CC BY-NC-ND 4.0 · Ultraschall Med 2023; 44(02): e91-e98
DOI: 10.1055/a-1586-6487
Original Article

Is Lumbar Puncture Needed? – Noninvasive Assessment of ICP Facilitates Decision Making in Patients with Suspected Idiopathic Intracranial Hypertension

Lumbalpunktion notwendig? – Die nichtinvasive Erfassung des intrakraniellen Drucks ermöglicht die Entscheidungsfindung bei Patienten mit Verdacht auf idiopathische intrakranielle Hypertension
Bernhard Schmidt
1   Neurology, Klinikum Chemnitz gGmbH, Chemnitz, Germany
,
Marek Czosnyka
2   Brain Physics Laboratory, Clinical Neurosciences, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
,
Danilo Cardim
3   Neurology, The University of Texas Southwestern Medical Center, Dallas, United States
,
Zofia Czosnyka
2   Brain Physics Laboratory, Clinical Neurosciences, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
,
Bernhard Rosengarten
1   Neurology, Klinikum Chemnitz gGmbH, Chemnitz, Germany
› Institutsangaben

Abstract

Purpose Idiopathic intracranial hypertension (IIH) usually occurs in obese women of childbearing age. Typical symptoms are headache and sight impairment. Lumbar puncture (LP) is routinely used for both diagnosis and therapy (via cerebrospinal fluid drainage) of IIH. In this study, noninvasively assessed intracranial pressure (nICP) was compared to LP pressure (LPP) in order to clarify its feasibility for the diagnosis of IIH.

Materials and Methods nICP was calculated using continuous signals of arterial blood pressure and cerebral blood flow velocity in the middle cerebral artery, a method which has been introduced recently. In 26 patients (f = 24, m = 2; age: 33 ± 11 years), nICP was assessed one hour prior to LPP. If LPP was > 20 cmH2O, lumbar drainage was performed, LPP was measured again, and also nICP was reassessed.

Results In total, LPP and nICP correlated with R = 0.85 (p < 0.001; N = 38). The mean difference of nICP-LPP was 0.45 ± 4.93 cmH2O. The capability of nICP to diagnose increased LPP (LPP > 20 cmH2O) was assessed by ROC analysis. The optimal cutoff for nICP was close to 20 cmH2O with both a sensitivity and specificity of 0.92. Presuming 20 cmH2O as a critical threshold for the indication of lumbar drainage, the clinical implications would coincide in both methods in 35 of 38 cases.

Conclusion The TCD-based nICP assessment seems to be suitable for a pre-diagnosis of increased LPP and might eliminated the need for painful lumbar puncture if low nICP is detected.

Zusammenfassung

Ziel Die idiopathische intrakranielle Hypertension (IIH) tritt bevorzugt bei adipösen Frauen im gebärfähigen Alter auf. Typische Symptome sind dabei Kopfschmerz und Sehstörungen. Bei Verdacht auf IIH wird die Lumbalpunktion (LP) routinemäßig sowohl zur Diagnosefindung als auch zur Therapie mittels Liquordrainage verwendet. Durch Vergleich mit dem Liquordruck (LPP) soll in dieser Studie die Eignung des nichtinvasiv erfassten intrakraniellen Drucks (nICP) zur IIH-Diagnose untersucht werden.

Material und Methode Der nICP wird dafür aus kontinuierlichen Kurven des arteriellen Blutdrucks und der Blutströmungsgeschwindigkeit berechnet. Bei 26 Patienten (f = 24, m = 2; Alter: 33 ± 11 Jahre) wurde der nICP eine Stunde vor der Lumbalpunktion erfasst. Bei einem LPP über 20 cmH2O wurde eine Liquordrainage durchgeführt, danach wurden sowohl LPP als auch nICP nochmals ermittelt.

Ergebnisse Insgesamt korrelierten LPP und nICP mit r = 0,85 (p < 0,001; n = 38). Als mittlere Differenz von LPP-nICP ergab sich 0,45 ± 4,93 cmH2O. Die Eignung des nICP zur Diagnose eines über 20 cmH2O erhöhten LPP wurde mittels ROC-Analyse geklärt. Der optimale Schwellenwert des nICP lag bei 19,99 cmH2O bei einer Sensitivität und Spezifität von jeweils 0,92. Bei angenommenen 20 cmH2O als kritischer Wert für die Indikation der Liquordrainage stimmten in 35 der 38 Fälle die klinischen Implikationen von LPP und nICP überein.

Schlussfolgerungen Die nICP-Erfassung erscheint für die Prädiagnose eines erhöhten Lumbaldrucks geeignet und könnte bei niedrigen nICP-Werten den Patienten eine Lumbalpunktion ersparen.



