Int J Sports Med 2022; 43(02): 119-130
DOI: 10.1055/a-1539-6561
Physiology & Biochemistry

Muscle Oxygenation, Neural, and Cardiovascular Responses to Isometric and Workload-matched Dynamic Resistance Exercise

Anastasios Kounoupis
1   Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Serres, Greece
,
Konstantina Dipla
1   Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Serres, Greece
,
Ioannis Tsabalakis
1   Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Serres, Greece
,
Stavros Papadopoulos
1   Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Serres, Greece
,
Nikiforos Galanis
2   Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
,
Afroditi K. Boutou
3   Department of Respiratory Medicine, General Hospital of Thessaloniki G Papanikolaou, Thessaloniki, Greece
,
Ioannis S. Vrabas
1   Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Serres, Greece
,
Ilias Smilios
4   Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
,
Andreas Zafeiridis
1   Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Serres, Greece
› Author Affiliations

Abstract

Differences in blood flow patterns and energy cost between isometric and dynamic resistance exercise may result to variant cardiovascular, neural, and muscle metabolic responses. We aimed to compare the cardiovascular, baroreceptor sensitivity, and muscle oxygenation responses between workload-matched, large muscle-mass isometric and dynamic resistance exercises. Twenty-four young men performed an isometric and a dynamic double leg-press protocol (4 sets×2 min) with similar tension time index (workload). Beat-by-beat hemodynamics, baroreceptor sensitivity, muscle oxygenation, and blood lactate were assessed. The increase in blood pressure was greater (p<0.05) in the 1st set during dynamic than isometric exercise (by ~4.5 mmHg), not different in the 2nd and 3rd sets, and greater in the 4th set during isometric exercise (by ~5 mmHg). Dynamic resistance exercise evoked a greater increase in heart rate, stroke volume, cardiac output, and contractility index (p<0.05), and a greater decline in peripheral resistance, baroreceptor sensitivity, and cardiac function indices than isometric exercise (p<0.05). Participants exhibited a greater reduction in muscle oxyhemoglobin and a greater increase in muscle deoxyhemoglobin in dynamic versus isometric exercise (p<0.001–0.05), with no differences in total hemoglobin and blood lactate. In conclusion, large muscle-mass, multiple-set isometric exercise elicits a relatively similar blood pressure but blunted cardiovascular and baroreceptor sensitivity responses compared to workload-matched dynamic resistance exercise. Differences in blood pressure responses between protocols appear small (~5 mmHg) and are affected by the number of sets. The muscle oxidative stimulus is greater during dynamic resistance exercise than workload-matched isometric exercise.



Publication History

Received: 18 February 2021

Accepted: 15 June 2021

Article published online:
11 August 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kagaya A, Ogita F. Blood flow during muscle contraction and relaxation in rhythmic exercise at different intensities. Ann Physiol Anthropol 1992; 11: 251-256 doi:10.2114/ahs1983.11.251
  • 2 Laaksonen MS, Kalliokoski KK, Kyröläinen H. et al Skeletal muscle blood flow and flow heterogeneity during dynamic and isometric exercise in humans. Am J Physiol Heart Circ Physiol 2003; 284: H979-H986 doi:10.1152/ajpheart.00714.2002
