Subscribe to RSS

DOI: 10.1055/a-1647-8616
Results and Quality of Life after Implantation of Active Middle Ear Implants
Article in several languages: deutsch | English
Abstract
The provision of implantable hearing aids represents an area with high development and innovation potential. On the one hand, this review article provides an overview of current indication criteria for the treatment with active middle ear implants. On the other hand, outcome parameters as well as functional results after implantation of active middle ear implants are demonstrated and discussed. The focus is mainly placed on audiological results as well as the subjective health status. “Patient Reported Outcome Measures” (PROMs) have become an integral part of the evaluation of hearing implant treatment. Due to low evidence level criteria, the study situation regarding audiological as well as subjective outcome parameters is not satisfactory. The lack of an international consensus on accepted outcome parameters makes a meta-analytical analysis of results immensely difficult. In the studies published to date, patients with sensorineural hearing loss and patients with conductive or mixed hearing loss offered better speech recognition after implantation of an active middle ear implant compared to conventional hearing aids. Current analyses show a significant improvement in general as well as hearing-specific quality of life after implantation of an active middle ear implant. To date, no validated, hearing-specific quality-of-life measurement instruments exist for assessing the success of fitting in children. Especially in children with complex malformations of the outer ear and the middle ear, excellent audiological results were shown. However, these results need to be substantiated by quality-of-life measurements in future.
Key words
Active middle ear implant - quality of life - outcome parameters - vibroplasty - Soundbridge - mixed hearing loss - hearing disorders - implantable hearing aidPublication History
Article published online:
23 May 2022
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Beutner D, Hüttenbrink KB. Passive und aktive Mittelohrimplantate. Laryngo-Rhino-Otol 2009; 88: S32-S47 DOI: 10.1055/s-0028-1119493.
- 2 Tisch M. Implantierbare Hörsysteme. Laryngo-Rhino-Otol 2017; 96: S84-S102 DOI: 10.1055/s-0042-118775.
- 3 Leuwer R. Gestörtes Hören: Die apparative Versorgung der Schwerhörigkeit: Konventionelle und implantierbare Hörgeräte. Laryngo-Rhino-Otol 2005; 84: 51-61 DOI: 10.1055/s-2005-861131.
- 4 Beutner D, Delb W, Frenzel H. et al. Guideline „Implantable hearing aids“-short version : German S2k guideline of the Working Group of German-speaking Audiologists, Neurootologists and Otologists (ADANO), of the German Society of Oto-Rhino-Laryngology, Head and Neck Surgery (DGHNO) in collaboration with the German Society of Audiology (DGA), the German Society of Phoniatrics and Pediatric Audiology (DGPP), and patient representatives. HNO 2018; 66: 654-659 DOI: 10.1007/s00106-018-0531-4.
- 5 Donabedian A. The definition of quality and approaches to its assessment. Ann Arbor, Mich.: Health Administration Press; 1980. Im Internet: http://slubdd.de/katalog?TN_libero_mab216176425
- 6 Kaltenbach T. Qualitätsmanagement im Krankenhaus. Qualitäts- und Effizienzsteigerung auf der Grundlage des Total Quality Management. 2. Aufl. Melsungen: Bibliomed, Med. Verl.-Ges.; 1993
- 7 Neudert M, Zahnert T. Tympanoplasty-News And New Perspectives. Laryngorhinootologie 2017; 96: S66-S83 DOI: 10.1055/s-0042-120048.
- 8 Morgenstern J, Lailach S, Zahnert T. et al. Outcome parameters in speech audiometry: retrospective analysis of data and reporting quality in clinical studies. Eur Arch Otorhinolaryngol 2020; 277: 669-677 DOI: 10.1007/s00405-019-05734-9.
- 9 Maier H. Audiological target parameters in clinical studies with implantable hearing systems. HNO 2021; 69: 483-490 DOI: 10.1007/s00106-020-00873-6.
-
10
Mueller H,
Killion M.
An easy method for calculating the articulation index. Hear J 1990: 14–17
- 11 Rahne T. Physical audiological principles of implantable hearing systems: About power transmission, coupling and power output. HNO 2021; 69: 475-482 DOI: 10.1007/s00106-019-00776-1.
- 12 Gurgel RK, Jackler RK, Dobie RA. et al. A new standardized format for reporting hearing outcome in clinical trials. Otolaryngol Neck Surg 2012; 147: 803-807
-
13
Committee on Hearing and Equilibrium.
Committee on Hearing and Equilibrium guidelines for the evaluation of results of treatment of conductive hearing loss. Otolaryngol Neck Surg 1995; 113: 186–187
- 14 Müller J, Plontke SK, Rahne T. Speech audiometric outcome parameters in clinical trials on hearing improvement. HNO 2017; 65: 211-218 DOI: 10.1007/s00106-016-0298-4.
- 15 Maier H, Baumann U, Baumgartner W-D. et al. Minimal Reporting Standards for Active Middle Ear Hearing Implants. Audiol Neurootol 2018; 23: 105-115 DOI: 10.1159/000490878.
- 16 Ebell MH, Siwek J, Weiss BD. et al. Strength of Recommendation Taxonomy (SORT): A Patient-Centered Approach to Grading Evidence in the Medical Literature. Am Fam Physician 2004; 69: 548
- 17 Cella DF. Methods and problems in measuring quality of life. Support Care Cancer Off J Multinatl Assoc Support Care Cancer 1995; 3: 11-22 DOI: 10.1007/BF00343916.
-
18
Bullinger M.
German translation and psychometric testing of the SF-36 Health Survey: Preliminary results from the IQOLA project. Soc Sci Med 1995; 41. doi: 10.1016/0277-9536(95)00115-N
-
19
World Health Organization (WHO).
WHO Defin Health. Im Internet: https://www.who.int/about/who-we-are/constitution; Stand: 26.12.2020
- 20 Engel GL. The Need for a New Medical Model: A Challenge for Biomedicine. Psychodyn Psychiatry 2012; 40: 377-396 DOI: 10.1521/pdps.2012.40.3.377.
- 21 Schumacher J, Klaiberg A, Brähler E. Diagnostik von Lebensqualität und Wohlbefinden. Göttingen: Hogrefe; 2003: 9-24
- 22 Carr AJ, Gibson B, Robinson PG. Measuring quality of life: Is quality of life determined by expectations or experience?. BMJ 2001; 322: 1240-1243 DOI: 10.1136/bmj.322.7296.1240.
- 23 von Steinbüchel-Rheinwall N, Backhaus J. Erhebung gesundheitsbezogener Lebensqualität. Z Für Epileptol 2015; 28: 102-110 DOI: 10.1007/s10309-015-0432-4.
- 24 Bullinger M. Das Konzept der Lebensqualität in der Medizin – Entwicklung und heutiger Stellenwert. Z Für Evidenz Fortbild Qual Im Gesundheitswesen 2014; 108: 97-103 DOI: 10.1016/j.zefq.2014.02.006.
