FMISO autoradiography and pimonodazole immunohistochemistry in human head and neck carcinoma xenografts. European Journal of Nuclear Medicine and Molecular Imaging 2008; 35 (10) 1803-1811
- 46 Zips D, Zöphel K, Abolmaali N. et al. Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiotherapy and Oncology 2012; 105 (01) 21-28
- 47 Grosu AL, Souvatzoglou M, Röper B. et al. Hypoxia Imaging With FAZA-PET and Theoretical Considerations With Regard to Dose Painting for Individualization of Radiotherapy in Patients With Head and Neck Cancer. International Journal of Radiation Oncology*Biology*Physics 2007; 69 (02) 541-551
- 48 Wiedenmann N, Grosu AL, Büchert M. et al. The utility of multiparametric MRI to characterize hypoxic tumor subvolumes in comparison to FMISO PET/CT. Consequences for diagnosis and chemoradiation treatment planning in head and neck cancer. Radiotherapy and Oncology 2020; 150: 128-135
- 49 Nicolay NH, Wiedenmann N, Mix M. et al. Correlative analyses between tissue-based hypoxia biomarkers and hypoxia PET imaging in head and neck cancer patients during radiochemotherapy—results from a prospective trial. European Journal of Nuclear Medicine and Molecular Imaging 2020; 47 (05) 1046-1055
- 50 Rühle A, Grosu AL, Wiedenmann N. et al. Hypoxia dynamics on FMISO-PET in combination with PD-1/PD-L1 expression has an impact on the clinical outcome of patients with Head-and-neck Squamous Cell Carcinoma undergoing Chemoradiation. Theranostics 2020; 10 (20) 9395-9406
- 51 Riaz N, Sherman E, Pei X. et al. Precision Radiotherapy: Reduction in Radiation for Oropharyngeal Cancer in the 30 ROC Trial. JNCI. Journal of the National Cancer Institute 2021;
- 52 Hoeben BAW, Troost EGC, Span PN. et al. 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. Journal of Nuclear Medicine 2013; 54 (04) 532
- 53 Troost EGC, Bussink J, Hoffmann AL. et al. 18F-FLT PET/CT for Early Response Monitoring and Dose Escalation in Oropharyngeal Tumors. Journal of Nuclear Medicine 2010; 51 (06) 866
- 54 Troost EGC, Vogel WV, Merkx MAW. et al. 18F-FLT PET Does Not Discriminate Between Reactive and Metastatic Lymph Nodes in Primary Head and Neck Cancer Patients. Journal of Nuclear Medicine 2007; 48 (05) 726
- 55 Syed M, Flechsig P, Liermann J. et al. Fibroblast activation protein inhibitor (FAPI) PET for diagnostics and advanced targeted radiotherapy in head and neck cancers. Eur J Nucl Med Mol Imaging 2020; 47 (12) 2836-2845
- 56 Machado Medeiros T, Altmayer S, Watte G. et al. 18F-FDG PET/CT and whole-body MRI diagnostic performance in M staging for non–small cell lung cancer: a systematic review and meta-analysis. European Radiology 2020; 30 (07) 3641-3649
- 57 Madsen PH, Holdgaard PC, Christensen JB. et al. Clinical utility of F-18 FDG PET-CT in the initial evaluation of lung cancer. European Journal of Nuclear Medicine and Molecular Imaging 2016; 43 (11) 2084-2097
- 58 Nestle U, Schimek-Jasch T, Kremp S. et al. Imaging-based target volume reduction in chemoradiotherapy for locally advanced non-small-cell lung cancer (PET-Plan): a multicentre, open-label, randomised, controlled trial. The Lancet Oncology 2020; 21 (04) 581-592
- 59 Konert T, Everitt S, La Fontaine MD. et al. Robust, independent and relevant prognostic 18F-fluorodeoxyglucose positron emission tomography radiomics features in non-small cell lung cancer: Are there any?. PLOS ONE 2020; 15 (02) e0228793
- 60 Nestle U, De Ruysscher D, Ricardi U. et al. ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer. Radiother Oncol 2018; 127 (01) 1-5
- 61 Kong FM, Ten Haken RK, Schipper M. et al. Effect of Midtreatment PET/CT-Adapted Radiation Therapy With Concurrent Chemotherapy in Patients With Locally Advanced Non–Small-Cell Lung Cancer: A Phase 2 Clinical Trial. JAMA Oncology 2017; 3 (10) 1358-1365
- 62 Pöttgen C, Gauler T, Bellendorf A. et al. Standardized Uptake Decrease on [18F]-Fluorodeoxyglucose Positron Emission Tomography After Neoadjuvant Chemotherapy Is a Prognostic Classifier for Long-Term Outcome After Multimodality Treatment: Secondary Analysis of a Randomized Trial for Resectable Stage IIIA/B Non–Small-Cell Lung Cancer. Journal of Clinical Oncology 2016; 34 (21) 2526-2533
- 63 RTOG 1106/ACRIN 6697 Randomized phase II trial of individualized adaptive radiotherapy
using during treatment FDG-PET/CT and modern technology in locally advanced non-small
cell lung cancer (NSCLC). https://clinicaltrials.gov/ct2/show/NCT01507428
- 64 Dissaux G, Visvikis D, Da-ano R. et al. Pretreatment 18F-FDG PET/CT Radiomics Predict Local Recurrence in Patients Treated with Stereotactic Body Radiotherapy for Early-Stage Non–Small Cell Lung Cancer: A Multicentric Study. Journal of Nuclear Medicine 2020; 61 (06) 814
- 65 Wang D, Zhang M, Gao X. et al. Prognostic Value of Baseline 18F-FDG PET/CT Functional Parameters in Patients with Advanced Lung Adenocarcinoma Stratified by EGFR Mutation Status. PLOS ONE 2016; 11 (06) e0158307
- 66 Bissonnette JP, Yap ML, Clarke K. et al. Serial 4DCT/4DPET imaging to predict and monitor response for locally-advanced non-small cell lung cancer chemo-radiotherapy. Radiotherapy and Oncology 2018; 126 (02) 347-354
- 67 van Elmpt W, Öllers M, Dingemans AMC. et al. Response assessment using 18F-FDG PET early in the course of radiotherapy correlates with survival in advanced-stage non–small cell lung cancer. Journal of Nuclear Medicine 2012; 53 (10) 1514
- 68 Ganem J, Thureau S, Gouel P. et al. Prognostic value of post-induction chemotherapy 18F-FDG PET-CT in stage II/III non-small cell lung cancer before (chemo-) radiation. PLOS ONE 2019; 14 (10) e0222885
- 69 Luo Y, McShan D, Ray D. et al. Development of a fully cross-validated Bayesian network approach for local control prediction in lung cancer. IEEE Transactions on Radiation and Plasma Medical Sciences 2019; 3 (02) 232-241