  • 3 Râdegran G. Ultrasound Doppler estimates of femoral artery blood flow during dynamic knee extensor exercise in humans. J Appl Physiol (1985) 1997; 83: 1383-1388 doi:10.1152/jappl.1997.83.4.1383
  • 4 Sadamoto T, Bonde-Petersen F, Suzuki Y. Skeletal muscle tension, flow, pressure, and EMG during sustained isometric contractions in humans. Eur J Appl Physiol Occup Physiol 1983; 51: 395-408 doi:10.1007/bf00429076
  • 5 Chasiotis D, Bergstrom M, Hultman E. ATP utilization and force during intermittent and continuous muscle contractions. J Appl Physiol (1985) 1987; 63: 167-174 doi:10.1152/jappl.1987.63.1.167
  • 6 Hogan MC, Ingham E, Kurdak SS. Contraction duration affects metabolic energy cost and fatigue in skeletal muscle. Am J Physiol 1998; 274: E397-E402 doi:10.1152/ajpendo.1998.274.3.E397
  • 7 Iellamo F, Legramante JM, Raimondi G. et al Effects of isokinetic, isotonic and isometric submaximal exercise on heart rate and blood pressure. Eur J Appl Physiol Occup Physiol 1997; 75: 89-96 doi:10.1007/s004210050131
  • 8 Whelton PK, Carey RM, Aronow WS. et al 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2018; 138: e426-e483 doi:10.1161/cir.0000000000000597
  • 9 Stebbins CL, Walser B, Jafarzadeh M. Cardiovascular responses to static and dynamic contraction during comparable workloads in humans. Am J Physiol Regul Integr Comp Physiol 2002; 283: R568-R575 doi:10.1152/ajpregu.00160.2002
  • 10 Vedsted P, Blangsted AK, Sogaard K. et al Muscle tissue oxygenation, pressure, electrical, and mechanical responses during dynamic and static voluntary contractions. Eur J Appl Physiol 2006; 96: 165-177 doi:10.1007/s00421-004-1216-0
  • 11 Lewis SF, Snell PG, Taylor WF. et al Role of muscle mass and mode of contraction in circulatory responses to exercise. J Appl Physiol (1985) 1985; 58: 146-151 doi:10.1152/jappl.1985.58.1.146
  • 12 Lewis SF, Taylor WF, Bastian BC. et al Haemodynamic responses to static and dynamic handgrip before and after autonomic blockade. Clin Sci (Lond) 1983; 64: 593-599 doi:10.1042/cs0640593
  • 13 Williams MA, Haskell WL, Ades PA. et al Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2007; 116: 572-584 doi:10.1161/circulationaha.107.185214
  • 14 Mitchell JH, Payne FC, Saltin B. et al The role of muscle mass in the cardiovascular response to static contractions. J Physiol 1980; 309: 45-54 doi:10.1113/jphysiol.1980.sp013492
  • 15 Rowell LB, O'Leary DS. Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol (1985) 1990; 69: 407-418 doi:10.1152/jappl.1990.69.2.407
  • 16 Heffernan KS, Collier SR, Kelly EE. et al Arterial stiffness and baroreflex sensitivity following bouts of aerobic and resistance exercise. Int J Sports Med 2007; 28: 197-203 doi:10.1055/s-2006-924290
  • 17 Kingsley JD, Mayo X, Tai YL. et al Arterial stiffness and autonomic modulation after free-weight resistance exercises in resistance trained individuals. J Strength Cond Res 2016; 30: 3373-3380 doi:10.1519/jsc.0000000000001461
  • 18 Taylor KA, Wiles JD, Coleman DD. et al Continuous cardiac autonomic and hemodynamic responses to isometric exercise. Med Sci Sports Exerc 2017; 49: 1511-1519 doi:10.1249/mss.0000000000001271
  • 19 Iellamo F, Massaro M, Raimondi G. et al Role of muscular factors in cardiorespiratory responses to static exercise: contribution of reflex mechanisms. J Appl Physiol (1985) 1999; 86: 174-180 doi:10.1152/jappl.1999.86.1.174