- 25 Fitzpatrick R, Davey C, Buxton MJ. et al. Evaluating patient-based outcome measures for use in clinical trials. Health Technol Assess Winch Engl 1998; 2 i–iv 1-74
- 26 Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992; 30: 473-483
-
27
Ware JE,
Kosinski M,
Keller SD.
et al.
SF-36 Physical and Mental Health Summary Scales: A User’s Manual. 1994. Im Internet: https://www.scienceopen.com/document?vid=71ae6a50-b42f-4649-b0ab-16aa4a344c75; Stand: 22.03.2020
-
28
Bullinger M.
Kirchberger ISF-36, Fragebogen zum Gesundheitszustand. Göttingen [u. a.]: Hogrefe; 1998. Im Internet: http://slubdd.de/katalog?TN_libero_mab21609819
-
29
Knoke M,
Lailach S,
Zahnert T.
et al.
Lebensqualitätsmessung bei chronischer Otitis media: Validierung internationaler Messinstrumente und Beurteilung des Response-Shift. In: Laryngo-Rhino-Otologie. Georg Thieme Verlag KG; 2020. 10.1055/s-0040-1711887
-
30
EuroQol Group.
EuroQol – a new facility for the measurement of health-related quality of life. Health Policy 1990; 16: 199–208. doi:10.1016/0168-8510(90)90421-9
- 31 Graf von Schulenburg J-M, Claes C, Greiner W. et al. Die deutsche Version des EuroQol-Fragebogens. Z Für Gesundheitswissenschaften 1998; 6: 3-20 DOI: 10.1007/BF02956350.
- 32 Richardson J, Iezzi A, Khan MA. et al. Validity and Reliability of the Assessment of Quality of Life (AQoL)-8D Multi-Attribute Utility Instrument. Patient-Patient-Centered Outcomes Res 2014; 7: 85-96 DOI: 10.1007/s40271-013-0036-x.
- 33 Maxwell A, Özmen M, Iezzi A. et al. Deriving population norms for the AQoL-6D and AQoL-8D multi-attribute utility instruments from web-based data. Qual Life Res 2016; 25: 3209-3219 DOI: 10.1007/s11136-016-1337-z.
- 34 Lailach S, Baumann I, Zahnert T. et al. State of the art of quality-of-life measurement in patients with chronic otitis media and conductive hearing loss. HNO 2018; 66: 578-589 DOI: 10.1007/s00106-018-0524-3.
- 35 Cox RM, Alexander GC. The abbreviated profile of hearing aid benefit. Ear Hear 1995; 16: 176-186 DOI: 10.1097/00003446-199504000-00005.
- 36 Löhler J, Frohburg R, Moser L. The use of the German APHAB for quality control in hearing aid fitting in an ENT-office. Comparison of our results with the given US-norm. Laryngorhinootologie 2010; 89: 737-744 DOI: 10.1055/s-0030-1261891.
- 37 Gatehouse S, Noble W. The Speech, Spatial and Qualities of Hearing Scale (SSQ). Int J Audiol 2004; 43: 85-99 DOI: 10.1080/14992020400050014.
- 38 Kiessling J, Müller L, Meister H. et al. Übertragung der Fragebögen SADL, ECHO und SSQ ins Deutsche und deren Evaluation. Z Für Audiol Audiol Acoust 2011; 50: 6-16
-
39
Gatehouse S.
Glasgow Hearing Aid Benefit Profile: Derivation and Validation of a Client-centered Outcome Measure for Hearing Aid Services. J Am Acad Audiol 1999: 80–103
- 40 Whitmer WM, Howell P, Akeroyd MA. Proposed norms for the Glasgow hearing-aid benefit profile (Ghabp) questionnaire. Int J Audiol 2014; 53: 345-351 DOI: 10.3109/14992027.2013.876110.
- 41 Cox RM, Alexander GC. The International Outcome Inventory for Hearing Aids (IOI-HA): psychometric properties of the English version. Int J Audiol 2002; 41: 30-35 DOI: 10.3109/14992020209101309.
- 42 Cox RM, Alexander GC, Beyer CM. Norms for the international outcome inventory for hearing aids. J Am Acad Audiol 2003; 14: 403-413
- 43 Heuermann H, Kinkel M, Tchorz J. Comparison of psychometric properties of the International Outcome Inventory for Hearing Aids (IOI-hA) in various studies. Int J Audiol 2005; 44: 102-109 DOI: 10.1080/14992020500031223.
- 44 Hinderink JB, Krabbe PF, Van Den Broek P. Development and application of a health-related quality-of-life instrument for adults with cochlear implants: the Nijmegen cochlear implant questionnaire. Otolaryngol Neck Surg 2000; 123: 756-765 DOI: 10.1067/mhn.2000.108203.
- 45 Hirschfelder A, Gräbel S, Olze H. The impact of cochlear implantation on quality of life: the role of audiologic performance and variables. Otolaryngol-Head Neck Surg 2008; 138: 357-362 DOI: 10.1016/j.otohns.2007.10.019.
- 46 Luetje CM, Brackman D, Balkany TJ. et al. Phase III clinical trial results with the Vibrant Soundbridge implantable middle ear hearing device: a prospective controlled multicenter study. Otolaryngol-Head Neck Surg 2002; 126: 97-107 DOI: 10.1067/mhn.2002.122182.
- 47 Schomacher J. Gütekriterien der visuellen Analogskala zur Schmerzbewertung. physioscience 2008; 4: 125-133 DOI: 10.1055/s-2008-1027685.
- 48 Rudack C, Hillebrandt M, Wagenmann M. et al. Tinnitusbehandlung mit Lidocain? Ein klinischer Erfahrungsbericht. HNO 1997; 45: 69-73 DOI: 10.1007/s001060050091.
- 49 Ravens-Sieberer U. Verfahren zur Erfassung der gesundheitsbezogenen Lebensqualität bei Kindern und Jugendlichen Ein Überblick. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 2000; 43: 198-209 DOI: 10.1007/s001030050035.
- 50 Seiffge-Krenke I. Krankheitsverarbeitung bei Kindern und Jugendlichen. Berlin Heidelberg: Springer-Verlag; 1990. DOI: 10.1007/978-3-642-75495-1
- 51 Rajmil L, Herdman M, Fernandez de Sanmamed M-J. et al. Generic health-related quality of life instruments in children and adolescents: a qualitative analysis of content. J Adolesc Health 2004; 34: 37-45 DOI: 10.1016/s1054-139x(03)00249-0.
- 52 Ravens-Sieberer U, Klasen F, Bichmann H. et al. Assessment of health-related quality of life in children and adolescents. Gesundheitswesen Bundesverb Arzte Offentlichen Gesundheitsdienstes Ger 2013; 75: 667-678 DOI: 10.1055/s-0033-1349555.
- 53 Petrou S. Methodological issues raised by preference-based approaches to measuring the health status of children. Health Econ 2003; 12: 697-702 DOI: 10.1002/hec.775.
