Subscribe to RSS
DOI: 10.1055/a-1647-8616
Results and Quality of Life after Implantation of Active Middle Ear Implants
Article in several languages: deutsch | EnglishAbstract
The provision of implantable hearing aids represents an area with high development and innovation potential. On the one hand, this review article provides an overview of current indication criteria for the treatment with active middle ear implants. On the other hand, outcome parameters as well as functional results after implantation of active middle ear implants are demonstrated and discussed. The focus is mainly placed on audiological results as well as the subjective health status. “Patient Reported Outcome Measures” (PROMs) have become an integral part of the evaluation of hearing implant treatment. Due to low evidence level criteria, the study situation regarding audiological as well as subjective outcome parameters is not satisfactory. The lack of an international consensus on accepted outcome parameters makes a meta-analytical analysis of results immensely difficult. In the studies published to date, patients with sensorineural hearing loss and patients with conductive or mixed hearing loss offered better speech recognition after implantation of an active middle ear implant compared to conventional hearing aids. Current analyses show a significant improvement in general as well as hearing-specific quality of life after implantation of an active middle ear implant. To date, no validated, hearing-specific quality-of-life measurement instruments exist for assessing the success of fitting in children. Especially in children with complex malformations of the outer ear and the middle ear, excellent audiological results were shown. However, these results need to be substantiated by quality-of-life measurements in future.
Key words
Active middle ear implant - quality of life - outcome parameters - vibroplasty - Soundbridge - mixed hearing loss - hearing disorders - implantable hearing aidPublication History
Article published online:
23 May 2022
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Beutner D, Hüttenbrink KB. Passive und aktive Mittelohrimplantate. Laryngo-Rhino-Otol 2009; 88: S32-S47
- 2 Tisch M. Implantierbare Hörsysteme. Laryngo-Rhino-Otol 2017; 96: S84-S102
- 3 Leuwer R. Gestörtes Hören: Die apparative Versorgung der Schwerhörigkeit: Konventionelle und implantierbare Hörgeräte. Laryngo-Rhino-Otol 2005; 84: 51-61
- 4 Beutner D, Delb W, Frenzel H. et al. Guideline „Implantable hearing aids“-short version : German S2k guideline of the Working Group of German-speaking Audiologists, Neurootologists and Otologists (ADANO), of the German Society of Oto-Rhino-Laryngology, Head and Neck Surgery (DGHNO) in collaboration with the German Society of Audiology (DGA), the German Society of Phoniatrics and Pediatric Audiology (DGPP), and patient representatives. HNO 2018; 66: 654-659
- 5 Donabedian A. The definition of quality and approaches to its assessment. Ann Arbor, Mich.: Health Administration Press; 1980. Im Internet: http://slubdd.de/katalog?TN_libero_mab216176425
- 6 Kaltenbach T. Qualitätsmanagement im Krankenhaus. Qualitäts- und Effizienzsteigerung auf der Grundlage des Total Quality Management. 2. Aufl. Melsungen: Bibliomed, Med. Verl.-Ges.; 1993
- 7 Neudert M, Zahnert T. Tympanoplasty-News And New Perspectives. Laryngorhinootologie 2017; 96: S66-S83