- 70 Roengvoraphoj O, Wijaya C, Eze C. et al. Analysis of primary tumor metabolic volume during chemoradiotherapy in locally advanced non-small cell lung cancer. Strahlentherapie und Onkologie 2018; 194 (02) 107-115
- 71 Bowen SR, Hippe DS, Chaovalitwongse WA. et al. Voxel Forecast for Precision Oncology: Predicting Spatially Variant and Multiscale Cancer Therapy Response on Longitudinal Quantitative Molecular Imaging. Clinical Cancer Research 2019; 25 (16) 5027
- 72 Duan C, Chaovalitwongse WA, Bai F. et al. Sensitivity analysis of FDG PET tumor voxel cluster radiomics and dosimetry for predicting mid-chemoradiation regional response of locally advanced lung cancer. Physics in Medicine & Biology 2020; 65 (20) 205007
- 73 Zegers CML, van Elmpt W, Reymen B. et al. In Vivo Quantification of Hypoxic and Metabolic Status of NSCLC Tumors Using [18F]HX4 and [18F]FDG-PET/CT Imaging. Clinical Cancer Research 2014; 20 (24) 6389
- 74 Bollineni VR, Kerner GSMA, Pruim J. et al. PET Imaging of Tumor Hypoxia Using 18F-Fluoroazomycin Arabinoside in Stage III–IV Non–Small Cell Lung Cancer Patients. Journal of Nuclear Medicine 2013; 54 (08) 1175
- 75 Bollineni VR, Koole MJB, Pruim J. et al. Dynamics of tumor hypoxia assessed by 18F-FAZA PET/CT in head and neck and lung cancer patients during chemoradiation: Possible implications for radiotherapy treatment planning strategies. Radiotherapy and Oncology 2014; 113 (02) 198-203
- 76 Everitt S, Ball D, Hicks RJ. et al. Prospective Study of Serial Imaging Comparing Fluorodeoxyglucose Positron Emission Tomography (PET) and Fluorothymidine PET During Radical Chemoradiation for Non-Small Cell Lung Cancer: Reduction of Detectable Proliferation Associated With Worse Survival. International Journal of Radiation Oncology*Biology*Physics 2017; 99 (04) 947-955
- 77 Everitt SJ, Ball DL, Hicks RJ. et al. Differential (18)F-FDG and (18)F-FLT Uptake on Serial PET/CT Imaging Before and During Definitive Chemoradiation for Non-Small Cell Lung Cancer. J Nucl Med 2014; 55 (07) 1069-1074
- 78 Kairemo K, Santos EB, Macapinlac HA. et al. Early Response Assessment to Targeted Therapy Using 3′-deoxy-3′[(18)F]-Fluorothymidine (18F-FLT) PET/CT in Lung Cancer. Diagnostics 2020; 10 (01) 26
- 79 Ajani JA, D’Amico TA, Bentrem DJ. et al. Esophageal and Esophagogastric Junction Cancers, Version 2.2019. NCCN Clinical Practice Guidelines in Oncology 2019; 17 (07) 855
- 80 Lordick F, Mariette C, Haustermans K. et al. Oesophageal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2016; 27: v50-v57
- 81 Bedenne L, Michel P, Bouché O. et al. Chemoradiation followed by surgery compared with chemoradiation alone in squamous cancer of the esophagus: FFCD 9102. J Clin Oncol 2007; 25 (10) 1160-1168
- 82 Stahl M, Stuschke M, Lehmann N. et al. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J Clin Oncol 2005; 23 (10) 2310-2317
- 83 van Hagen P, Hulshof MCCM, van Lanschot JJB. et al. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer. New England Journal of Medicine 2012; 366 (22) 2074-2084
- 84 Nowee ME, Voncken FEM, Kotte ANTJ. et al. Gross tumour delineation on computed tomography and positron emission tomography-computed tomography in oesophageal cancer: A nationwide study. Clinical and Translational Radiation Oncology 2019; 14: 33-39
- 85 Thomas L, Lapa C, Bundschuh RA. et al. Tumour delineation in oesophageal cancer – A prospective study of delineation in PET and CT with and without endoscopically placed clip markers. Radiotherapy and Oncology 2015; 116 (02) 269-275
- 86 Thomas M, Mortensen HR, Hoffmann L. et al. Proposal for the delineation of neoadjuvant target volumes in oesophageal cancer. Radiotherapy and Oncology 2021; 156: 102-112
- 87 Metzger JC, Wollschläger D, Miederer M. et al. Inclusion of PET-CT into planning of primary or neoadjuvant chemoradiotherapy of esophageal cancer improves prognosis. Strahlentherapie und Onkologie 2017; 193 (10) 791-799
- 88 Bütof R, Hofheinz F, Zöphel K. et al. Prognostic Value of Standardized Uptake Ratio in Patients with Trimodality Treatment of Locally Advanced Esophageal Carcinoma. Journal of Nuclear Medicine 2019; 60 (02) 192
- 89 Bütof R, Hofheinz F, Zöphel K. et al. Prognostic Value of Pretherapeutic Tumor-to-Blood Standardized Uptake Ratio in Patients with Esophageal Carcinoma. Journal of Nuclear Medicine 2015; 56 (08) 1150
- 90 Hofheinz F, Li Y, Steffen IG. et al. Confirmation of the prognostic value of pretherapeutic tumor SUR and MTV in patients with esophageal squamous cell carcinoma. European Journal of Nuclear Medicine and Molecular Imaging 2019; 46 (07) 1485-1494
- 91 Li Y, Beck M, Päßler T. et al. A FDG-PET radiomics signature detects esophageal squamous cell carcinoma patients who do not benefit from chemoradiation. Scientific Reports 2020; 10 (01) 17671
- 92 Zschaeck S, Hofheinz F, Zöphel K. et al. Increased FDG uptake on late-treatment PET in non-tumour-affected oesophagus is prognostic for pathological complete response and disease recurrence in patients undergoing neoadjuvant radiochemotherapy. European Journal of Nuclear Medicine and Molecular Imaging 2017; 44 (11) 1813-1822
- 93 Zschaeck S, Li Y, Bütof R. et al. Combined tumor plus nontumor interim FDG-PET parameters are prognostic for response to chemoradiation in squamous cell esophageal cancer. International Journal of Cancer 2020; 147 (05) 1427-1436
- 94 Kroese TE, Goense L, van Hillegersberg R. et al. Detection of distant interval metastases after neoadjuvant therapy for esophageal cancer with 18F-FDG PET(/CT): a systematic review and meta-analysis. Diseases of the Esophagus 2018; 31 (12)
- 95 Noordman BJ, Spaander MCW, Valkema R. et al. Detection of residual disease after neoadjuvant chemoradiotherapy for oesophageal cancer (preSANO): a prospective multicentre, diagnostic cohort study. The Lancet Oncology 2018; 19 (07) 965-974