  • 20 Mayo X, Iglesias-Soler E, Carballeira-Fernandez E. et al A shorter set reduces the loss of cardiac autonomic and baroreflex control after resistance exercise. Eur J Sport Sci 2016; 16: 996-1004 doi:10.1080/17461391.2015.1108367
  • 21 Iellamo F, Legramante JM, Raimondi G. et al Baroreflex control of sinus node during dynamic exercise in humans: effects of central command and muscle reflexes. Am J Physiol 1997; 272: H1157-H1164 doi:10.1152/ajpheart.1997.272.3.H1157
  • 22 Hartwich D, Dear WE, Waterfall JL. et al Effect of muscle metaboreflex activation on spontaneous cardiac baroreflex sensitivity during exercise in humans. J Physiol 2011; 589: 6157-6171 doi:10.1113/jphysiol.2011.219964
  • 23 Daniels JW, Stebbins CL, Longhurst JC. Hemodynamic responses to static and dynamic muscle contractions at equivalent workloads. Am J Physiol Regul Integr Comp Physiol 2000; 279: R1849-R1855 doi:10.1152/ajpregu.2000.279.5.R1849
  • 24 Koba S, Hayashi N, Miura A. et al Pressor response to static and dynamic knee extensions at equivalent workload in humans. Jpn J Physiol 2004; 54: 471-481 doi:10.2170/jjphysiol.54.471
  • 25 Arimoto M, Kijima A, Muramatsu S. Cardiorespiratory response to dynamic and static leg press exercise in humans. J Physiol Anthropol Appl Human Sci 2005; 24: 277-283 doi:10.2114/jpa.24.277
  • 26 Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817 doi:10.1055/a-1015-3123
  • 27 Devereux GR, Wiles JD, Swaine IL. Reductions in resting blood pressure after 4 weeks of isometric exercise training. Eur J Appl Physiol 2010; 109: 601-606 doi:10.1007/s00421-010-1394-x
  • 28 Edwards DG, Mastin CR, Kenefick RW. Wave reflection and central aortic pressure are increased in response to static and dynamic muscle contraction at comparable workloads. J Appl Physiol (1985) 2008; 104: 439-445 doi:10.1152/japplphysiol.00541.2007
  • 29 Espinoza-Salinas A, González-Jurado J, Arenas-Sanchez G. et al Effect of autonomic responses after isometric training at different intensities on obese people. Curr Hypertens Rev 2020; 16: 229-237 doi:10.2174/1573402115666191112123722
  • 30 Gill KF, Arthur ST, Swaine I. et al Intensity-dependent reductions in resting blood pressure following short-term isometric exercise training. J Sports Sci 2015; 33: 616-621 doi:10.1080/02640414.2014.953979
  • 31 Millar PJ, McGowan CL, Cornelissen VA. et al Evidence for the role of isometric exercise training in reducing blood pressure: potential mechanisms and future directions. Sports Med 2014; 44: 345-356 doi:10.1007/s40279-013-0118-x
  • 32 Gomides RS, Dias RM, Souza DR. et al Finger blood pressure during leg resistance exercise. Int J Sports Med 2010; 31: 590-595 doi:10.1055/s-0030-1252054
  • 33 Imholz BP. Automated blood pressure measurement during ergometric stress testing: possibilities of Finapres. Z Kardiol 1996; 85: 76-80
  • 34 Parati G, Casadei R, Groppelli A. et al Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension 1989; 13: 647-655 doi:10.1161/01.hyp.13.6.647
  • 35 Jansen JR, Schreuder JJ, Mulier JP. et al A comparison of cardiac output derived from the arterial pressure wave against thermodilution in cardiac surgery patients. Br J Anaesth 2001; 87: 212-222 doi:10.1093/bja/87.2.212
  • 36 Bogert LW, van Lieshout JJ. Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp Physiol 2005; 90: 437-446 doi:10.1113/expphysiol.2005.030262