- 8 Morgenstern J, Lailach S, Zahnert T. et al. Outcome parameters in speech audiometry: retrospective analysis of data and reporting quality in clinical studies. Eur Arch Otorhinolaryngol 2020; 277: 669-677
- 9 Maier H. Audiological target parameters in clinical studies with implantable hearing systems. HNO 2021; 69: 483-490
- 10 Mueller H, Killion M. An easy method for calculating the articulation index. Hear J 1990: 14–17
- 11 Rahne T. Physical audiological principles of implantable hearing systems: About power transmission, coupling and power output. HNO 2021; 69: 475-482
- 12 Gurgel RK, Jackler RK, Dobie RA. et al. A new standardized format for reporting hearing outcome in clinical trials. Otolaryngol Neck Surg 2012; 147: 803-807
- 13 Committee on Hearing and Equilibrium. Committee on Hearing and Equilibrium guidelines for the evaluation of results of treatment of conductive hearing loss. Otolaryngol Neck Surg 1995; 113: 186–187
- 14 Müller J, Plontke SK, Rahne T. Speech audiometric outcome parameters in clinical trials on hearing improvement. HNO 2017; 65: 211-218
- 15 Maier H, Baumann U, Baumgartner W-D. et al. Minimal Reporting Standards for Active Middle Ear Hearing Implants. Audiol Neurootol 2018; 23: 105-115
- 16 Ebell MH, Siwek J, Weiss BD. et al. Strength of Recommendation Taxonomy (SORT): A Patient-Centered Approach to Grading Evidence in the Medical Literature. Am Fam Physician 2004; 69: 548
- 17 Cella DF. Methods and problems in measuring quality of life. Support Care Cancer Off J Multinatl Assoc Support Care Cancer 1995; 3: 11-22
- 18 Bullinger M. German translation and psychometric testing of the SF-36 Health Survey: Preliminary results from the IQOLA project. Soc Sci Med 1995; 41. doi: 10.1016/0277-9536(95)00115-N
- 19 World Health Organization (WHO). WHO Defin Health. Im Internet: https://www.who.int/about/who-we-are/constitution; Stand: 26.12.2020
- 20 Engel GL. The Need for a New Medical Model: A Challenge for Biomedicine. Psychodyn Psychiatry 2012; 40: 377-396
- 21 Schumacher J, Klaiberg A, Brähler E. Diagnostik von Lebensqualität und Wohlbefinden. Göttingen: Hogrefe; 2003: 9-24
- 22 Carr AJ, Gibson B, Robinson PG. Measuring quality of life: Is quality of life determined by expectations or experience?. BMJ 2001; 322: 1240-1243
- 23 von Steinbüchel-Rheinwall N, Backhaus J. Erhebung gesundheitsbezogener Lebensqualität. Z Für Epileptol 2015; 28: 102-110
- 24 Bullinger M. Das Konzept der Lebensqualität in der Medizin – Entwicklung und heutiger Stellenwert. Z Für Evidenz Fortbild Qual Im Gesundheitswesen 2014; 108: 97-103
- 25 Fitzpatrick R, Davey C, Buxton MJ. et al. Evaluating patient-based outcome measures for use in clinical trials. Health Technol Assess Winch Engl 1998; 2 i–iv 1-74
- 26 Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992; 30: 473-483
- 27 Ware JE, Kosinski M, Keller SD. et al. SF-36 Physical and Mental Health Summary Scales: A User’s Manual. 1994. Im Internet: https://www.scienceopen.com/document?vid=71ae6a50-b42f-4649-b0ab-16aa4a344c75; Stand: 22.03.2020
- 28 Bullinger M. Kirchberger ISF-36, Fragebogen zum Gesundheitszustand. Göttingen [u. a.]: Hogrefe; 1998. Im Internet: http://slubdd.de/katalog?TN_libero_mab21609819
- 29 Knoke M, Lailach S, Zahnert T. et al. Lebensqualitätsmessung bei chronischer Otitis media: Validierung internationaler Messinstrumente und Beurteilung des Response-Shift. In: Laryngo-Rhino-Otologie. Georg Thieme Verlag KG; 2020. 10.1055/s-0040-1711887