- 54 Barthel D, Otto C, Nolte S. et al. The validation of a computer-adaptive test (CAT) for assessing health-related quality of life in children and adolescents in a clinical sample: study design, methods and first results of the Kids-CAT study. Qual Life Res 2017; 26: 1105-1117 DOI: 10.1007/s11136-016-1437-9.
- 55 Riley AW. Evidence that school-age children can self-report on their health. Ambul Pediatr Off J Ambul Pediatr Assoc 2004; 4: 371-376 DOI: 10.1367/A03-178R.1.
- 56 Riley AW, Forrest CB, Rebok GW. et al. The Child Report Form of the CHIP-Child Edition: reliability and validity. Med Care 2004; 42: 221-231 DOI: 10.1097/01.mlr.0000114910.46921.73.
- 57 Bullinger M, Schmidt S, Petersen C. et al. Assessing quality of life of children with chronic health conditions and disabilities: a European approach. Int J Rehabil Res 2002; 25: 197-206 DOI: 10.1097/00004356-200209000-00005.
- 58 Ravens-Sieberer U, Gosch A, Rajmil L. et al. KIDSCREEN-52 quality-of-life measure for children and adolescents. Expert Rev Pharmacoecon Outcomes Res 2005; 5: 353-364 DOI: 10.1586/14737167.5.3.353.
- 59 Kubba H, Swan IRC, Gatehouse S. The Glasgow Children’s Benefit Inventory: a new instrument for assessing health-related benefit after an intervention. Ann Otol Rhinol Laryngol 2004; 113: 980-986 DOI: 10.1177/000348940411301208.
- 60 Schwentner I, Schwentner C, Schmutzhard J. et al. Validation of the German Glasgow children’s benefit inventory. J Eval Clin Pract 2007; 13: 942-946 DOI: 10.1111/j.1365-2753.2006.00823.x.
- 61 Homøe P, Heidemann CH, Damoiseaux RA. et al. Panel 5: Impact of otitis media on quality of life and development. Int J Pediatr Otorhinolaryngol 2020; 130: 109837 DOI: 10.1016/j.ijporl.2019.109837.
- 62 Leinung M, Zaretsky E, Ernst BP. et al. Vibrant Soundbridge®: An Alternative Hearing System for Preschool Children with Aural Atresia. Laryngorhinootologie 2016; 95: E1 DOI: 10.1055/s-0042-117597.
- 63 McRackan TR, Clinkscales WB, Ahlstrom JB. et al. Factors associated with benefit of active middle ear implants compared to conventional hearing aids. The Laryngoscope 2018; 128: 2133-2138 DOI: 10.1002/lary.27109.
- 64 Savaş VA, Gündüz B, Karamert R. et al. Comparison of Carina active middle-ear implant with conventional hearing aids for mixed hearing loss. J Laryngol Otol 2016; 130: 340-343 DOI: 10.1017/S0022215116000748.
- 65 Bruschini L, Berrettini S, Forli F. et al. The Carina© middle ear implant: surgical and functional outcomes. Eur Arch Otorhinolaryngol 2016; 273: 3631-3640 DOI: 10.1007/s00405-016-3998-1.
- 66 Bruschini L, Forli F, Passetti S. et al. Fully implantable Otologics MET Carina(TM) device for the treatment of sensorineural and mixed hearing loss: Audio-otological results. Acta Otolaryngol (Stockh) 2010; 130: 1147-1153 DOI: 10.3109/00016481003671244.
- 67 Uhler K, Anderson MC, Jenkins HA. Long-Term Outcome Data in Patients following One Year’s Use of a Fully Implantable Active Middle Ear Implant. Audiol Neurootol 2016; 21: 105-112 DOI: 10.1159/000444243.
- 68 Martin C, Deveze A, Richard C. et al. European results with totally implantable carina placed on the round window: 2-year follow-up. Otol Neurotol 2009; 30: 1196-1203 DOI: 10.1097/MAO.0b013e3181c34898.
- 69 Jenkins HA, Niparko JK, Slattery WH. et al. Otologics Middle Ear Transducer Ossicular Stimulator: performance results with varying degrees of sensorineural hearing loss. Acta Otolaryngol (Stockh) 2004; 124: 391-394 DOI: 10.1080/00016480410016298.
- 70 Skarżyński H, Dziendziel B, Włodarczyk E. et al. Three-year audiological outcomes of the latest generation middle ear transducer (MET) implant. Eur Arch Otorhinolaryngol 2020; 277: 3013-3019 DOI: 10.1007/s00405-020-06031-6.
- 71 Tringali S, Perrot X, Berger P. et al. Otologics middle ear transducer with contralateral conventional hearing aid in severe sensorineural hearing loss: evolution during the first 24 months. Otol Neurotol 2010; 31: 630-636 DOI: 10.1097/MAO.0b013e3181db7354.
- 72 Chang CYJ, Spearman M, Spearman B. et al. Comparison of an Electromagnetic Middle Ear Implant and Hearing Aid Word Recognition Performance to Word Recognition Performance Obtained Under Earphones. Otol Neurotol 2017; 38: 1308-1314 DOI: 10.1097/MAO.0000000000001554.
- 73 Pelosi S, Carlson ML, Glasscock ME. Implantable hearing devices: the Ototronix MAXUM system. Otolaryngol Clin North Am 2014; 47: 953-965 DOI: 10.1016/j.otc.2014.08.003.
- 74 Kraus EM, Shohet JA, Catalano PJ. Envoy Esteem Totally Implantable Hearing System: phase 2 trial, 1-year hearing results. Otolaryngol-Head Neck Surg 2011; 145: 100-109 DOI: 10.1177/0194599811401709.
- 75 Memari F, Asghari A, Daneshi A. et al. Safety and patient selection of totally implantable hearing aid surgery: Envoy system, Esteem. Eur Arch Otorhinolaryngol 2011; 268: 1421-1425 DOI: 10.1007/s00405-011-1507-0.
- 76 Barbara M, Biagini M, Monini S. The totally implantable middle ear device ‘Esteem’ for rehabilitation of severe sensorineural hearing loss. Acta Otolaryngol (Stockh) 2011; 131: 399-404 DOI: 10.3109/00016489.2010.536994.
- 77 Shohet JA, Kraus EM, Catalano PJ. Profound high-frequency sensorineural hearing loss treatment with a totally implantable hearing system. Otol Neurotol 2011; 32: 1428-1431 DOI: 10.1097/MAO.0b013e3182382bc8.
- 78 Zenner HP, Leysieffer H. Total implantation of the Implex TICA hearing amplifier implant for high frequency sensorineural hearing loss: the Tübingen University experience. Otolaryngol Clin North Am 2001; 34: 417-446 DOI: 10.1016/s0030-6665(05)70340-6.