- 96 Barbour AP, Walpole ET, Mai GT. et al. Preoperative cisplatin, fluorouracil, and docetaxel with or without radiotherapy after poor early response to cisplatin and fluorouracil for resectable oesophageal adenocarcinoma (AGITG DOCTOR): results from a multicentre, randomised controlled phase II trial. Ann Oncol 2020; 31 (02) 236-245
- 97 Leitlinienprogramm Onkologie. S3-Leitlinie Diagnostik und Therapie der Plattenepithelkarzinome und Adenokarzinome des Ösophagus, Langversion 2.0. 2018 https://www.awmf.org/uploads/tx_szleitlinien/021-023OLl_Plattenepithel_Adenokarzinom_Oesophagus_2019-01.pdf
- 98 Taylor FG, Quirke P, Heald RJ. et al. Preoperative magnetic resonance imaging assessment of circumferential resection margin predicts disease-free survival and local recurrence: 5-year follow-up results of the MERCURY study. J Clin Oncol 2014; 32 (01) 34-43
- 99 Brown G, Richards CJ, Bourne MW. et al. Morphologic Predictors of Lymph Node Status in Rectal Cancer with Use of High-Spatial-Resolution MR Imaging with Histopathologic Comparison. Radiology 2003; 227 (02) 371-377
- 100 Kwak JY, Kim JS, Kim HJ. et al. Diagnostic value of FDG-PET/CT for lymph node metastasis of colorectal cancer. World Journal of Surgery 2012; 36 (08) 1898-1905
- 101 Kim SH, Song BI, Kim BW. et al. Predictive Value of [18F]FDG PET/CT for Lymph Node Metastasis in Rectal Cancer. Scientific Reports 2019; 9 (01) 4979
- 102 Leitlinienprogramm Onkologie. S3-Leitlinie Kolektorales Karzinom, Langversion 2.1. 2019 https://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Leitlinien/Kolorektales_Karzinom/Version_2 / LL_KRK_Langversion_2.1.pdf
- 103 Gani C, Kirschniak A, Zips D. Watchful waiting after radiochemotherapy in rectal cancer: When is it feasible?. Visceral Medicine 2019; 35 (02) 119-123
- 104 Roels S, Slagmolen P, Nuyts J. et al. Biological Image-Guided Radiotherapy in Rectal Cancer: Challenges and Pitfalls. International Journal of Radiation Oncology*Biology*Physics 2009; 75 (03) 782-790
- 105 Brændengen M, Hansson K, Radu C. et al. Delineation of Gross Tumor Volume (GTV) for Radiation Treatment Planning of Locally Advanced Rectal Cancer Using Information From MRI or FDG-PET/CT: A Prospective Study. International Journal of Radiation Oncology*Biology*Physics 2011; 81 (04) e439-e445
- 106 Maas M, Lambregts DMJ, Nelemans PJ. et al. Assessment of clinical complete response after chemoradiation for rectal cancer with digital rectal examination, endoscopy, and MRI: selection for organ-saving treatment. Annals of Surgical Oncology 2015; 22 (12) 3873-3880
- 107 Joye I, Debucquoy A, Deroose CM. et al. Quantitative imaging outperforms molecular markers when predicting response to chemoradiotherapy for rectal cancer. Radiotherapy and Oncology 2017; 124 (01) 104-109
- 108 Joye I, Deroose CM, Vandecaveye V. et al. The role of diffusion-weighted MRI and 18F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: A systematic review. Radiotherapy and Oncology 2014; 113 (02) 158-165
- 109 Ajani JA, Winter KA, Gunderson LL. et al. Fluorouracil, Mitomycin, and Radiotherapy vs Fluorouracil, Cisplatin, and Radiotherapy for Carcinoma of the Anal Canal: A Randomized Controlled Trial. JAMA 2008; 299 (16) 1914-1921
- 110 James RD, Glynne-Jones R, Meadows HM. et al. Mitomycin or cisplatin chemoradiation with or without maintenance chemotherapy for treatment of squamous-cell carcinoma of the anus (ACT II): a randomised, phase 3, open-label, 2×2 factorial trial. The Lancet Oncology 2013; 14 (06) 516-524
- 111 Bazan JG, Koong AC, Kapp DS. et al. Metabolic tumor volume predicts disease progression and survival in patients with squamous cell carcinoma of the anal canal. Journal of Nuclear Medicine 2013; 54 (01) 27
- 112 Cotter SE, Grigsby PW, Siegel BA. et al. FDG-PET/CT in the evaluation of anal carcinoma. International Journal of Radiation Oncology*Biology*Physics 2006; 65 (03) 720-725
- 113 Mistrangelo M, Pelosi E, Bellò M. et al. Role of Positron Emission Tomography-Computed Tomography in the Management of Anal Cancer. International Journal of Radiation Oncology*Biology*Physics 2012; 84 (01) 66-72
- 114 Nguyen BT, Joon DL, Khoo V. et al. Assessing the impact of FDG-PET in the management of anal cancer. Radiotherapy and Oncology 2008; 87 (03) 376-382
- 115 Vercellino L, Montravers F, de Parades V. et al. Impact of FDG PET/CT in the staging and the follow-up of anal carcinoma. International Journal of Colorectal Disease 2011; 26 (02) 201-210
- 116 Winton Ed, Heriot AG, Ng M. et al. The impact of 18-fluorodeoxyglucose positron emission tomography on the staging, management and outcome of anal cancer. British Journal of Cancer 2009; 100 (05) 693-700
- 117 Deantonio L, Milia ME, Cena T. et al. Anal cancer FDG-PET standard uptake value: correlation with tumor characteristics, treatment response and survival. Radiol Med 2016; 121 (01) 54-59
- 118 Gauthé M, Richard-Molard M, Fayard J. et al. Prognostic impact of tumour burden assessed by metabolic tumour volume on FDG PET/CT in anal canal cancer. European Journal of Nuclear Medicine and Molecular Imaging 2017; 44 (01) 63-70
- 119 Aide N, Tainturier LE, Nganoa C. et al. HYPHYCA: a prospective study in 613 patients conducting a comprehensive analysis for predictive factors of physiological 18F-FDG anal uptake. EJNMMI Research 2020; 10 (01) 28
- 120 Mahmud A, Poon R, Jonker D. PET imaging in anal canal cancer: a systematic review and meta-analysis. The British Journal of Radiology 2017; 90: 20170370
- 121 Maas M, Tielbeek JAW, Stoker J. Staging of anal cancer: Role of MR Imaging. Magn Reson Imaging Clin N Am 2020; 28 (01) 127-140
- 122 Otto SD, Lee L, Buhr HJ. et al. Staging Anal Cancer: Prospective Comparison of Transanal Endoscopic Ultrasound and Magnetic Resonance Imaging. Journal of Gastrointestinal Surgery 2009; 13 (07) 1292-1298
- 123 Reginelli A, Granata V, Fusco R. et al. Diagnostic performance of magnetic resonance imaging and 3D endoanal ultrasound in detection, staging and assessment post treatment, in anal cancer. Oncotarget 2017; 8 (14) 22980-22990