- 30 EuroQol Group. EuroQol – a new facility for the measurement of health-related quality of life. Health Policy 1990; 16: 199–208. doi:10.1016/0168-8510(90)90421-9
- 31 Graf von Schulenburg J-M, Claes C, Greiner W. et al. Die deutsche Version des EuroQol-Fragebogens. Z Für Gesundheitswissenschaften 1998; 6: 3-20
- 32 Richardson J, Iezzi A, Khan MA. et al. Validity and Reliability of the Assessment of Quality of Life (AQoL)-8D Multi-Attribute Utility Instrument. Patient-Patient-Centered Outcomes Res 2014; 7: 85-96
- 33 Maxwell A, Özmen M, Iezzi A. et al. Deriving population norms for the AQoL-6D and AQoL-8D multi-attribute utility instruments from web-based data. Qual Life Res 2016; 25: 3209-3219
- 34 Lailach S, Baumann I, Zahnert T. et al. State of the art of quality-of-life measurement in patients with chronic otitis media and conductive hearing loss. HNO 2018; 66: 578-589
- 35 Cox RM, Alexander GC. The abbreviated profile of hearing aid benefit. Ear Hear 1995; 16: 176-186
- 36 Löhler J, Frohburg R, Moser L. The use of the German APHAB for quality control in hearing aid fitting in an ENT-office. Comparison of our results with the given US-norm. Laryngorhinootologie 2010; 89: 737-744
- 37 Gatehouse S, Noble W. The Speech, Spatial and Qualities of Hearing Scale (SSQ). Int J Audiol 2004; 43: 85-99
- 38 Kiessling J, Müller L, Meister H. et al. Übertragung der Fragebögen SADL, ECHO und SSQ ins Deutsche und deren Evaluation. Z Für Audiol Audiol Acoust 2011; 50: 6-16
- 39 Gatehouse S. Glasgow Hearing Aid Benefit Profile: Derivation and Validation of a Client-centered Outcome Measure for Hearing Aid Services. J Am Acad Audiol 1999: 80–103
- 40 Whitmer WM, Howell P, Akeroyd MA. Proposed norms for the Glasgow hearing-aid benefit profile (Ghabp) questionnaire. Int J Audiol 2014; 53: 345-351
- 41 Cox RM, Alexander GC. The International Outcome Inventory for Hearing Aids (IOI-HA): psychometric properties of the English version. Int J Audiol 2002; 41: 30-35
- 42 Cox RM, Alexander GC, Beyer CM. Norms for the international outcome inventory for hearing aids. J Am Acad Audiol 2003; 14: 403-413
- 43 Heuermann H, Kinkel M, Tchorz J. Comparison of psychometric properties of the International Outcome Inventory for Hearing Aids (IOI-hA) in various studies. Int J Audiol 2005; 44: 102-109
- 44 Hinderink JB, Krabbe PF, Van Den Broek P. Development and application of a health-related quality-of-life instrument for adults with cochlear implants: the Nijmegen cochlear implant questionnaire. Otolaryngol Neck Surg 2000; 123: 756-765
- 45 Hirschfelder A, Gräbel S, Olze H. The impact of cochlear implantation on quality of life: the role of audiologic performance and variables. Otolaryngol-Head Neck Surg 2008; 138: 357-362
- 46 Luetje CM, Brackman D, Balkany TJ. et al. Phase III clinical trial results with the Vibrant Soundbridge implantable middle ear hearing device: a prospective controlled multicenter study. Otolaryngol-Head Neck Surg 2002; 126: 97-107
- 47 Schomacher J. Gütekriterien der visuellen Analogskala zur Schmerzbewertung. physioscience 2008; 4: 125-133
- 48 Rudack C, Hillebrandt M, Wagenmann M. et al. Tinnitusbehandlung mit Lidocain? Ein klinischer Erfahrungsbericht. HNO 1997; 45: 69-73
- 49 Ravens-Sieberer U. Verfahren zur Erfassung der gesundheitsbezogenen Lebensqualität bei Kindern und Jugendlichen Ein Überblick. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 2000; 43: 198-209
- 50 Seiffge-Krenke I. Krankheitsverarbeitung bei Kindern und Jugendlichen. Berlin Heidelberg: Springer-Verlag; 1990.
