Hamostaseologie 2022; 42(04): 221-228
DOI: 10.1055/a-1646-3392
Review Article

Platelet Dysregulation in the Pathobiology of COVID-19

Rebecca A. Mellema
1   Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
,
Jacob Crandell
2   Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
,
Aaron C. Petrey
1   Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
2   Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
› Author Affiliations
Funding U.S. Department of Health and Human Services. National Institutes of Health. National Heart, Lung, and Blood Institute. R00HL135265.

Abstract

Coronavirus disease 2019 (COVID-19) encompasses a broad spectrum of clinical manifestations caused by infection with severe acute respiratory syndrome coronavirus 2.

Patients with severe disease present with hyperinflammation which can affect multiple organs which often include observations of microvascular and macrovascular thrombi. COVID-19 is increasingly recognized as a thromboinflammatory disease where alterations of both coagulation and platelets are closely linked to mortality and clinical outcomes. Although platelets are most well known as central mediators of hemostasis, they possess chemotactic molecules, cytokines, and adhesion molecules that are now appreciated as playing an important role in the regulation of immune response. This review summarizes the current knowledge of platelet alterations observed in the context of COVID-19 and their impact upon disease pathobiology.



Publication History

Received: 14 May 2021

Accepted: 20 September 2021

Article published online:
08 December 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Gupta A, Madhavan MV, Sehgal K. et al. Extrapulmonary manifestations of COVID-19. Nat Med 2020; 26 (07) 1017-1032
  • 2 Portier I, Campbell RA. Role of platelets in detection and regulation of infection. Arterioscler Thromb Vasc Biol 2021; 41 (01) 70-78
  • 3 Assinger A. Platelets and infection - an emerging role of platelets in viral infection. Front Immunol 2014; 5: 649
  • 4 Bonaventura A, Vecchié A, Dagna L. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 2021; 21 (05) 319-329
  • 5 Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol 2020; 127: 104362
  • 6 Guzik TJ, Mohiddin SA, Dimarco A. et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res 2020; 116 (10) 1666-1687
  • 7 Iba T, Levy JH, Connors JM, Warkentin TE, Thachil J, Levi M. The unique characteristics of COVID-19 coagulopathy. Crit Care 2020; 24 (01) 360
  • 8 Page MJ, Pretorius E. A champion of host defense: a generic large-scale cause for platelet dysfunction and depletion in infection. Semin Thromb Hemost 2020; 46 (03) 302-319
  • 9 Gu SX, Tyagi T, Jain K. et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol 2021; 18 (03) 194-209
  • 10 Poutanen SM, Low DE, Henry B. et al; National Microbiology Laboratory, Canada, Canadian Severe Acute Respiratory Syndrome Study Team. Identification of severe acute respiratory syndrome in Canada. N Engl J Med 2003; 348 (20) 1995-2005
  • 11 Tsang KW, Ho PL, Ooi GC. et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003; 348 (20) 1977-1985
  • 12 Lee N, Hui D, Wu A. et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003; 348 (20) 1986-1994
  • 13 Memish ZA, Zumla AI, Al-Hakeem RF, Al-Rabeeah AA, Stephens GM. Family cluster of Middle East respiratory syndrome coronavirus infections. N Engl J Med 2013; 368 (26) 2487-2494
  • 14 Omrani AS, Matin MA, Haddad Q, Al-Nakhli D, Memish ZA, Albarrak AM. A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case. Int J Infect Dis 2013; 17 (09) e668-e672
  • 15 Assiri A, McGeer A, Perl TM. et al; KSA MERS-CoV Investigation Team. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med 2013; 369 (05) 407-416