- 79 Lasurashvili N, Lailach S, Seidler H. et al. Fully Implantable Active Middle Ear Implants After Subtotal Petrosectomy With Fat Obliteration: Preliminary Clinical Results. Otol Neurotol 2020; 41: e912-e920 DOI: 10.1097/MAO.0000000000002797.
- 80 Tringali S, Pergola N, Berger P. et al. Fully implantable hearing device with transducer on the round window as a treatment of mixed hearing loss. Auris Nasus Larynx 2009; 36: 353-358 DOI: 10.1016/j.anl.2008.09.003.
-
81
Lailach S.
Vollimplantierbare aktive Mittelohrimplantate, 22. Jahrestagung der Deutschen Gesellschaft für Audiologie. Heidelberg; 2019
- 82 Hunter JB, Carlson ML, Glasscock ME. The ototronix MAXUM middle ear implant for severe high-frequency sensorineural hearing loss: Preliminary results. The Laryngoscope 2016; 126: 2124-2127 DOI: 10.1002/lary.25872.
- 83 Ihler F, Bewarder J, Blum J. et al. Long-term functional outcome and satisfaction of patients with an active middle ear implant for sensorineural hearing loss compared to a matched population with conventional hearing aids. Eur Arch Otorhinolaryngol 2014; 271: 3161-3169 DOI: 10.1007/s00405-013-2811-7.
- 84 Boeheim K, Pok S-M, Schloegel M. et al. Active middle ear implant compared with open-fit hearing aid in sloping high-frequency sensorineural hearing loss. Otol Neurotol 2010; 31: 424-429 DOI: 10.1097/MAO.0b013e3181cabd42.
- 85 Lee JM, Jeon JH, Moon IS. et al. Benefits of active middle ear implants over hearing aids in patients with sloping high tone hearing loss: comparison with hearing aids. Acta Otorhinolaryngol Ital Organo Uff Della Soc Ital Otorinolaringol E Chir Cerv-facc 2017; 37: 218-223 DOI: 10.14639/0392-100X-1146.
- 86 Sterkers O, Boucarra D, Labassi S. et al. A middle ear implant, the Symphonix Vibrant Soundbridge: retrospective study of the first 125 patients implanted in France. Otol Neurotol 2003; 24: 427-436 DOI: 10.1097/00129492-200305000-00013.
- 87 Lenarz T, Weber BP, Mack KF. et al. The Vibrant Soundbridge System: a new kind of hearing aid for sensorineural hearing loss. 1: Function and initial clinical experiences. Laryngorhinootologie 1998; 77: 247-255 DOI: 10.1055/s-2007-996970.
- 88 Ernst A, Todt I, Wagner J. Safety and effectiveness of the Vibrant Soundbridge in treating conductive and mixed hearing loss: A systematic review. The Laryngoscope 2016; 126: 1451-1457 DOI: 10.1002/lary.25670.
- 89 Kließ MK, Ernst A, Wagner J. et al. The development of active middle ear implants: A historical perspective and clinical outcomes. Laryngoscope Investig Otolaryngol 2018; 3: 394-404 DOI: 10.1002/lio2.215.
-
90
Nikdad M,
Bornitz M,
Lailach S.
et al.
Active Middle Ear Implants versus Conventional Hearing Aids in Conductive, Sensorineural and Mixed Hearing Loss: A Systematic Review and Meta-Analysis. 2021: Manuskript in Vorbereitung
- 91 Kahue CN, Carlson ML, Daugherty JA. et al. Middle ear implants for rehabilitation of sensorineural hearing loss: a systematic review of FDA approved devices. Otol Neurotol 2014; 35: 1228-1237 DOI: 10.1097/MAO.0000000000000341.
- 92 Mojallal H, Schwab B, Hinze A-L. et al. Retrospective audiological analysis of bone conduction versus round window vibratory stimulation in patients with mixed hearing loss. Int J Audiol 2015; 54: 391-400 DOI: 10.3109/14992027.2014.986690.
- 93 Côté M, Deguine O, Calmels M-N. et al. BAHA or MedEl Vibrant Soundbridge: results and criteria of decision. Cochlear Implants Int 2011; 12: S130-S132 DOI: 10.1179/146701011X13001036693377.
- 94 Mayer TE, Brueckmann H, Siegert R. et al. High-resolution CT of the temporal bone in dysplasia of the auricle and external auditory canal. AJNR Am J Neuroradiol 1997; 18: 53-65
- 95 Yuen HY, Ahuja AT, Wong KT. et al. Computed tomography of common congenital lesions of the temporal bone. Clin Radiol 2003; 58: 687-693 DOI: 10.1016/s0009-9260(03)00208-3.
- 96 Frenzel H, Hanke F, Beltrame M. et al. Application of the Vibrant Soundbridge to unilateral osseous atresia cases. The Laryngoscope 2009; 119: 67-74 DOI: 10.1002/lary.20036.
- 97 Mandalà M, Colletti L, Colletti V. Treatment of the atretic ear with round window vibrant soundbridge implantation in infants and children: electrocochleography and audiologic outcomes. Otol Neurotol 2011; 32: 1250-1255 DOI: 10.1097/MAO.0b013e31822e9513.
- 98 Clarós P, Pujol M, del C. Active middle ear implants: VibroplastyTM in children and adolescents with acquired or congenital middle ear disorders. Acta Otolaryngol (Stockh) 2013; 133: 612-619 DOI: 10.3109/00016489.2013.765969.
- 99 Frenzel H, Sprinzl G, Streitberger C. et al. The Vibrant Soundbridge in Children and Adolescents: Preliminary European Multicenter Results. Otol Neurotol 2015; 36: 1216-1222 DOI: 10.1097/MAO.0000000000000796.
- 100 Vogt K, Frenzel H, Ausili SA. et al. Improved directional hearing of children with congenital unilateral conductive hearing loss implanted with an active bone-conduction implant or an active middle ear implant. Hear Res 2018; 370: 238-247 DOI: 10.1016/j.heares.2018.08.006.
- 101 Hempel J-M, Sprinzl G, Riechelmann H. et al. A Transcutaneous Active Middle Ear Implant (AMEI) in Children and Adolescents: Long-term, Multicenter Results. Otol Neurotol 2019; 40: 1059-1067 DOI: 10.1097/MAO.0000000000002340.
- 102 Célérier C, Thierry B, Coudert C. et al. Results of VSB implantation at the short process of the incus in children with ear atresia. Int J Pediatr Otorhinolaryngol 2017; 93: 83-87 DOI: 10.1016/j.ijporl.2016.12.038.
- 103 Takahashi M, Iwasaki S, Furutate S. et al. Active middle ear implant (vibrant soundbridge) in children with unilateral congenital aural atresia. Acta Otolaryngol (Stockh) 2021; 141: 34-38 DOI: 10.1080/00016489.2020.1823471.
- 104 Hempel JM, Braun T, Berghaus A. Functional and aesthetic rehabilitation of microtia in children and adolescents. HNO 2013; 61: 655-661 DOI: 10.1007/s00106-013-2694-3.