- 51 Rajmil L, Herdman M, Fernandez de Sanmamed M-J. et al. Generic health-related quality of life instruments in children and adolescents: a qualitative analysis of content. J Adolesc Health 2004; 34: 37-45
- 52 Ravens-Sieberer U, Klasen F, Bichmann H. et al. Assessment of health-related quality of life in children and adolescents. Gesundheitswesen Bundesverb Arzte Offentlichen Gesundheitsdienstes Ger 2013; 75: 667-678
- 53 Petrou S. Methodological issues raised by preference-based approaches to measuring the health status of children. Health Econ 2003; 12: 697-702
- 54 Barthel D, Otto C, Nolte S. et al. The validation of a computer-adaptive test (CAT) for assessing health-related quality of life in children and adolescents in a clinical sample: study design, methods and first results of the Kids-CAT study. Qual Life Res 2017; 26: 1105-1117
- 55 Riley AW. Evidence that school-age children can self-report on their health. Ambul Pediatr Off J Ambul Pediatr Assoc 2004; 4: 371-376
- 56 Riley AW, Forrest CB, Rebok GW. et al. The Child Report Form of the CHIP-Child Edition: reliability and validity. Med Care 2004; 42: 221-231
- 57 Bullinger M, Schmidt S, Petersen C. et al. Assessing quality of life of children with chronic health conditions and disabilities: a European approach. Int J Rehabil Res 2002; 25: 197-206
- 58 Ravens-Sieberer U, Gosch A, Rajmil L. et al. KIDSCREEN-52 quality-of-life measure for children and adolescents. Expert Rev Pharmacoecon Outcomes Res 2005; 5: 353-364
- 59 Kubba H, Swan IRC, Gatehouse S. The Glasgow Children’s Benefit Inventory: a new instrument for assessing health-related benefit after an intervention. Ann Otol Rhinol Laryngol 2004; 113: 980-986
- 60 Schwentner I, Schwentner C, Schmutzhard J. et al. Validation of the German Glasgow children’s benefit inventory. J Eval Clin Pract 2007; 13: 942-946
- 61 Homøe P, Heidemann CH, Damoiseaux RA. et al. Panel 5: Impact of otitis media on quality of life and development. Int J Pediatr Otorhinolaryngol 2020; 130: 109837
- 62 Leinung M, Zaretsky E, Ernst BP. et al. Vibrant Soundbridge®: An Alternative Hearing System for Preschool Children with Aural Atresia. Laryngorhinootologie 2016; 95: E1
- 63 McRackan TR, Clinkscales WB, Ahlstrom JB. et al. Factors associated with benefit of active middle ear implants compared to conventional hearing aids. The Laryngoscope 2018; 128: 2133-2138
- 64 Savaş VA, Gündüz B, Karamert R. et al. Comparison of Carina active middle-ear implant with conventional hearing aids for mixed hearing loss. J Laryngol Otol 2016; 130: 340-343
- 65 Bruschini L, Berrettini S, Forli F. et al. The Carina© middle ear implant: surgical and functional outcomes. Eur Arch Otorhinolaryngol 2016; 273: 3631-3640
- 66 Bruschini L, Forli F, Passetti S. et al. Fully implantable Otologics MET Carina(TM) device for the treatment of sensorineural and mixed hearing loss: Audio-otological results. Acta Otolaryngol (Stockh) 2010; 130: 1147-1153
- 67 Uhler K, Anderson MC, Jenkins HA. Long-Term Outcome Data in Patients following One Year’s Use of a Fully Implantable Active Middle Ear Implant. Audiol Neurootol 2016; 21: 105-112
- 68 Martin C, Deveze A, Richard C. et al. European results with totally implantable carina placed on the round window: 2-year follow-up. Otol Neurotol 2009; 30: 1196-1203
- 69 Jenkins HA, Niparko JK, Slattery WH. et al. Otologics Middle Ear Transducer Ossicular Stimulator: performance results with varying degrees of sensorineural hearing loss. Acta Otolaryngol (Stockh) 2004; 124: 391-394