- 124 Catalano OA, Lee SI, Parente C. et al. Improving staging of rectal cancer in the pelvis: the role of PET/MRI. European Journal of Nuclear Medicine and Molecular Imaging 2020;
- 125 Rusten E, Rekstad BL, Undseth C. et al. Target volume delineation of anal cancer based on magnetic resonance imaging or positron emission tomography. Radiation Oncology 2017; 12 (01) 147
- 126 Myerson RJ, Garofalo MC, El Naqa I. et al. Elective Clinical Target Volumes for Conformal Therapy in Anorectal Cancer: A Radiation Therapy Oncology Group Consensus Panel Contouring Atlas. International Journal of Radiation Oncology*Biology*Physics 2009; 74 (03) 824-830
- 127 Ng M, Leong T, Chander S. et al. Australasian Gastrointestinal Trials Group (AGITG) Contouring Atlas and Planning Guidelines for Intensity-Modulated Radiotherapy in Anal Cancer. International Journal of Radiation Oncology*Biology*Physics 2012; 83 (05) 1455-1462
- 128 Jones M, Hruby G, Solomon M. et al. The Role of FDG-PET in the Initial Staging and Response Assessment of Anal Cancer: A Systematic Review and Meta-analysis. Annals of Surgical Oncology 2015; 22 (11) 3574-3581
- 129 Dapper H, Schiller K, Münch S. et al. Have we achieved adequate recommendations for target volume definitions in anal cancer? A PET imaging based patterns of failure analysis in the context of established contouring guidelines. BMC Cancer 2019; 19 (01) 742
- 130 Saboo SS, Zukotynski K, Shinagare AB. et al. Anal carcinoma: FDG PET/CT in staging, response evaluation, and follow-up. Abdominal Imaging 2013; 38 (04) 728-735
- 131 Schwarz JK, Siegel BA, Dehdashti F. et al. Tumor Response and Survival Predicted by Post-Therapy FDG-PET/CT in Anal Cancer. International Journal of Radiation Oncology*Biology*Physics 2008; 71 (01) 180-186
- 132 Day FL, Link E, Ngan S. et al. FDG-PET metabolic response predicts outcomes in anal cancer managed with chemoradiotherapy. British Journal of Cancer 2011; 105 (04) 498-504
- 133 Marnitz S, Köhler C, Roth C. et al. Stage-adjusted chemoradiation in cervical cancer after transperitoneal laparoscopic staging. Strahlentherapie und Onkologie 2007; 183 (09) 473-478
- 134 Marnitz S, Köhler C, Affonso RJ. et al. Validity of laparoscopic staging to avoid adjuvant chemoradiation following radical surgery in patients with early cervical cancer. Oncology 2012; 83 (06) 346-353
- 135 Gouy S, Morice P, Narducci F. et al. Nodal-staging surgery for locally advanced cervical cancer in the era of PET. The Lancet Oncology 2012; 13 (05) e212-e220
- 136 Leblanc E, Gauthier H, Querleu D. et al. Accuracy of 18-Fluoro-2-deoxy-d-glucose Positron Emission Tomography in the Pretherapeutic Detection of Occult Para-aortic Node Involvement in Patients with a Locally Advanced Cervical Carcinoma. Annals of Surgical Oncology 2011; 18 (08) 2302-2309
- 137 Marnitz S, Tsunoda AT, Martus P. et al. Surgical versus clinical staging prior to primary chemoradiation in patients with cervical cancer FIGO stages IIB–IVA: oncologic results of a prospective randomized international multicenter (Uterus-11) intergroup study. International Journal of Gynecologic Cancer 2020; 30 (12) 1855-1861
- 138 Köhler C, Mustea A, Marnitz S. et al. Perioperative morbidity and rate of upstaging after laparoscopic staging for patients with locally advanced cervical cancer: results of a prospective randomized trial. American Journal of Obstetrics and Gynecology 2015; 213 (04) 503.e501-503.e507
- 139 Tsunoda AT, Marnitz S, Soares Nunes J. et al. Incidence of Histologically Proven Pelvic and Para-Aortic Lymph Node Metastases and Rate of Upstaging in Patients with Locally Advanced Cervical Cancer: Results of a Prospective Randomized Trial. Oncology 2017; 92 (04) 213-220
- 140 Marnitz S, Schram J, Budach V. et al. Extended field chemoradiation for cervical cancer patients with histologically proven para-aortic lymph node metastases after laparaoscopic lymphadenectomy. Strahlentherapie und Onkologie 2015; 191 (05) 421-428
- 141 Gouy S, Morice P, Narducci F. et al. Prospective multicenter study evaluating the survival of patients with locally advanced cervical cancer undergoing laparoscopic para-aortic lymphadenectomy before chemoradiotherapy in the era of positron emission tomography imaging. J Clin Oncol 2013; 31 (24) 3026-3033
- 142 Frumovitz M, Querleu D, Gil-Moreno A. et al. Lymphadenectomy in Locally Advanced Cervical Cancer Study (LiLACS): Phase III Clinical Trial Comparing Surgical With Radiologic Staging in Patients With Stages IB2–IVA Cervical Cancer. Journal of Minimally Invasive Gynecology 2014; 21 (01) 3-8
- 143 Lima GM, Matti A, Vara G. et al. Prognostic value of posttreatment 18F-FDG PET/CT and predictors of metabolic response to therapy in patients with locally advanced cervical cancer treated with concomitant chemoradiation therapy: an analysis of intensity- and volume-based PET parameters. European Journal of Nuclear Medicine and Molecular Imaging 2018; 45 (12) 2139-2146
- 144 Rufini V, Collarino A, Calcagni ML. et al. The role of FDG-PET/CT in predicting the histopathological response in locally advanced cervical carcinoma treated by chemo-radiotherapy followed by radical surgery: a prospective study. European Journal of Nuclear Medicine and Molecular Imaging 2020; 47 (05) 1228-1238
- 145 Gupta S, Maheshwari A, Parab P. et al. Neoadjuvant Chemotherapy Followed by Radical Surgery Versus Concomitant Chemotherapy and Radiotherapy in Patients With Stage IB2, IIA, or IIB Squamous Cervical Cancer: A Randomized Controlled Trial. J Clin Oncol 2018; 36 (16) 1548-1555
- 146 Kenter G, Greggi S, Vergote I. et al. Results from neoadjuvant chemotherapy followed by surgery compared to chemoradiation for stage Ib2-IIb cervical cancer, EORTC 55994. Journal of Clinical Oncology 2019; 37 (Suppl. 15) 5503-5503