  • 16 Assiri A, Al-Tawfiq JA, Al-Rabeeah AA. et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 2013; 13 (09) 752-761
  • 17 Arabi YM, Arifi AA, Balkhy HH. et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med 2014; 160 (06) 389-397
  • 18 Zhou F, Yu T, Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395 (10229): 1054-1062
  • 19 Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18 (04) 844-847
  • 20 Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta 2020; 506: 145-148
  • 21 Mo P, Xing Y, Xiao Y. et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis 2020; (e-pub ahead of print).
  • 22 Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18 (05) 1094-1099
  • 23 Fan BE, Chong VCL, Chan SSW. et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol 2020; 95 (06) E131-E134
  • 24 Liu X, Zhang X, Xiao Y. et al. Heparin-induced thrombocytopenia is associated with a high risk of mortality in critical COVID-19 patients receiving heparin-involved treatment. medRxiv. 2020 . Accessed October 5, 2021 at: https://www.medrxiv.org/content/10.1101/2020.04.23.20076851v1
  • 25 Zhu Y, Zhang J, Li Y, Liu F, Zhou Q, Peng Z. Association between thrombocytopenia and 180-day prognosis of COVID-19 patients in intensive care units: a two-center observational study. PLoS One 2021; 16 (03) e0248671
  • 26 Bradley BT, Maioli H, Johnston R. et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet 2020; 396 (10247): 320-332
  • 27 Lefrançais E, Looney MR. Platelet biogenesis in the lung circulation. Physiology (Bethesda) 2019; 34 (06) 392-401
  • 28 Lefrançais E, Ortiz-Muñoz G, Caudrillier A. et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 2017; 544 (7648): 105-109
  • 29 Ackermann M, Verleden SE, Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 2020; 383 (02) 120-128
  • 30 Menter T, Haslbauer JD, Nienhold R. et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology 2020; 77 (02) 198-209
  • 31 Yang M, Ng MH, Li CK. Thrombocytopenia in patients with severe acute respiratory syndrome (review). Hematology 2005; 10 (02) 101-105
  • 32 Ropa J, Cooper S, Capitano ML, Van't Hof W, Broxmeyer HE. Human hematopoietic stem, progenitor, and immune cells respond ex vivo to SARS-CoV-2 spike protein. Stem Cell Rev Rep 2021; 17 (01) 253-265
  • 33 Devreese KMJ, Linskens EA, Benoit D, Peperstraete H. Antiphospholipid antibodies in patients with COVID-19: a relevant observation?. J Thromb Haemost 2020; 18 (09) 2191-2201
  • 34 Cavalli E, Bramanti A, Ciurleo R. et al. Entangling COVID-19 associated thrombosis into a secondary antiphospholipid antibody syndrome: Diagnostic and therapeutic perspectives (Review). Int J Mol Med 2020; 46 (03) 903-912
  • 35 Hollerbach A, Müller-Calleja N, Ritter S. et al. Platelet activation by antiphospholipid antibodies depends on epitope specificity and is prevented by mTOR inhibitors. Thromb Haemost 2019; 119 (07) 1147-1153
  • 36 Matyja-Bednarczyk A, Swadźba J, Iwaniec T. et al. Risk factors for arterial thrombosis in antiphospholipid syndrome. Thromb Res 2014; 133 (02) 173-176
  • 37 Robbins DL, Leung S, Miller-Blair DJ, Ziboh V. Effect of anticardiolipin/beta2-glycoprotein I complexes on production of thromboxane A2 by platelets from patients with the antiphospholipid syndrome. J Rheumatol 1998; 25 (01) 51-56
  • 38 Gkrouzman E, Barbhaiya M, Erkan D, Lockshin MD. Reality check on antiphospholipid antibodies in COVID-19-associated coagulopathy. Arthritis Rheumatol 2021; 73 (01) 173-174
  • 39 Vollmer O, Tacquard C, Dieudonné Y. et al. Follow-up of COVID-19 patients: LA is transient but other aPLs are persistent. Autoimmun Rev 2021; 20 (06) 102822