- 70 Skarżyński H, Dziendziel B, Włodarczyk E. et al. Three-year audiological outcomes of the latest generation middle ear transducer (MET) implant. Eur Arch Otorhinolaryngol 2020; 277: 3013-3019
- 71 Tringali S, Perrot X, Berger P. et al. Otologics middle ear transducer with contralateral conventional hearing aid in severe sensorineural hearing loss: evolution during the first 24 months. Otol Neurotol 2010; 31: 630-636
- 72 Chang CYJ, Spearman M, Spearman B. et al. Comparison of an Electromagnetic Middle Ear Implant and Hearing Aid Word Recognition Performance to Word Recognition Performance Obtained Under Earphones. Otol Neurotol 2017; 38: 1308-1314
- 73 Pelosi S, Carlson ML, Glasscock ME. Implantable hearing devices: the Ototronix MAXUM system. Otolaryngol Clin North Am 2014; 47: 953-965
- 74 Kraus EM, Shohet JA, Catalano PJ. Envoy Esteem Totally Implantable Hearing System: phase 2 trial, 1-year hearing results. Otolaryngol-Head Neck Surg 2011; 145: 100-109
- 75 Memari F, Asghari A, Daneshi A. et al. Safety and patient selection of totally implantable hearing aid surgery: Envoy system, Esteem. Eur Arch Otorhinolaryngol 2011; 268: 1421-1425
- 76 Barbara M, Biagini M, Monini S. The totally implantable middle ear device ‘Esteem’ for rehabilitation of severe sensorineural hearing loss. Acta Otolaryngol (Stockh) 2011; 131: 399-404
- 77 Shohet JA, Kraus EM, Catalano PJ. Profound high-frequency sensorineural hearing loss treatment with a totally implantable hearing system. Otol Neurotol 2011; 32: 1428-1431
- 78 Zenner HP, Leysieffer H. Total implantation of the Implex TICA hearing amplifier implant for high frequency sensorineural hearing loss: the Tübingen University experience. Otolaryngol Clin North Am 2001; 34: 417-446
- 79 Lasurashvili N, Lailach S, Seidler H. et al. Fully Implantable Active Middle Ear Implants After Subtotal Petrosectomy With Fat Obliteration: Preliminary Clinical Results. Otol Neurotol 2020; 41: e912-e920
- 80 Tringali S, Pergola N, Berger P. et al. Fully implantable hearing device with transducer on the round window as a treatment of mixed hearing loss. Auris Nasus Larynx 2009; 36: 353-358
- 81 Lailach S. Vollimplantierbare aktive Mittelohrimplantate, 22. Jahrestagung der Deutschen Gesellschaft für Audiologie. Heidelberg; 2019
- 82 Hunter JB, Carlson ML, Glasscock ME. The ototronix MAXUM middle ear implant for severe high-frequency sensorineural hearing loss: Preliminary results. The Laryngoscope 2016; 126: 2124-2127
- 83 Ihler F, Bewarder J, Blum J. et al. Long-term functional outcome and satisfaction of patients with an active middle ear implant for sensorineural hearing loss compared to a matched population with conventional hearing aids. Eur Arch Otorhinolaryngol 2014; 271: 3161-3169
- 84 Boeheim K, Pok S-M, Schloegel M. et al. Active middle ear implant compared with open-fit hearing aid in sloping high-frequency sensorineural hearing loss. Otol Neurotol 2010; 31: 424-429
- 85 Lee JM, Jeon JH, Moon IS. et al. Benefits of active middle ear implants over hearing aids in patients with sloping high tone hearing loss: comparison with hearing aids. Acta Otorhinolaryngol Ital Organo Uff Della Soc Ital Otorinolaringol E Chir Cerv-facc 2017; 37: 218-223
- 86 Sterkers O, Boucarra D, Labassi S. et al. A middle ear implant, the Symphonix Vibrant Soundbridge: retrospective study of the first 125 patients implanted in France. Otol Neurotol 2003; 24: 427-436
- 87 Lenarz T, Weber BP, Mack KF. et al. The Vibrant Soundbridge System: a new kind of hearing aid for sensorineural hearing loss. 1: Function and initial clinical experiences. Laryngorhinootologie 1998; 77: 247-255