  • 37 Critoph CH, Patel V, Mist B. et al Non-invasive assessment of cardiac output at rest and during exercise by finger plethysmography. Clin Physiol Funct Imaging 2013; 33: 338-343 doi:10.1111/cpf.12032
  • 38 Sugawara J, Tanabe T, Miyachi M. et al Non-invasive assessment of cardiac output during exercise in healthy young humans: comparison between Modelflow method and Doppler echocardiography method. Acta Physiol Scand 2003; 179: 361-366 doi:10.1046/j.0001-6772.2003.01211.x
  • 39 Dawson EA, Shave R, Whyte G. et al Preload maintenance and the left ventricular response to prolonged exercise in men. Exp Physiol 2007; 92: 383-390 doi:10.1113/expphysiol.2006.035089
  • 40 Ostadal P, Vondrakova D, Kruger A. et al Continual measurement of arterial dP/dtmax enables minimally invasive monitoring of left ventricular contractility in patients with acute heart failure. Crit Care 2019; 23: 364 doi:10.1186/s13054-019-2654–8
  • 41 Baller D, Ensink FB, Sigmund-Duchanova H. et al The DPTI/STTI ratio as an estimate of the myocardial oxygen supply/demand ratio. Thorac Cardiovasc Surg 1979; 27: 104-110 doi:10.1055/s-0028-1096227
  • 42 Hoffman JI, Buckberg GD. The myocardial oxygen supply:demand index revisited. J Am Heart Assoc 2014; 3: e000285 doi:10.1161/jaha.113.000285
  • 43 Westerhof BE, Gisolf J, Stok WJ. et al Time-domain cross-correlation baroreflex sensitivity: performance on the EUROBAVAR data set. J Hypertens 2004; 22: 1371-1380 doi:10.1097/01.hjh.0000125439.28861.ed
  • 44 Anyfanti P, Triantafyllidou E, Papadopoulos S. et al Smoking before isometric exercise amplifies myocardial stress and dysregulates baroreceptor sensitivity and cerebral oxygenation. J Am Soc Hypertens 2017; 11: 376-384 doi:10.1016/j.jash.2017.04.004
  • 45 Zafeiridis A, Triantafyllou A, Papadopoulos S. et al Dietary nitrate improves muscle microvascular reactivity and lowers blood pressure at rest and during isometric exercise in untreated hypertensives. Microcirculation 2019; 26: e12525 doi:10.1111/micc.12525
  • 46 Iellamo F, Legramante JM, Raimondi G. et al Evaluation of reproducibility of spontaneous baroreflex sensitivity at rest and during laboratory tests. J Hypertens 1996; 14: 1099-1104 doi:10.1097/00004872-199609000-00009
  • 47 Wesseling KH, Karemaker JM, Castiglioni P. et al Validity and variability of xBRS: instantaneous cardiac baroreflex sensitivity. Physiol Rep 2017; 5: e13509 doi:10.14814/phy2.13509
  • 48 Bada AA, Svendsen JH, Secher NH. et al Peripheral vasodilatation determines cardiac output in exercising humans: insight from atrial pacing. J Physiol 2012; 590: 2051-2060 doi:10.1113/jphysiol.2011.225334
  • 49 Barstow TJ. Understanding near infrared spectroscopy and its application to skeletal muscle research. J Appl Physiol (1985) 2019; 126: 1360-1376 doi:10.1152/japplphysiol.00166.2018
  • 50 Saito M, Mano T, Abe H. et al Responses in muscle sympathetic nerve activity to sustained hand–grips of different tensions in humans. Eur J Appl Physiol Occup Physiol 1986; 55: 493-498 doi:10.1007/bf00421643
  • 51 Miura T, Miyazaki S, Guth BD. et al Influence of the force-frequency relation on left ventricular function during exercise in conscious dogs. Circulation 1992; 86: 563-571 doi:10.1161/01.cir.86.2.563
  • 52 Barnard RJ, MacAlpin R, Kattus AA. et al Effect on training on myocardial oxygen supply/demand balance. Circulation 1977; 56: 289-291 doi:10.1161/01.cir.56.2.289