- 147 Gee MS, Atri M, Bandos AI. et al. Identification of Distant Metastatic Disease in Uterine Cervical and Endometrial Cancers with FDG PET/CT: Analysis from the ACRIN 6671/GOG 0233 Multicenter Trial. Radiology 2017; 287 (01) 176-184
- 148 Kidd EA, Spencer CR, Huettner PC. et al. Cervical cancer histology and tumor differentiation affect 18F-fluorodeoxyglucose uptake. Cancer 2009; 115 (15) 3548-3554
- 149 Zhou Z, Liu X, Hu K. et al. The clinical value of PET and PET/CT in the diagnosis and management of suspected cervical cancer recurrence. Nuclear Medicine Communications 2018; 39 (02) 97-102
- 150 Leitlinienprogramm Onkologie. S3-Leitlinie Diagnostik und Therapie Zervixkarzinom, Langversion 2.0. 2021 https://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Leitlinien/Zervixkarzinom/Version_2 / LL_Zervixkarzinom_Langversion_2.0.pdf
- 151 Kratochwil C, Flechsig P, Lindner T. et al. 68Ga-FAPI PET/CTa-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. Journal of Nuclear Medicine 2019; 60 (06) 801
- 152 Eiber M, Kroenke M, Wurzer A. et al. 18F-rhPSMA-7 PET for the Detection of Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. Journal of Nuclear Medicine 2020; 61 (05) 696-701
- 153 Giesel FL, Knorr K, Spohn F. et al. Detection Efficacy of 18F-PSMA-1007 PET/CT in 251 Patients with Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. Journal of Nuclear Medicine 2019; 60 (03) 362-368
- 154 Rowe SP, Macura KJ, Ciarallo A. et al. Comparison of Prostate-Specific Membrane Antigen–Based 18F-DCFBC PET/CT to Conventional Imaging Modalities for Detection of Hormone-Naïve and Castration-Resistant Metastatic Prostate Cancer. Journal of Nuclear Medicine 2016; 57 (01) 46-53
- 155 Kroenke M, Mirzoyan L, Horn T. et al. Matched-pair comparison of 68Ga-PSMA-11 and 18F-rhPSMA-7 PET/CT in patients with primary and biochemical recurrence of prostate cancer: frequency of non-tumor related uptake and tumor positivity. Journal of Nuclear Medicine 2020;
- 156 Cappel CC, Dopcke D, Dunst J. PSMA-PET-CT zum primären Staging von Patienten mit fortgeschrittenem Prostatakarzinom. Strahlentherapie und Onkologie 2021; 197 (03) 257-260
- 157 Hofman MS, Lawrentschuk N, Francis RJ. et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. The Lancet 2020; 395: 1208-1216
- 158 Dewes S, Schiller K, Sauter K. et al. Integration of 68Ga-PSMA-PET imaging in planning of primary definitive radiotherapy in prostate cancer: a retrospective study. Radiation Oncology 2016; 11 (01) 73
- 159 Calais J, Kishan AU, Cao M. et al. Potential Impact of 68Ga-PSMA-11 PET/CT on the Planning of Definitive Radiation Therapy for Prostate Cancer. Journal of Nuclear Medicine 2018; 59 (11) 1714
- 160 Kerkmeijer LGW, Groen VH, Pos FJ. et al. Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients With Localized Prostate Cancer: Results From the FLAME Randomized Phase III Trial. Journal of Clinical Oncology 2021; 39 (07) 787-796
- 161 Bettermann AS, Zamboglou C, Kiefer S. et al. [68Ga-]PSMA-11 PET/CT and multiparametric MRI for gross tumor volume delineation in a slice by slice analysis with whole mount histopathology as a reference standard – Implications for focal radiotherapy planning in primary prostate cancer. Radiotherapy and Oncology 2019; 141: 214-219
- 162 Kostyszyn D, Fechter T, Bartl N. et al. Intraprostatic Tumour Segmentation on PSMA-PET Images in Patients with Primary Prostate Cancer with a Convolutional Neural Network. Journal of Nuclear Medicine 2020;
- 163 Zamboglou C, Fassbender TF, Steffan L. et al. Validation of different PSMA-PET/CT-based contouring techniques for intraprostatic tumor definition using histopathology as standard of reference. Radiotherapy and Oncology 2019; 141: 208-213
- 164 Zamboglou C, Schiller F, Fechter T. et al. 68Ga-HBED-CC-PSMA PET/CT Versus Histopathology in Primary Localized Prostate Cancer: A Voxel-Wise Comparison. Theranostics 2016; 6 (10) 1619-1628
- 165 Zamboglou C, Sachpazidis I, Koubar K. et al. Evaluation of intensity modulated radiation therapy dose painting for localized prostate cancer using 68Ga-HBED-CC PSMA-PET/CT: A planning study based on histopathology reference. Radiotherapy and Oncology 2017; 123 (03) 472-477
- 166 Beresford MJ, Gillatt D, Benson RJ. et al. A Systematic Review of the Role of Imaging before Salvage Radiotherapy for Post-prostatectomy Biochemical Recurrence. Clinical Oncology 2010; 22 (01) 46-55
- 167 Bottke D, Bartkowiak D, Siegmann A. et al. Effect of early salvage radiotherapy at PSA < 0.5 ng/ml and impact of post-SRT PSA nadir in post-prostatectomy recurrent prostate cancer. Prostate Cancer and Prostatic Diseases 2019; 22 (02) 344-349
- 168 Ploussard G, Fossati N, Wiegel T. et al. Management of Persistently Elevated Prostate-specific Antigen After Radical Prostatectomy: A Systematic Review of the Literature. European Urology Oncology 2021;
- 169 Magnetta MJ, Casalino D, Heller MT. Imaging assessment of local recurrence of prostate cancer after radical prostatectomy. Abdominal Radiology 2020; 45 (12) 4073-4083
- 170 Roy C, Foudi F, Charton J. et al. Comparative Sensitivities of Functional MRI Sequences in Detection of Local Recurrence of Prostate Carcinoma After Radical Prostatectomy or External-Beam Radiotherapy. American Journal of Roentgenology 2013; 200 (04) W361-W368
- 171 Calais J, Ceci F, Eiber M. et al. 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. The Lancet Oncology 2019; 20 (09) 1286-1294
- 172 Emmett L, Metser U, Bauman G. et al. Prospective, Multisite, International Comparison of 18F-Fluoromethylcholine PET/CT, Multiparametric MRI, and 68Ga-HBED-CC PSMA-11 PET/CT in Men with High-Risk Features and Biochemical Failure After Radical Prostatectomy: Clinical Performance and Patient Outcomes. Journal of Nuclear Medicine 2019; 60 (06) 794-800
- 173 Morigi JJ, Stricker PD, van Leeuwen PJ. et al. Prospective Comparison of 18F-Fluoromethylcholine Versus 68Ga-PSMA PET/CT in Prostate Cancer Patients Who Have Rising PSA After Curative Treatment and Are Being Considered for Targeted Therapy. Journal of Nuclear Medicine 2015; 56 (08) 1185-1190