- 88 Ernst A, Todt I, Wagner J. Safety and effectiveness of the Vibrant Soundbridge in treating conductive and mixed hearing loss: A systematic review. The Laryngoscope 2016; 126: 1451-1457
- 89 Kließ MK, Ernst A, Wagner J. et al. The development of active middle ear implants: A historical perspective and clinical outcomes. Laryngoscope Investig Otolaryngol 2018; 3: 394-404
- 90 Nikdad M, Bornitz M, Lailach S. et al. Active Middle Ear Implants versus Conventional Hearing Aids in Conductive, Sensorineural and Mixed Hearing Loss: A Systematic Review and Meta-Analysis. 2021: Manuskript in Vorbereitung
- 91 Kahue CN, Carlson ML, Daugherty JA. et al. Middle ear implants for rehabilitation of sensorineural hearing loss: a systematic review of FDA approved devices. Otol Neurotol 2014; 35: 1228-1237
- 92 Mojallal H, Schwab B, Hinze A-L. et al. Retrospective audiological analysis of bone conduction versus round window vibratory stimulation in patients with mixed hearing loss. Int J Audiol 2015; 54: 391-400
- 93 Côté M, Deguine O, Calmels M-N. et al. BAHA or MedEl Vibrant Soundbridge: results and criteria of decision. Cochlear Implants Int 2011; 12: S130-S132
- 94 Mayer TE, Brueckmann H, Siegert R. et al. High-resolution CT of the temporal bone in dysplasia of the auricle and external auditory canal. AJNR Am J Neuroradiol 1997; 18: 53-65
- 95 Yuen HY, Ahuja AT, Wong KT. et al. Computed tomography of common congenital lesions of the temporal bone. Clin Radiol 2003; 58: 687-693
- 96 Frenzel H, Hanke F, Beltrame M. et al. Application of the Vibrant Soundbridge to unilateral osseous atresia cases. The Laryngoscope 2009; 119: 67-74
- 97 Mandalà M, Colletti L, Colletti V. Treatment of the atretic ear with round window vibrant soundbridge implantation in infants and children: electrocochleography and audiologic outcomes. Otol Neurotol 2011; 32: 1250-1255
- 98 Clarós P, Pujol M, del C. Active middle ear implants: VibroplastyTM in children and adolescents with acquired or congenital middle ear disorders. Acta Otolaryngol (Stockh) 2013; 133: 612-619
- 99 Frenzel H, Sprinzl G, Streitberger C. et al. The Vibrant Soundbridge in Children and Adolescents: Preliminary European Multicenter Results. Otol Neurotol 2015; 36: 1216-1222
- 100 Vogt K, Frenzel H, Ausili SA. et al. Improved directional hearing of children with congenital unilateral conductive hearing loss implanted with an active bone-conduction implant or an active middle ear implant. Hear Res 2018; 370: 238-247
- 101 Hempel J-M, Sprinzl G, Riechelmann H. et al. A Transcutaneous Active Middle Ear Implant (AMEI) in Children and Adolescents: Long-term, Multicenter Results. Otol Neurotol 2019; 40: 1059-1067
- 102 Célérier C, Thierry B, Coudert C. et al. Results of VSB implantation at the short process of the incus in children with ear atresia. Int J Pediatr Otorhinolaryngol 2017; 93: 83-87
- 103 Takahashi M, Iwasaki S, Furutate S. et al. Active middle ear implant (vibrant soundbridge) in children with unilateral congenital aural atresia. Acta Otolaryngol (Stockh) 2021; 141: 34-38
- 104 Hempel JM, Braun T, Berghaus A. Functional and aesthetic rehabilitation of microtia in children and adolescents. HNO 2013; 61: 655-661
- 105 Lailach S, Zahnert T, Maurer J. et al. The vibrating ossicular prosthesis in children and adolescents: a retrospective study. Eur Arch Otorhinolaryngol 2020; 277: 55-60