- 105 Lailach S, Zahnert T, Maurer J. et al. The vibrating ossicular prosthesis in children and adolescents: a retrospective study. Eur Arch Otorhinolaryngol 2020; 277: 55-60 DOI: 10.1007/s00405-019-05667-3.
- 106 Ito K. Can unilateral hearing loss be a handicap in learning?. Arch Otolaryngol Head Neck Surg 1998; 124: 1389-1390
- 107 Keller WD, Bundy RS. Effects of unilateral hearing loss upon educational achievement. Child Care Health Dev 1980; 6: 93-100 DOI: 10.1111/j.1365-2214.1980.tb00801.x.
- 108 Borg E, Edquist G, Reinholdson A-C. et al. Speech and language development in a population of Swedish hearing-impaired pre-school children, a cross-sectional study. Int J Pediatr Otorhinolaryngol 2007; 71: 1061-1077 DOI: 10.1016/j.ijporl.2007.03.016.
- 109 Kunst SJW, Leijendeckers JM, Mylanus EAM. et al. Bone-anchored hearing aid system application for unilateral congenital conductive hearing impairment: audiometric results. Otol Neurotol 2008; 29: 2-7 DOI: 10.1097/mao.0b013e31815ee29a.
- 110 Priwin C, Jönsson R, Magnusson L. et al. Audiological evaluation and self-assessed hearing problems in subjects with single-sided congenital external ear malformations and associated conductive hearing loss. Int J Audiol 2007; 46: 162-171 DOI: 10.1080/14992020601077984.
- 111 Gordon KA, Wong DDE, Valero J. et al. Use it or lose it? Lessons learned from the developing brains of children who are deaf and use cochlear implants to hear. Brain Topogr 2011; 24: 204-219 DOI: 10.1007/s10548-011-0181-2.
- 112 Kral A. Auditory critical periods: a review from system’s perspective. Neuroscience 2013; 247: 117-133 DOI: 10.1016/j.neuroscience.2013.05.021.
- 113 Kral A, Sharma A. Developmental neuroplasticity after cochlear implantation. Trends Neurosci 2012; 35: 111-122 DOI: 10.1016/j.tins.2011.09.004.
-
114
Zhao C,
Liu Y,
Yang J.
et al.
Sound-localisation performance in patients with congenital unilateral microtia and atresia fitted with an active middle ear implant. Eur Arch Otorhinolaryngol 2020. doi: 10.1007/s00405-020-06049-w
- 115 Van Deun L, van Wieringen A, Van den Bogaert T. et al. Sound localization, sound lateralization, and binaural masking level differences in young children with normal hearing. Ear Hear 2009; 30: 178-190 DOI: 10.1097/AUD.0b013e318194256b.
- 116 Meuret S, Ludwig AA, Predel D. et al. Localization and Spatial Discrimination in Children and Adolescents with Moderate Sensorineural Hearing Loss Tested without Their Hearing Aids. Audiol Neurootol 2017; 22: 326-342 DOI: 10.1159/000485826.
- 117 Koci V, Seebacher J, Weichbold V. et al. Improvement of sound source localization abilities in patients bilaterally supplied with active middle ear implants. Acta Otolaryngol (Stockh) 2016; 136: 692-698 DOI: 10.3109/00016489.2016.1155232.
- 118 Seo YJ, Kim HJ, Moon IS. et al. Changes in Tinnitus After Middle Ear Implant Surgery: Comparisons With the Cochlear Implant. Ear Hear 2015; 36: 705-709 DOI: 10.1097/AUD.0000000000000187.
- 119 Lee JM, Lee HJ, Moon IS. et al. Effects of Vibrant Soundbridge on tinnitus accompanied by sensorineural hearing loss. PloS One 2020; 15: e0228498 DOI: 10.1371/journal.pone.0228498.
- 120 Marino R, Vieira DT, Rajan GP. Tinnitus and quality of life after round window vibroplasty. Int Tinnitus J 2012; 17: 134-139 DOI: 10.5935/0946-5448.20120024.
- 121 Shohet JA, Gende DM, Bibee J. et al. Speech Perception Gap Is Predictive of an Active Middle Ear Implant Advantage. Otol Neurotol 2020; 41: 663-668 DOI: 10.1097/MAO.0000000000002589.
- 122 Dyer RK, Spearman M, Spearman B. et al. Evaluating speech perception of the MAXUM middle ear implant versus speech perception under inserts. The Laryngoscope 2018; 128: 456-460 DOI: 10.1002/lary.26605.
- 123 Hoppe U, Hast A, Hocke T. Speech perception with hearing aids in comparison to pure-tone hearing loss. HNO 2014; 62: 443-448 DOI: 10.1007/s00106-013-2813-1.
- 124 Müller A, Mir-Salim P, Zellhuber N. et al. Influence of Floating-Mass Transducer Coupling Efficiency for Active Middle-Ear Implants on Speech Recognition. Otol Neurotol 2017; 38: 809-814 DOI: 10.1097/MAO.0000000000001412.
-
125
Lailach S,
Lasurahvili N,
Schuster I.
et al.
Soundbridge – Implantation bei Patienten mit kombinierter oder Schallleitungsschwerhörigkeit: Einfluss der FMT-Zielstruktur auf das postoperative Sprachverstehen und den effektiven Hörgewinn. 92. & 91. Jahresversammlung der DGHNO-KHC. 2021
- 126 Rahne T, Plontke SK. Device-based treatment of mixed hearing loss: An audiological comparison of current hearing systems. HNO 2016; 64: 91-100 DOI: 10.1007/s00106-015-0087-5.
-
127
Rahne T.
Physical audiological principles of implantable hearing systems: About power transmission, coupling and power output. HNO 2019. DOI: 10.1007/s00106-019-00776-1
- 128 Beleites T, Neudert M, Bornitz M. et al. Sound transfer of active middle ear implants. Otolaryngol Clin North Am 2014; 47: 859-891 DOI: 10.1016/j.otc.2014.08.001.
- 129 Bornitz M, Hardtke H-J, Zahnert T. Evaluation of implantable actuators by means of a middle ear simulation model. Hear Res 2010; 263: 145-151 DOI: 10.1016/j.heares.2010.02.007.
- 130 Bornitz M, Lasurashvili N, Neudert M. et al. Coupling of active middle ear implants-biomechanical aspects. HNO 2021; DOI: 10.1007/s00106-021-00994-6.
- 131 Luers JC, Hüttenbrink K-B, Zahnert T. et al. Vibroplasty for mixed and conductive hearing loss. Otol Neurotol 2013; 34: 1005-1012 DOI: 10.1097/MAO.0b013e3182990d2b.
-
132
Fröhlich L,
Rahne T,
Plontke SK.
et al.