- 174 Miksch J, Bottke D, Krohn T. et al. Interobserver variability, detection rate, and lesion patterns of (68)Ga-PSMA-11-PET/CT in early-stage biochemical recurrence of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 2020; 47 (10) 2339-2347
- 175 Perera M, Papa N, Roberts M. et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer—Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-specific Membrane Antigen-avid Lesions: A Systematic Review and Meta-analysis. European Urology 2020; 77 (04) 403-417
- 176 Sprute K, Kramer V, Koerber SA. et al. Diagnostic Accuracy of 18F-PSMA-1007 PET/CT Imaging for Lymph Node Staging of Prostate Carcinoma in Primary and Biochemical Recurrence. Journal of Nuclear Medicine 2021; 62 (02) 208-213
- 177 Eiber M, Rauscher I, Souvatzoglou M. et al. Prospective head-to-head comparison of 11C-choline-PET/MR and 11C-choline-PET/CT for restaging of biochemical recurrent prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging 2017; 44 (13) 2179-2188
- 178 Guberina N, Hetkamp P, Ruebben H. et al. Whole-Body Integrated [68Ga]PSMA-11-PET/MR Imaging in Patients with Recurrent Prostate Cancer: Comparison with Whole-Body PET/CT as the Standard of Reference. Molecular Imaging and Biology 2020; 22 (03) 788-796
- 179 Slevin F, Beasley M, Cross W. et al. Patterns of Lymph Node Failure in Patients With Recurrent Prostate Cancer Postradical Prostatectomy and Implications for Salvage Therapies. Advances in Radiation Oncology 2020; 5 (06) 1126-1140
- 180 Schiller K, Stöhrer L, Düsberg M. et al. PSMA-PET/CT–based Lymph Node Atlas for Prostate Cancer Patients Recurring After Primary Treatment: Clinical Implications for Salvage Radiation Therapy. European Urology Oncology 2021; 4 (01) 73-83
- 181 Valle L, Shabsovich D, de Meerleer G. et al. Use and Impact of Positron Emission Tomography/Computed Tomography Prior to Salvage Radiation Therapy in Men with Biochemical Recurrence After Radical Prostatectomy: A Scoping Review. European Urology Oncology 2021;
- 182 Hurmuz P, Onal C, Ozyigit G. et al. Treatment outcomes of metastasis-directed treatment using 68Ga-PSMA-PET/CT for oligometastatic or oligorecurrent prostate cancer: Turkish Society for Radiation Oncology group study (TROD 09-002). Strahlentherapie und Onkologie 2020; 196 (11) 1034-1043
- 183 Bluemel C, Linke F, Herrmann K. et al. Impact of 68Ga-PSMA PET/CT on salvage radiotherapy planning in patients with prostate cancer and persisting PSA values or biochemical relapse after prostatectomy. EJNMMI Research 2016; 6 (01) 78
- 184 Habl G, Sauter K, Schiller K. et al. 68Ga-PSMA-PET for radiation treatment planning in prostate cancer recurrences after surgery: Individualized medicine or new standard in salvage treatment. The Prostate 2017; 77 (08) 920-927
- 185 Schmidt-Hegemann NS, Fendler WP, Ilhan H. et al. Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy. Radiation Oncology 2018; 13 (01) 37
- 186 Henkenberens C, Oehus AK, Derlin T. et al. Efficacy of repeated PSMA PET-directed radiotherapy for oligorecurrent prostate cancer after initial curative therapy. Strahlenther Onkol 2020; 196 (11) 1006-1017
- 187 Janikova A, Bolcak K, Pavlik T. et al. Value of [18F]Fluorodeoxyglucose positron emission tomography in the management of follicular lymphoma: The end of a dilemma?. Clinical Lymphoma and Myeloma 2008; 8 (05) 287-293
- 188 Scott AM, Gunawardana DH, Wong J. et al. Positron emission tomography changes management, improves prognostic stratification and is superior to gallium scintigraphy in patients with low-grade lymphoma: results of a multicentre prospective study. European Journal of Nuclear Medicine and Molecular Imaging 2009; 36 (03) 347-353
- 189 Wirth A, Foo M, Seymour JF. et al. Impact of [18F] Fluorodeoxyglucose Positron Emission Tomography on Staging and Management of Early-Stage Follicular Non-Hodgkin Lymphoma. International Journal of Radiation Oncology*Biology*Physics 2008; 71 (01) 213-219
- 190 Brady JL, Binkley MS, Hajj C. et al. Definitive radiotherapy for localized follicular lymphoma staged by 18F-FDG PET-CT: a collaborative study by ILROG. Blood 2019; 133 (03) 237-245
- 191 MacManus M, Fisher R, Roos D. et al. Randomized trial of systemic therapy after involved-field radiotherapy in patients with early-stage follicular lymphoma: TROG 99.03. J Clin Oncol 2018; 36 (29) 2918-2925
- 192 Figura N, Flampouri S, Mendenhall NP. et al. Importance of baseline PET/CT imaging on radiation field design and relapse rates in patients with Hodgkin lymphoma. Advances in Radiation Oncology 2017; 2 (02) 197-203
- 193 MacManus M, Nestle U, Rosenzweig KE. et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiotherapy and Oncology 2009; 91 (01) 85-94
- 194 Terezakis SA, Schoder H, Kowalski A. et al. A Prospective Study of 18FDG-PET with CT scan Co-registration for Radiation Treatment Planning of Lymphoma and Hematologic Malignancies. International Journal of Radiation Oncology, Biology, Physics 2010; 78 (03) S550
- 195 Weiler-Sagie M, Bushelev O, Epelbaum R. et al. 18F-FDG avidity in lymphoma readdressed: A study of 766 patients. Journal of Nuclear Medicine 2010; 51 (01) 25
- 196 Yeoh KW, Mikhaeel NG. Are we ready for positron emission tomography/computed tomography-based target volume definition in lymphoma radiation therapy?. International Journal of Radiation Oncology*Biology*Physics 2013; 85 (01) 14-20
- 197 Girinsky T, Aupérin A, Ribrag V. et al. Role of FDG-PET in the Implementation of Involved-Node Radiation Therapy for Hodgkin Lymphoma Patients. International Journal of Radiation Oncology*Biology*Physics 2014; 89 (05) 1047-1052
- 198 Hutchings M, Loft A, Hansen M. et al. Clinical impact of FDG-PET/CT in the planning of radiotherapy for early-stage Hodgkin lymphoma. European Journal of Haematology 2007; 78 (03) 206-212