Publikationsverlauf

Eingereicht: 05. Februar 2021

Angenommen: 25. Juni 2021

Artikel online veröffentlicht:
08. September 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wakerley BR, Tan MH, Ting EY. Idiopathic intracranial hypertension. Cephalalgia 2015; 35: 248-261 DOI: 10.1177/0333102414534329.
  • 2 Lalou AD, McTaggart JS, Czosnyka ZH. et al. Cerebrospinal fluid dynamics in pediatric pseudotumor cerebri syndrome. Childs Nerv Syst 2020; 36: 73-86 DOI: 10.1007/s00381-019-04263-4.
  • 3 De Bernardo M, Vitiello L, Rosa N. Sonographic evaluation of optic nerve sheath diameter in idiopathic intracranial hypertension. J Clin Neurosci 2020; 73: 331-332
  • 4 Lochner P, Fassbender K, Knodel S. et al. B-Mode Transorbital Ultrasonography for the Diagnosis of Idiopathic Intracranial Hypertension: A Systematic Review and Meta-Analysis. Ultraschall in Med 2019; 40: 247-252 DOI: 10.1055/a-0719-4903.
  • 5 Brodsky MC, Vaphiades M. Magnetic resonance imaging in pseudotumor cerebri. Opthalmology 1998; 105: 1686-1693
  • 6 Alperin N, Lee SH, Loth F. et al. MR-Intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology 2000; 217: 877-885
  • 7 Alperin N, Kadkhodayan Y, Loth F. et al. MRI measurements of intracranial volume change: a phantom study. Proc Intl Soc Mag Reson 2001; 9: 1981
  • 8 Glick RP, Niebruegge J, Lee SH. et al. Early experience from the application of a noninvasive magnetic resonance imaging-based measurement of intracranial pressure in hydrocephalus. Neurosurgery 2006; 59: 1052-1060
  • 9 Robba C, Santori G, Czosnyka M. et al. Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 2018; 44: 1284-1294 DOI: 10.1007/s00134-018-5305-7.
  • 10 Schmidt B, Klingelhöfer J, Schwarze JJ. et al. Noninvasive prediction of intracranial pressure curves using transcranial Doppler ultrasonography and blood pressure curves. Stroke 1997; 28: 2465-2472
  • 11 Schmidt B, Czosnyka M, Klingelhöfer J. Clinical applications of a non-invasive ICP monitoring method. Eur J Ultrasound 2002; 16: 37-45
  • 12 Schmidt B, Czosnyka M, Smielewski P. et al Noninvasive Assessment of ICP: Evaluation of New TBI Data. In: Ang BT. ed. Intracranial Pressure and Brain Monitoring XV. 122. Acta Neurochir Suppl; 2016: 69-73 DOI: 10.1007/978-3-319-22533-3_14 . Springer International Publishing Switzerland
  • 13 Cardim D, Robba C, Donnelly J. et al. Prospective Study on Noninvasive Assessment of Intracranial Pressure in Traumatic Brain-Injured Patients: Comparison of Four Methods. J Neurotrauma 2016; 33: 792-802 DOI: 10.1089/neu.2015.4134.
  • 14 Cardim D, Robba C, Schmidt E. et al. Transcranial Doppler Non-invasive Assessment of Intracranial Pressure, Autoregulation of Cerebral Blood Flow and Critical Closing Pressure during Orthotopic Liver Transplant. Ultrasound Med Biol 2019; 45: 1435-1445 DOI: 10.1016/j.ultrasmedbio.2019.02.003.
  • 15 Wüllner U. Idiopathische intrakranielle Hypertension (IIH), S1-Leitlinie 2019, In: Deutsche Gesellschaft für Neurologie, ed. Leitlinien für Diagnostik und Therapie in der Neurologie. Stuttgart. New York: Georg Thieme Verlag; 2019. Online: www.dgn.org/leitlinien
  • 16 Zorn EA, Wilson BM, Angel JJ. et al. Validation of an automated arterial tonomtry monitor using Association for the Advancement of Medical Instrumentation standards. Blood Pressure Monitoring 1997; 2: 185-188
  • 17 Doherty CM, Forbes RB. Diagnostic Lumbar Puncture. Ulster Med J 2014; 83: 93-102
  • 18 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988; 44: 837-845
  • 19 Schmidt B, Cardim D, Weinhold M. et al Comparison of Different Calibration Methods in a Non-invasive ICP Assessment Model. In: Heldt T. ed. Intracranial Pressure & Neuromonitoring XVI. 126. Acta Neurochir Suppl; 2018: 79-84 DOI: 10.1007/978-3-319-65798-1_17 . Springer International Publishing Switzerland
  • 20 Schmidt B, Czosnyka M, Schwarze JJ. et al. Evaluation of a method for noninvasive intracranial pressure assessment during infusion studies in patients with hydrocephalus. J Neurosurg 2000; 92: 793-800
  • 21 Burman R, Shah AH, Benveniste R. et al. Comparing invasive with MRI-derived intracranial pressure measurements in healthy elderly and brain trauma cases: A pilot study. J Magn Reson Imaging 2019; 50: 975-981 DOI: 10.1002/jmri.26695.
  • 22 Geeraerts T, Launey Y, Martin L. et al. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med 2007; 33: 1704-1711 DOI: 10.1007/s00134-007-0797-6.
  • 23 Bäuerle J, Nedelmann M. Sonographic assessment of the optic nerve sheath in idiopathic intracranial hypertension. J Neurol 2011; 258: 2014-2019
  • 24 Robba C, Cardim D, Tajsic T. et al. Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: A prospective observational study. PLOS Med 2017; 14: e1002356 DOI: 10.1371/journal.pmed.1002356.
  • 25 Reid A, Marchbanks RJ, Burge DM. et al. The relationship between intracranial pressure and tympanic membrane displacement. Br J Audiol 1990; 24: 123-129
  • 26 Samuel M, Burge DM, Marchbanks RJ. Tympanic membrane displacement testing in regular assessment of intracranial pressure in eight children with shunted hydrocephalus. J Neurosurg 1998; 88: 983-995
  • 27 Shimbles S, Dodd C, Banister K. et al. Clinical comparison of tympanic membrane displacement with invasive intracranial pressure measurements. Physiol Meas 2005; 26: 1085-1092
  • 28 Shulman A, Goldstein B, Marchbanks RJ. The tympanic membrane displacement test and tinnitus: preliminary report on clinical observations, applications, and implications. Int Tinnitus J 2012; 17: 80-93
  • 29 Cardim D, Robba C, Bohdanowicz M. et al. Non-invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible?. Neurocrit Care 2016; 25: 473-491 DOI: 10.1007/s12028-016-0258-6.