  • 40 Lingamaneni P, Gonakoti S, Moturi K, Vohra I, Zia M. Heparin-induced thrombocytopenia in COVID-19. J Investig Med High Impact Case Rep 2020; 8: 2324709620944091
  • 41 Daviet F, Guervilly C, Baldesi O. et al. Heparin-induced thrombocytopenia in severe COVID-19. Circulation 2020; 142 (19) 1875-1877
  • 42 Nazy I, Jevtic SD, Moore JC. et al. Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia. J Thromb Haemost 2021; 19 (05) 1342-1347
  • 43 Perdomo J, Leung HHL, Ahmadi Z. et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat Commun 2019; 10 (01) 1322
  • 44 Brodard J, Kremer Hovinga JA, Fontana P, Studt JD, Gruel Y, Greinacher A. COVID-19 patients often show high-titer non-platelet-activating anti-PF4/heparin IgG antibodies. J Thromb Haemost 2021; 19 (05) 1294-1298
  • 45 Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med 2021; 384 (22) 2092-2101
  • 46 Schultz NH, Sørvoll IH, Michelsen AE. et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med 2021; 384 (22) 2124-2130
  • 47 Zheng Y, Wang AW, Yu M. et al. B-cell tolerance regulates production of antibodies causing heparin-induced thrombocytopenia. Blood 2014; 123 (06) 931-934
  • 48 Zheng Y, Zhu W, Haribhai D. et al. Regulatory T cells control PF4/heparin antibody production in mice. J Immunol 2019; 203 (07) 1786-1792
  • 49 Manne BK, Denorme F, Middleton EA. et al. Platelet gene expression and function in patients with COVID-19. Blood 2020; 136 (11) 1317-1329
  • 50 Comer SP, Cullivan S, Szklanna PB. et al; COCOON Study investigators. COVID-19 induces a hyperactive phenotype in circulating platelets. PLoS Biol 2021; 19 (02) e3001109
  • 51 Zaid Y, Puhm F, Allaeys I. et al. Platelets can associate with SARS-Cov-2 RNA and are hyperactivated in COVID-19. Circulation Research 2020; 127: 1404-1418 (e-pub ahead of print).
  • 52 Blann AD, Nadar SK, Lip GY. The adhesion molecule P-selectin and cardiovascular disease. Eur Heart J 2003; 24 (24) 2166-2179
  • 53 Ivanov II, Apta BHR, Bonna AM, Harper MT. Platelet P-selectin triggers rapid surface exposure of tissue factor in monocytes. Sci Rep 2019; 9 (01) 13397
  • 54 Etulain J, Martinod K, Wong SL, Cifuni SM, Schattner M, Wagner DD. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 2015; 126 (02) 242-246
  • 55 Ma R, Xie R, Yu C. et al. Phosphatidylserine-mediated platelet clearance by endothelium decreases platelet aggregates and procoagulant activity in sepsis. Sci Rep 2017; 7 (01) 4978
  • 56 Holme PA, Müller F, Solum NO, Brosstad F, Frøland SS, Aukrust P. Enhanced activation of platelets with abnormal release of RANTES in human immunodeficiency virus type 1 infection. FASEB J 1998; 12 (01) 79-89
  • 57 Hottz ED, Oliveira MF, Nunes PC. et al. Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J Thromb Haemost 2013; 11 (05) 951-962
  • 58 Remenyi G, Szasz R, Friese P, Dale GL. Role of mitochondrial permeability transition pore in coated-platelet formation. Arterioscler Thromb Vasc Biol 2005; 25 (02) 467-471
  • 59 Jobe SM, Wilson KM, Leo L. et al. Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood 2008; 111 (03) 1257-1265
  • 60 Denorme F, Manne BK, Portier I. et al. COVID-19 patients exhibit reduced procoagulant platelet responses. J Thromb Haemost 2020; 18 (11) 3067-3073
  • 61 Althaus K, Marini I, Zlamal J. et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood 2021; 137 (08) 1061-1071
  • 62 Lê VB, Schneider JG, Boergeling Y. et al. Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis. Am J Respir Crit Care Med 2015; 191 (07) 804-819
  • 63 Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol 2006; 85 (08) 699-715