- 199 Illidge T, Specht L, Yahalom J. et al. Modern radiation therapy for nodal non-Hodgkin lymphoma – Target definition and dose guidelines from the International Lymphoma Radiation Oncology Group. International Journal of Radiation Oncology*Biology*Physics 2014; 89 (01) 49-58
- 200 Specht L, Yahalom J, Illidge T. et al. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG). International Journal of Radiation Oncology*Biology*Physics 2014; 89 (04) 854-862
- 201 Yahalom J, Illidge T, Specht L. et al. Modern radiation therapy for extranodal lymphomas: field and dose guidelines from the International Lymphoma Radiation Oncology Group. International Journal of Radiation Oncology*Biology*Physics 2015; 92 (01) 11-31
- 202 Girinsky T, van der Maazen R, Specht L. et al. Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: Concepts and guidelines. Radiotherapy and Oncology 2006; 79 (03) 270-277
- 203 Barrington SF, Mikhaeel NG, Kostakoglu L. et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2014; 32 (27) 3048-3058
- 204 Johnson P, Federico M, Kirkwood A. et al. Adapted Treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. New England Journal of Medicine 2016; 374 (25) 2419-2429
- 205 Radford J, Illidge T, Counsell N. et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. New England Journal of Medicine 2015; 372 (17) 1598-1607
- 206 André MPE, Girinsky T, Federico M. et al. Early Positron Emission Tomography Response-Adapted Treatment in Stage I and II Hodgkin Lymphoma: Final Results of the Randomized EORTC/LYSA/FIL H10 Trial. J Clin Oncol 2017; 35 (16) 1786-1794
- 207 Fuchs M, Goergen H, Kobe C. et al. Positron Emission Tomography-Guided Treatment in Early-Stage Favorable Hodgkin Lymphoma: Final Results of the International, Randomized Phase III HD16 Trial by the German Hodgkin Study Group. J Clin Oncol 2019; 37 (31) 2835-2845
- 208 Raemaekers JM, André MP, Federico M. et al. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: Clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol 2014; 32 (12) 1188-1194
- 209 van den Bosch S, Doornaert PAH, Dijkema T. et al. FDG-PET/CT-based treatment planning for definitive (chemo)radiotherapy in patients with head and neck squamous cell carcinoma improves regional control and survival. Radiotherapy and Oncology 2020; 142: 107-114
- 210 Konert T, Vogel W, MacManus MP. et al. PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiotherapy and Oncology 2015; 116 (01) 27-34
- 211 Specht L, Berthelsen AK. PET/CT in Radiation Therapy Planning. Seminars in Nuclear Medicine 2018; 48 (01) 67-75
- 212 Thorwarth D. Functional imaging for radiotherapy treatment planning: current status and future directions—a review. The British Journal of Radiology 2015; 88: 20150056
- 213 Zwirner K, Thorwarth D, Winter RM. et al. Voxel-wise correlation of functional imaging parameters in HNSCC patients receiving PET/MRI in an irradiation setup. Strahlentherapie und Onkologie 2018; 194 (08) 719-726
- 214 De Ruysscher D, Lodge M, Jones B. et al. Charged particles in radiotherapy: A 5-year update of a systematic review. Radiotherapy and Oncology 2012; 103 (01) 5-7
- 215 Mac Manus MP, Everitt S, Bayne M. et al. The use of fused PET/CT images for patient selection and radical radiotherapy target volume definition in patients with non-small cell lung cancer: Results of a prospective study with mature survival data. Radiotherapy and Oncology 2013; 106 (03) 292-298
- 216 Taeubert L, Berker Y, Beuthien-Baumann B. et al. CT-based attenuation correction of whole-body radiotherapy treatment positioning devices in PET/MRI hybrid imaging. Physics in Medicine & Biology 2020; 65 (23) 23NT02
- 217 Thorwarth D, Beyer T, Boellaard R. et al. Integration of FDG- PET/CT into external beam radiation therapy planning. Nuklearmedizin 2012; 51 (04) 140-153
- 218 Winter RM, Leibfarth S, Schmidt H. et al. Assessment of image quality of a radiotherapy-specific hardware solution for PET/MRI in head and neck cancer patients. Radiotherapy and Oncology 2018; 128 (03) 485-491
- 219 Boellaard R, Delgado-Bolton R, Oyen WJG. et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. European Journal of Nuclear Medicine and Molecular Imaging 2015; 42 (02) 328-354
- 220 Boellaard R, Oyen WJ, Hoekstra CJ. et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging 2008; 35 (12) 2320-2333
- 221 Berthon B, Evans M, Marshall C. et al. Head and neck target delineation using a novel PET automatic segmentation algorithm. Radiotherapy and Oncology 2017; 122 (02) 242-247
- 222 Leibfarth S, Eckert F, Welz S. et al. Automatic delineation of tumor volumes by co-segmentation of combined PET/MR data. Physics in Medicine and Biology 2015; 60 (14) 5399-5412
- 223 Shepherd T, Teras M, Beichel RR. et al. Comparative Study With New Accuracy Metrics for Target Volume Contouring in PET Image Guided Radiation Therapy. IEEE Transactions on Medical Imaging 2012; 31 (11) 2006-2024
- 224 Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2015; 278 (02) 563-577
- 225 Lambin P, Rios-Velazquez E, Leijenaar R. et al. Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer 2012; 48 (04) 441-446
- 226 Cook GJR, Azad G, Owczarczyk K. et al. Challenges and promises of PET radiomics. International Journal of Radiation Oncology*Biology*Physics 2018; 102 (04) 1083-1089
- 227 Feng Q, Liang J, Wang L. et al. Radiomics Analysis and Correlation With Metabolic Parameters in Nasopharyngeal Carcinoma Based on PET/MR Imaging. Frontiers in Oncology 2020; 10: 1619
- 228 Hatt M, Tixier F, Visvikis D. et al. Radiomics in PET/CT: More Than Meets the Eye?. Journal of Nuclear Medicine 2017; 58 (03) 365
- 229 Lee JW, Lee SM. Radiomics in oncological PET/CT: Clinical applications. Nuclear Medicine and Molecular Imaging 2018; 52 (03) 170-189
- 230 Lu W, Chen W. Positron emission tomography/computerized tomography for tumor response assessment-a review of clinical practices and radiomics studies. Translational cancer research 2016; 5 (04) 364-370