Intraoperative quantification of floating mass transducer coupling quality in active middle ear implants: a multicenter study. Eur Arch Otorhinolaryngol 2020. DOI: 10.1007/s00405-020-06313-z
- 133 Fröhlich L, Rahne T, Plontke SK. et al. Intraoperative Recording of Auditory Brainstem Responses for Monitoring of Floating Mass Transducer Coupling Efficacy During Revision Surgery-Proof of Concept. Otol Neurotol 2020; 41: e168-e171 DOI: 10.1097/MAO.0000000000002511.
- 134 Geiger U, Radeloff A, Hagen R. et al. Intraoperative Estimation of the Coupling Efficiency and Clinical Outcomes of the Vibrant Soundbridge Active Middle Ear Implant Using Auditory Brainstem Response Measurements. Am J Audiol 2019; 28: 553-559 DOI: 10.1044/2019_AJA-18-0066.
- 135 Winter M, Weber BP, Lenarz T. Measurement method for the assessment of transmission properties of implantable hearing aids. Biomed Tech (Berl) 2002; 47: 726-727 DOI: 10.1515/bmte.2002.47.s1b.726.
- 136 Strenger T, Brandstetter M, Stark T. et al. Neue klinische Anwendungen der Laser-Doppler-Vibrometrie in der Otologie. HNO 2018; 66: 265-279 DOI: 10.1007/s00106-018-0473-x.
- 137 Gamm UA, Prenzler NK, Timm ME. et al. Performance Evaluation of Coupling Variants for an Active Middle Ear Implant Actuator: Output, Conductive Losses, and Stability of Coupling With Ambient Pressure Changes. Otol Neurotol 2021; 42: e690 DOI: 10.1097/MAO.0000000000003097.
-
138
Baumgartner WD.
Langzeitresultate aktiver Mittelohrimplantate. Sommertagung 2021 Otologie/Neurootologie der Donaugesellschaft der ORL in wissenschaftlicher Kooperation mit der ADANO, St. Pölten. 2021
- 139 Schraven SP, Rak K, Cebulla M. et al. Surgical Impact of Coupling an Active Middle Ear Implant to Short Incus Process. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad. Otol Neurotol 2018; 39: 688-692 DOI: 10.1097/MAO.0000000000001830.
- 140 Schraven SP, Dalhoff E, Wildenstein D. et al. Alternative Fixation of an Active Middle Ear Implant at the Short Incus Process. Audiol Neurotol 2014; 19: 1-11 DOI: 10.1159/000354981.
- 141 Rahne T, Skarzynski PH, Hagen R. et al. A retrospective European multicenter analysis of the functional outcomes after active middle ear implant surgery using the third generation vibroplasty couplers. Eur Arch Otorhinolaryngol 2021; 278: 67-75 DOI: 10.1007/s00405-020-06064-x.
-
142
Edlinger SH,
Hasenzagl M,
Schoerg P.
et al.
Long-Term Safety and Quality of Life after Vibroplasty in Sensorineural Hearing Loss: Short/Long Incus Process Coupler. Audiol Neurootol 2021: 1–9. doi:10.1159/000516144
- 143 Zhang J, Zou D, Tian J. et al. A comparative finite-element analysis of acoustic transmission in human cochlea during forward and reverse stimulations. Appl Acoust 2019; 145: 278-289 DOI: 10.1016/j.apacoust.2018.10.023.
- 144 Nakajima HH, Dong W, Olson ES. et al. Evaluation of round window stimulation using the floating mass transducer by intracochlear sound pressure measurements in human temporal bones. Otol Neurotol 2010; 31: 506-511 DOI: 10.1097/MAO.0b013e3181c0ea9f.
- 145 Zahnert T, Löwenheim H, Beutner D. et al. Multicenter Clinical Trial of Vibroplasty Couplers to Treat Mixed/Conductive Hearing Loss: First Results. Audiol Neurootol 2016; 21: 212-222 DOI: 10.1159/000444616.
-
146
Zahnert T.
Teil- und vollimplantierbare Hörgeräte: Indikationsgrenzen und Behandlungsergebnisse. 29. Jahrestagung der Vereinigung Mitteldeutscher HNO-Ärzte, Erfurt. 2020
- 147 Busch S, Lenarz T, Maier H. Comparison of Alternative Coupling Methods of the Vibrant Soundbridge Floating Mass Transducer. Audiol Neurootol 2016; 21: 347-355 DOI: 10.1159/000453354.
- 148 Zahnert T, Bornitz M, Hüttenbrink KB. Experiments on the coupling of an active middle ear implant to the stapes footplate. Adv Otorhinolaryngol 2010; 69: 32-37 DOI: 10.1159/000318520.
- 149 Hüttenbrink K-B, Beutner D, Bornitz M. et al. Clip vibroplasty: experimental evaluation and first clinical results. Otol Neurotol 2011; 32: 650-653 DOI: 10.1097/MAO.0b013e318218d180.
- 150 Stieger C, Rosowski JJ, Nakajima HH. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea. Hear Res 2013; 301: 105-114 DOI: 10.1016/j.heares.2012.11.005.
- 151 Zhang J, Tian J, Ta N. et al. Finite element analysis of round-window stimulation of the cochlea in patients with stapedial otosclerosis. J Acoust Soc Am 2019; 146: 4122-4130 DOI: 10.1121/1.5134770.
- 152 Beltrame AM, Martini A, Prosser S. et al. Coupling the Vibrant Soundbridge to Cochlea Round Window: Auditory Results in Patients With Mixed Hearing Loss. Otol Neurotol 2009; 30: 194-201 DOI: 10.1097/MAO.0b013e318180a495.
- 153 Pennings RJE, Ho A, Brown J. et al. Analysis of Vibrant Soundbridge placement against the round window membrane in a human cadaveric temporal bone model. Otol Neurotol 2010; 31: 998-1003 DOI: 10.1097/MAO.0b013e3181e8fc21.
- 154 Rajan GP, Lampacher P, Ambett R. et al. Impact of Floating Mass Transducer Coupling and Positioning in Round Window Vibroplasty. Otol Neurotol 2011; 32: 271-277 DOI: 10.1097/MAO.0b013e318206fda1.
- 155 Schraven SP, Gromann W, Rak K. et al. Long-term Stability of the Active Middle-ear Implant with Floating-mass Transducer Technology: A Single-center Study. Otol Neurotol 2016; 37: 252-266 DOI: 10.1097/MAO.0000000000000943.
- 156 Schwab B, Grigoleit S, Teschner M. Do We Really Need a Coupler for the Round Window Application of an AMEI?. Otol Neurotol 2013; 34: 1181-1185 DOI: 10.1097/MAO.0b013e31829b57c2.
- 157 Gostian A-O, Schwarz D, Mandt P. et al. Performance of the round window soft coupler for the backward stimulation of the cochlea in a temporal bone model. Eur Arch Otorhinolaryngol 2016; 273: 3651-3661 DOI: 10.1007/s00405-016-3997-2.