  • 64 de la Motte C, Nigro J, Vasanji A. et al. Platelet-derived hyaluronidase 2 cleaves hyaluronan into fragments that trigger monocyte-mediated production of proinflammatory cytokines. Am J Pathol 2009; 174 (06) 2254-2264
  • 65 Eustes AS, Campbell RA, Middleton EA. et al. Heparanase expression and activity are increased in platelets during clinical sepsis. J Thromb Haemost 2021; 19 (05) 1319-1330
  • 66 Matacic C. Blood vessel injury may spur disease's fatal second phase. Science 2020; 368 (6495): 1039-1040
  • 67 Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol 2020; 20 (07) 389-391
  • 68 Rivera J, Lozano ML, Navarro-Núñez L, Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 2009; 94 (05) 700-711
  • 69 Stalker TJ, Newman DK, Ma P, Wannemacher KM, Brass LF. Platelet signaling. Handb Exp Pharmacol 2012; (210) 59-85
  • 70 Zhang S, Liu Y, Wang X. et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020; 13 (01) 120
  • 71 Koupenova M, Vitseva O, MacKay CR. et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 2014; 124 (05) 791-802
  • 72 Hottz ED, Azevedo-Quintanilha IG, Palhinha L. et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 2020; 136 (11) 1330-1341
  • 73 van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 2017; 17 (07) 407-420
  • 74 Skendros P, Mitsios A, Chrysanthopoulou A. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest 2020; 130 (11) 6151-6157
  • 75 Zuo Y, Yalavarthi S, Shi H. et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020; 5 (11) 138999
  • 76 Jochum M, Lander S, Heimburger N, Fritz H. Effect of human granulocytic elastase on isolated human antithrombin III. Hoppe Seylers Z Physiol Chem 1981; 362 (02) 103-112
  • 77 Massberg S, Grahl L, von Bruehl ML. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-896
  • 78 Ruf W, Ruggeri ZM. Neutrophils release brakes of coagulation. Nat Med 2010; 16 (08) 851-852
  • 79 Nicolai L, Leunig A, Brambs S. et al. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation 2020; 142 (12) 1176-1189
  • 80 Michibayashi T. Platelet aggregating response to platelet activating factor participates in activation of the 12-lipoxygenase pathway in platelets from rabbits. Int Angiol 2002; 21 (03) 260-267
  • 81 Middleton EA, He XY, Denorme F. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020; 136 (10) 1169-1179
  • 82 Morris G, Bortolasci CC, Puri BK. et al. Preventing the development of severe COVID-19 by modifying immunothrombosis. Life Sci 2021; 264: 118617
  • 83 Wang J, Li Q, Yin Y. et al. Excessive neutrophils and neutrophil extracellular traps in COVID-19. Front Immunol 2020; 11: 2063
  • 84 Fuchs TA, Brill A, Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 85 Semeraro F, Ammollo CT, Morrissey JH. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118 (07) 1952-1961
  • 86 Liu B, Zhao H, Poon MC. et al. Abnormality of CD4(+)CD25(+) regulatory T cells in idiopathic thrombocytopenic purpura. Eur J Haematol 2007; 78 (02) 139-143
  • 87 Yu J, Heck S, Patel V. et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood 2008; 112 (04) 1325-1328
  • 88 Gogishvili T, Langenhorst D, Lühder F. et al. Rapid regulatory T-cell response prevents cytokine storm in CD28 superagonist treated mice. PLoS One 2009; 4 (02) e4643
  • 89 McKinley L, Logar AJ, McAllister F, Zheng M, Steele C, Kolls JK. Regulatory T cells dampen pulmonary inflammation and lung injury in an animal model of pneumocystis pneumonia. J Immunol 2006; 177 (09) 6215-6226
  • 90 Chapman LM, Aggrey AA, Field DJ. et al. Platelets present antigen in the context of MHC class I. J Immunol 2012; 189 (02) 916-923
  • 91 Trugilho MRO, Hottz ED, Brunoro GVF. et al. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue. PLoS Pathog 2017; 13 (05) e1006385