- 231 Song J, Yin Y, Wang H. et al. A review of original articles published in the emerging field of radiomics. European Journal of Radiology 2020; 127: 108991
- 232 Ha S, Choi H, Paeng JC. et al. Radiomics in Oncological PET/CT: a Methodological Overview. Nucl Med Mol Imaging 2019; 53 (01) 14-29
- 233 Traverso A, Wee L, Dekker A. et al. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. International Journal of Radiation Oncology*Biology*Physics 2018; 102 (04) 1143-1158
- 234 Carré A, Klausner G, Edjlali M. et al. Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics. Scientific Reports 2020; 10 (01) 12340
- 235 Depeursinge A, Andrearczyk V, Whybra P. et al Standardised convolutional filtering for radiomics. arXiv:2006.05470. [cs.CV] 2020
- 236 Zwanenburg A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. European Journal of Nuclear Medicine and Molecular Imaging 2019; 46 (13) 2638-2655
- 237 Zwanenburg A, Vallières M, Abdalah MA. et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295 (02) 328-338
- 238 Nicora G, Vitali F, Dagliati A. et al. Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools. Frontiers in Oncology 2020; 10
- 239 Sharma P, Mukherjee A. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview. Annals of translational medicine 2016; 4 (03) 53
- 240 Buck AK, Herrmann K, Shen C. et al. Molecular imaging of proliferation in vivo: Positron emission tomography with [18F]fluorothymidine. Methods 2009; 48 (02) 205-215
- 241 Han D, Yu J, Yu Y. et al. Comparison of 18F-Fluorothymidine and 18F-Fluorodeoxyglucose PET/CT in Delineating Gross Tumor Volume by Optimal Threshold in Patients With Squamous Cell Carcinoma of Thoracic Esophagus. International Journal of Radiation Oncology*Biology*Physics 2010; 76 (04) 1235-1241
- 242 Liu J, Li C, Hu M. et al. Exploring spatial overlap of high-uptake regions derived from dual tracer positron emission tomography-computer tomography imaging using 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine in nonsmall cell lung cancer patients: a prospective pilot study. Medicine 2015; 94 (17) e678-e678
- 243 Loktev A, Lindner T, Mier W. et al. A tumor-imaging method targeting cancer-associated fibroblasts. Journal of Nuclear Medicine 2018; 59 (09) 1423
- 244 Lindner T, Loktev A, Altmann A. et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. Journal of Nuclear Medicine 2018; 59 (09) 1415
- 245 Syed M, Flechsig P, Liermann J. et al. Fibroblast Activation Protein (FAPI) Specific PET for Advanced Target Volume Delineation in Head and Neck Cancer. International Journal of Radiation Oncology, Biology, Physics 2019; 105 (01) E383
- 246 Giesel FL, Adeberg S, Syed M. et al. FAPI-74 PET/CT Using Either 18F-AlF or Cold-Kit 68Ga Labeling: Biodistribution, Radiation Dosimetry, and Tumor Delineation in Lung Cancer Patients. Journal of Nuclear Medicine 2021; 62 (02) 201
- 247 Windisch P, Zwahlen DR, Koerber SA. et al. Clinical Results of Fibroblast Activation Protein (FAP) Specific PET and Implications for Radiotherapy Planning: Systematic Review. Cancers 2020; 12 (09) 2629
- 248 Bensch F, van der Veen EL, Lub-de Hooge MN. et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 2018; 24 (12) 1852-1858
- 249 Sanchez-Vega F, Hechtman JF, Castel P. et al. EGFR and MET Amplifications Determine Response to HER2 Inhibition in ERBB2-Amplified Esophagogastric Cancer. Cancer Discov 2019; 9 (02) 199-209
- 250 Lohrmann C, O'Reilly EM, O'Donoghue JA. et al. Retooling a Blood-Based Biomarker: Phase I Assessment of the High-Affinity CA19-9 Antibody HuMab-5B1 for Immuno-PET Imaging of Pancreatic Cancer. Clinical Cancer Research 2019; 25 (23) 7014-7023
- 251 Badawi RD, Shi H, Hu P. et al. First Human Imaging Studies with the EXPLORER Total-Body PET Scanner. J Nucl Med 2019; 60 (03) 299-303
- 252 Welz S, Mönnich D, Pfannenberg C. et al. Prognostic value of dynamic hypoxia PET in head and neck cancer: Results from a planned interim analysis of a randomized phase II hypoxia-image guided dose escalation trial. Radiotherapy and Oncology 2017; 124 (03) 526-532
- 253 Zschaeck S, Löck S, Hofheinz F. et al. Individual patient data meta-analysis of FMISO and FAZA hypoxia PET scans from head and neck cancer patients undergoing definitive radio-chemotherapy. Radiotherapy and Oncology 2020; 149: 189-196
- 254 Thorwarth D, Welz S, Monnich D. et al. Prospective Evaluation of a Tumor Control Probability Model Based on Dynamic F-18-FMISO PET for Head and Neck Cancer Radiotherapy. Journal of Nuclear Medicine 2019; 60 (12) 1698-1704
- 255 Grkovski M, Lee NY, Schöder H. et al. Monitoring early response to chemoradiotherapy with 18F-FMISO dynamic PET in head and neck cancer. European Journal of Nuclear Medicine and Molecular Imaging 2017; 44 (10) 1682-1691
- 256 Wiedenmann N, Bunea H, Rischke HC. et al. Effect of radiochemotherapy on T2* MRI in HNSCC and its relation to FMISO PET derived hypoxia and FDG PET. Radiation Oncology 2018; 13 (01) 159
- 257 Lee N, Schoder H, Beattie B. et al. Strategy of Using Intratreatment Hypoxia Imaging to Selectively and Safely Guide Radiation Dose De-escalation Concurrent With Chemotherapy for Locoregionally Advanced Human Papillomavirus–Related Oropharyngeal Carcinoma. International Journal of Radiation Oncology*Biology*Physics 2016; 96 (01) 9-17
- 258 van Elmpt W, De Ruysscher D, van der Salm A. et al. The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiotherapy and Oncology 2012; 104 (01) 67-71
- 259 van Diessen J, De Ruysscher D, Sonke J-J. et al. The acute and late toxicity results of a randomized phase II dose-escalation trial in non-small cell lung cancer (PET-boost trial). Radiotherapy and Oncology 2019; 131: 166-173
- 260 Hellwig D. Hope for new developments in the reimbursement of oncological PET/CT in Germany. Nuklearmedizin 2021; 60: 205-208