- 158 Müller M, Salcher R, Lenarz T. et al. The Hannover Coupler: Controlled Static Prestress in Round Window Stimulation With the Floating Mass Transducer. Otol Neurotol 2017; 38: 1186-1192 DOI: 10.1097/MAO.0000000000001484.
-
159
Müller M,
Salcher R,
Prenzler N.
et al.
Redesign of the Hannover Coupler: Optimized Vibration Transfer from Floating Mass Transducer to Round Window. BioMed Res Int 2018; 2018. doi:10.1155/2018/3701954
-
160
Knölke N,
Murawski D,
Wardenga N.
et al.
The Hannover Coupler V2: Audiological outcomes of a round window coupler for vibrant soundbridge. In: Laryngo-Rhino-Otologie. Georg Thieme Verlag KG; 2021. 10.1055/s-0041-1728438
-
161
Wardenga N,
Maier H,
Lenarz T.
A new coupling device for precise round window coupling of the Vibrant Soundbridge – First audiological results. In: Laryngo-Rhino-Otologie. Georg Thieme Verlag KG; 2019: 11207. 10.1055/s-0039-1686536
- 162 Lenarz T, Zimmermann D, Maier H. et al. Case Report of a New Coupler for Round Window Application of an Active Middle Ear Implant. Otol Neurotol 2018; 39: e1060-e1063 DOI: 10.1097/MAO.0000000000001996.
- 163 Zahnert T, Mlynski R, Löwenheim H. et al. Long-Term Outcomes of Vibroplasty Coupler Implantations to Treat Mixed/Conductive Hearing Loss. Audiol Neurootol 2018; 23: 316-325 DOI: 10.1159/000495560.
-
164
Maier H,
Gamm UA,
Prenzler NK.
et al.
Einfluss von barometrischen Druckänderungen am Trommelfell auf die Kopplungseffizienz eines Mittelohrimplantataktuators. In: Laryngo-Rhino-Otologie. © Georg Thieme Verlag KG; 2020. 10.1055/s-0040-1711800
-
165
Müller C,
Zahnert T,
Ossmann S.
et al.
Vibroplasty combined with tympanic membrane reconstruction in middle ear ventilation disorders. Hear Res 2019; 378:166–175. doi: 10.1016/j.heares.2019.02.012
- 166 Vyskocil E, Riss D, Honeder C. et al. Vibroplasty in mixed and conductive hearing loss: Comparison of different coupling methods. The Laryngoscope 2014; 124: 1436-1443 DOI: 10.1002/lary.24474.
- 167 Beleites T, Neudert M, Beutner D. et al. Experience With Vibroplasty Couplers at the Stapes Head and Footplate. Otol Neurotol 2011; 32: 1468-1472 DOI: 10.1097/MAO.0b013e3182380621.
- 168 Fisch U, Mattox D. Microsurgery of the skull base /. Stuttgart; New York: Thieme; 1988. Im Internet: http://primoproxy.slub-dresden.de/cgi-bin/permalink.pl?libero_mab215374720
- 169 Grossöhmichen M, Salcher R, Lenarz T. et al. The Effect of Simulated Mastoid Obliteration on the Mechanical Output of Electromagnetic Transducers. Otol Neurotol 2016; 37: 919-925 DOI: 10.1097/MAO.0000000000001062.
- 170 Linder T, Schlegel C, DeMin N. et al. Active middle ear implants in patients undergoing subtotal petrosectomy: new application for the Vibrant Soundbridge device and its implication for lateral cranium base surgery. Otol Neurotol 2009; 30: 41-47 DOI: 10.1097/MAO.0b013e31818be812.
- 171 Henseler MA, Polanski JF, Schlegel C. et al. Active middle ear implants in patients undergoing subtotal petrosectomy: long-term follow-up. Otol Neurotol 2014; 35: 437-441 DOI: 10.1097/MAO.0b013e31829e8391.
- 172 Ihler F, Köhler S, Meyer AC. et al. Mastoid cavity obliteration and Vibrant Soundbridge implantation for patients with mixed hearing loss. The Laryngoscope 2014; 124: 531-537 DOI: 10.1002/lary.24180.
- 173 Dejaco D, Riedl D, Gottfried T. et al. Modified-Power-Piston: Short-Incudial-Process-Vibroplasty and Simultaneous Stapedotomy in Otosclerosis. Otol Neurotol 2019; 40: 292-300 DOI: 10.1097/MAO.0000000000002146.
- 174 Burian A, Gerlinger I, Toth T. et al. Stapedotomy with incus vibroplasty-A novel surgical solution of advanced otosclerosis and its place among existing therapeutic modalities-Hungarian single institutional experiences. Auris Nasus Larynx 2020; 47: 55-64 DOI: 10.1016/j.anl.2019.04.004.
-
175
Didczuneit-Sandhop B,
Langer J.
Use of the Carina active middle ear implant in otosclerosis patients. HNO 2021. doi: 10.1007/s00106-020-00984-0
- 176 Wardenga N, Diedrich V, Waldmann B. et al. Hearing Aid Treatment in Patients with Mixed Hearing Loss. Part I: Expected Benefit and Limitations after Stapes Surgery. Audiol Neurootol 2020; 25: 125-132 DOI: 10.1159/000502994.
-
177
Lailach S,
Schenke T,
Beleites T.
et al.
Die präoperative Knochenleitungsschwelle als Prädiktor der gesundheitsbezogenen Lebensqualität nach Stapesplastik? 25. Jahrestagung der Vereinigung mitteldeutscher Hals-Nasen-Ohrenärzte, Halle/Saale. 2016
- 178 Neudert M. Quality in middle ear surgery-a critical position determination. Laryngorhinootologie 2020; 99: S222-S271 DOI: 10.1055/a-1021-6427.
- 179 Lassaletta L, Calvino M, Sánchez-Cuadrado I. et al. Pros and Cons of Round Window Vibroplasty in Open Cavities: Audiological, Surgical, and Quality of Life Outcomes. Otol Neurotol 2015; 36: 944-952 DOI: 10.1097/MAO.0000000000000763.
- 180 Baumgartner W-D, Böheim K, Hagen R. et al. The vibrant soundbridge for conductive and mixed hearing losses: European multicenter study results. Adv Otorhinolaryngol 2010; 69: 38-50 DOI: 10.1159/000318521.
- 181 Bernardeschi D, Hoffman C, Benchaa T. et al. Functional results of Vibrant Soundbridge middle ear implants in conductive and mixed hearing losses. Audiol Neurootol 2011; 16: 381-387 DOI: 10.1159/000322647.
- 182 Brkic FF, Riss D, Auinger A. et al. Long-Term Outcome of Hearing Rehabilitation With An Active Middle Ear Implant. The Laryngoscope 2019; 129: 477-481 DOI: 10.1002/lary.27513.
- 183 Grégoire A, Van Damme J-P, Gilain C. et al. Our auditory results using the Vibrant Soundbridge on the long process of the incus: 20 years of data. Auris Nasus Larynx 2018; 45: 66-72 DOI: 10.1016/j.anl.2017.02.007.