  • 53 Franklin BA, Bonzheim K, Gordon S. et al Resistance training in cardiac rehabilitation. J Cardiopulm Rehabil 1991; 11: 99-107 doi:10.1097/00008483-199103000-00005
  • 54 Cerretelli P, Veicsteinas A, Fumagalli M. et al Energetics of isometric exercise in man. J Appl Physiol 1976; 41: 136-141 doi:10.1152/jappl.1976.41.2.136
  • 55 Matsuura C, Gomes PS, Haykowsky M. et al Cerebral and muscle oxygenation changes during static and dynamic knee extensions to voluntary fatigue in healthy men and women: a near infrared spectroscopy study. Clin Physiol Funct Imaging 2011; 31: 114-123 doi:10.1111/j.1475-097X.2010.00986.x
  • 56 Fisher JP. Autonomic control of the heart during exercise in humans: role of skeletal muscle afferents. Exp Physiol 2014; 99: 300-305 doi:10.1113/expphysiol.2013.074377
  • 57 Ogoh S, Fisher JP, Dawson EA. et al Autonomic nervous system influence on arterial baroreflex control of heart rate during exercise in humans. J Physiol 2005; 566: 599-611 doi:10.1113/jphysiol.2005.084541
  • 58 White DW, Raven PB. Autonomic neural control of heart rate during dynamic exercise: revisited. J Physiol 2014; 592: 2491-2500 doi:10.1113/jphysiol.2014.271858
  • 59 Kruse NT, Hughes WE, Ueda K. et al Vasoconstrictor responsiveness in contracting human muscle: influence of contraction frequency, contractile work, and metabolic rate. Eur J Appl Physiol 2017; 117: 1697-1706 doi:10.1007/s00421-017-3660-7
  • 60 Clifford PS, Hellsten Y. Vasodilatory mechanisms in contracting skeletal muscle. J Appl Physiol (1985) 2004; 97: 393-403 doi:10.1152/japplphysiol.00179.2004
  • 61 Johansson M, Gao SA, Friberg P. et al Baroreflex effectiveness index and baroreflex sensitivity predict all-cause mortality and sudden death in hypertensive patients with chronic renal failure. J Hypertens 2007; 25: 163-168 doi:10.1097/01.hjh.0000254377.18983.eb
  • 62 La Rovere MT, Pinna GD, Raczak G. Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol 2008; 13: 191-207 doi:10.1111/j.1542-474X.2008.00219.x
  • 63 Li Z, Mao HZ, Abboud FM. et al Oxygen-derived free radicals contribute to baroreceptor dysfunction in atherosclerotic rabbits. Circ Res 1996; 79: 802-811 doi:10.1161/01.res.79.4.802
  • 64 Peng YJ, Nanduri J, Zhang X. et al Endothelin-1 mediates attenuated carotid baroreceptor activity by intermittent hypoxia. J Appl Physiol (1985) 2012; 112: 187-196 doi:10.1152/japplphysiol.00529.2011
  • 65 Pereira MI, Gomes PS, Bhambhani YN. Acute effects of sustained isometric knee extension on cerebral and muscle oxygenation responses. Clin Physiol Funct Imaging 2009; 29: 300-308 doi:10.1111/j.1475-097X.2009.00870.x
  • 66 Zafeiridis A, Kounoupis A, Dipla K. et al Oxygen delivery and muscle deoxygenation during continuous, long- and short-interval exercise. Int J Sports Med 2015; 36: 872-880 doi:10.1055/s-0035-1554634
  • 67 Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 2013; 17: 162-184 doi:10.1016/j.cmet.2012.12.012
  • 68 Flück M. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol 2006; 209: 2239-2248 doi:10.1242/jeb.02149
  • 69 Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training?. J Appl Physiol (1985) 2004; 97: 1119-1128 doi:10.1152/japplphysiol.00035.2004
  • 70 Iellamo F. Neural mechanisms of cardiovascular regulation during exercise. Auton Neurosci 2001; 90: 66-75 doi:10.1016/s1566-0702(01)00269-7