- 184 Schmuziger N, Schimmann F, àWengen D. et al. Long-term assessment after implantation of the Vibrant Soundbridge device.. Otol Neurotol 2006; 27: 183-188 DOI: 10.1097/01.mao.0000199754.51815.70.
- 185 Sprinzl GM, Schoerg P, Muck S. et al. Long-Term Stability and Safety of the Soundbridge Coupled to the Round Window. The Laryngoscope 2020; DOI: 10.1002/lary.29269.
- 186 Spiegel JL, Kutsch L, Jakob M. et al. Long-Term Stability and Functional Outcome of an Active Middle Ear Implant Regarding Different Coupling Sites. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2020; 41: 60-67 DOI: 10.1097/MAO.0000000000002418.
- 187 Lau K, Scotta G, Barauna I. et al. Surgical and audiological outcomes of a fully implantable middle ear implant: early results from a retrospective multicentre study. Eur Arch Otorhinolaryngol 2020; 277: 2721-2727 DOI: 10.1007/s00405-020-05986-w.
- 188 Peixoto MdaC, Miranda C, Bento M. et al. The first results of a totally implanted active middle ear device. Eur Arch Otorhinolaryngol 2019; 276: 2775-2781 DOI: 10.1007/s00405-019-05557-8.
- 189 Edfeldt L, Strömbäck K, Grendin J. et al. Evaluation of cost-utility in middle ear implantation in the „Nordic School“: a multicenter study in Sweden and Norway. Cochlear Implants Int 2014; 15: S65-S67 DOI: 10.1179/1467010014Z.000000000163.
- 190 Snik AFM, van Duijnhoven NTL, Mylanus EAM. et al. Estimated cost-effectiveness of active middle-ear implantation in hearing-impaired patients with severe external otitis. Arch Otolaryngol-Head Neck Surg 2006; 132: 1210-1215 DOI: 10.1001/archotol.132.11.1210.
- 191 Monksfield P, Jowett S, Reid A. et al. Cost-effectiveness Analysis of the Bone-Anchored Hearing Device. Otol Neurotol 2011; 32: 1192-1197 DOI: 10.1097/MAO.0b013e31822e5ae6.
- 192 Cheng AK, Niparko JK. Cost-Utility of the Cochlear Implant in Adults: A Meta-analysis. Arch Otolaryngol Neck Surg 1999; 125: 1214-1218 DOI: 10.1001/archotol.125.11.1214.
- 193 Baumann I, Gerendas B, Plinkert PK. et al. General and disease-specific quality of life in patients with chronic suppurative otitis media–a prospective study. Health Qual Life Outcomes 2011; 9: 48 DOI: 10.1186/1477-7525-9-48.
-
194
Lailach S,
Langanke T,
Zahnert T.
et al.
Impact of depressive disorders on quality of life after middle ear surgery in patients with chronic otitis media. Eur Arch Otorhinolaryngol 2020. doi: 10.1007/s00405-020-06397-7
- 195 Snik AFM, van Duijnhoven NTL, Mulder JJS. et al. Evaluation of the subjective effect of middle ear implantation in hearing-impaired patients with severe external otitis. J Am Acad Audiol 2007; 18: 496-503 DOI: 10.3766/jaaa.18.6.4.
- 196 Monini S, Bianchi A, Talamonti R. et al. Patient satisfaction after auditory implant surgery: ten-year experience from a single implanting unit center. Acta Otolaryngol (Stockh) 2017; 137: 389-397 DOI: 10.1080/00016489.2016.1258733.
- 197 Mosnier I, Sterkers O, Bouccara D. et al. Benefit of the Vibrant Soundbridge device in patients implanted for 5 to 8 years. Ear Hear 2008; 29: 281-284 DOI: 10.1097/aud.0b013e3181645366.
- 198 Seebacher J, Weichbold V, Schörg P. et al. Subjective Hearing Impression and Quality of Life in Patients With Bilateral Active Middle Ear Implants. Otol Neurotol 2020; 41: e641-e647 DOI: 10.1097/MAO.0000000000002630.
- 199 Atas A, Tutar H, Gunduz B. et al. Vibrant SoundBridge application to middle ear windows versus conventional hearing aids: a comparative study based on international outcome inventory for hearing aids. Eur Arch Otorhinolaryngol 2014; 271: 35-40 DOI: 10.1007/s00405-013-2387-2.
- 200 Yu JKY, Tsang WSS, Wong TKC. et al. Outcome of vibrant soundbridge middle ear implant in cantonese-speaking mixed hearing loss adults. Clin Exp Otorhinolaryngol 2012; 5: S82-S88 DOI: 10.3342/ceo.2012.5.S1.S82.
- 201 Iwasaki S, Usami S-I, Takahashi H. et al. Round Window Application of an Active Middle Ear Implant: A Comparison With Hearing Aid Usage in Japan. Otol Neurotol 2017; 38: e145-e151 DOI: 10.1097/MAO.0000000000001438.
- 202 Zwartenkot JW, Hashemi J, Cremers CWRJ. et al. Active middle ear implantation for patients with sensorineural hearing loss and external otitis: long-term outcome in patient satisfaction. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2013; 34: 855-861 DOI: 10.1097/MAO.0b013e31828f47c2.
- 203 Zimmermann D, Busch S, Lenarz T. et al. Audiological Results with the SAMBA Audio Processor in Comparison to the Amadé for the Vibrant Soundbridge. Audiol Neurootol 2020; 25: 164-172 DOI: 10.1159/000506067.
- 204 Kludt E, Büchner A, Schwab B. et al. Indication of direct acoustical cochlea stimulation in comparison to cochlear implants. Hear Res 2016; 340: 185-190 DOI: 10.1016/j.heares.2016.01.016.
- 205 Schwab B, Kludt E, Maier H. et al. Subtotal petrosectomy and CodacsTM: new possibilities in ears with chronic infection. Eur Arch Otorhinolaryngol 2016; 273: 1387-1391 DOI: 10.1007/s00405-015-3688-4.
- 206 Lenarz T, Zwartenkot JW, Stieger C. et al. Multicenter study with a direct acoustic cochlear implant. Otol Neurotol 2013; 34: 1215-1225 DOI: 10.1097/MAO.0b013e318298aa76.
- 207 Lenarz T, Schwab B, Maier H. et al. Direct acoustic cochlear stimulation for therapy of severe to profound mixed hearing loss: CodacsTM Direct Acoustic Cochlear Implant System. HNO 2014; 62: 481-489 DOI: 10.1007/s00106-014-2893-6.
- 208 Leinung M, Zaretsky E, Lange BP. et al. Vibrant Soundbridge® in preschool children with unilateral aural atresia: acceptance and benefit. Eur Arch Otorhinolaryngol 2017; 274: 159-165 DOI: 10.1007/s00405-016-4265-1.