- 106 Ito K. Can unilateral hearing loss be a handicap in learning?. Arch Otolaryngol Head Neck Surg 1998; 124: 1389-1390
- 107 Keller WD, Bundy RS. Effects of unilateral hearing loss upon educational achievement. Child Care Health Dev 1980; 6: 93-100
- 108 Borg E, Edquist G, Reinholdson A-C. et al. Speech and language development in a population of Swedish hearing-impaired pre-school children, a cross-sectional study. Int J Pediatr Otorhinolaryngol 2007; 71: 1061-1077
- 109 Kunst SJW, Leijendeckers JM, Mylanus EAM. et al. Bone-anchored hearing aid system application for unilateral congenital conductive hearing impairment: audiometric results. Otol Neurotol 2008; 29: 2-7
- 110 Priwin C, Jönsson R, Magnusson L. et al. Audiological evaluation and self-assessed hearing problems in subjects with single-sided congenital external ear malformations and associated conductive hearing loss. Int J Audiol 2007; 46: 162-171
- 111 Gordon KA, Wong DDE, Valero J. et al. Use it or lose it? Lessons learned from the developing brains of children who are deaf and use cochlear implants to hear. Brain Topogr 2011; 24: 204-219
- 112 Kral A. Auditory critical periods: a review from system’s perspective. Neuroscience 2013; 247: 117-133
- 113 Kral A, Sharma A. Developmental neuroplasticity after cochlear implantation. Trends Neurosci 2012; 35: 111-122
- 114 Zhao C, Liu Y, Yang J. et al. Sound-localisation performance in patients with congenital unilateral microtia and atresia fitted with an active middle ear implant. Eur Arch Otorhinolaryngol 2020. doi: 10.1007/s00405-020-06049-w
- 115 Van Deun L, van Wieringen A, Van den Bogaert T. et al. Sound localization, sound lateralization, and binaural masking level differences in young children with normal hearing. Ear Hear 2009; 30: 178-190
- 116 Meuret S, Ludwig AA, Predel D. et al. Localization and Spatial Discrimination in Children and Adolescents with Moderate Sensorineural Hearing Loss Tested without Their Hearing Aids. Audiol Neurootol 2017; 22: 326-342
- 117 Koci V, Seebacher J, Weichbold V. et al. Improvement of sound source localization abilities in patients bilaterally supplied with active middle ear implants. Acta Otolaryngol (Stockh) 2016; 136: 692-698
- 118 Seo YJ, Kim HJ, Moon IS. et al. Changes in Tinnitus After Middle Ear Implant Surgery: Comparisons With the Cochlear Implant. Ear Hear 2015; 36: 705-709
- 119 Lee JM, Lee HJ, Moon IS. et al. Effects of Vibrant Soundbridge on tinnitus accompanied by sensorineural hearing loss. PloS One 2020; 15: e0228498
- 120 Marino R, Vieira DT, Rajan GP. Tinnitus and quality of life after round window vibroplasty. Int Tinnitus J 2012; 17: 134-139
- 121 Shohet JA, Gende DM, Bibee J. et al. Speech Perception Gap Is Predictive of an Active Middle Ear Implant Advantage. Otol Neurotol 2020; 41: 663-668
- 122 Dyer RK, Spearman M, Spearman B. et al. Evaluating speech perception of the MAXUM middle ear implant versus speech perception under inserts. The Laryngoscope 2018; 128: 456-460
- 123 Hoppe U, Hast A, Hocke T. Speech perception with hearing aids in comparison to pure-tone hearing loss. HNO 2014; 62: 443-448
- 124 Müller A, Mir-Salim P, Zellhuber N. et al. Influence of Floating-Mass Transducer Coupling Efficiency for Active Middle-Ear Implants on Speech Recognition. Otol Neurotol 2017; 38: 809-814
- 125 Lailach S, Lasurahvili N, Schuster I. et al. Soundbridge – Implantation bei Patienten mit kombinierter oder Schallleitungsschwerhörigkeit: Einfluss der FMT-Zielstruktur auf das postoperative Sprachverstehen und den effektiven Hörgewinn. 92. & 91. Jahresversammlung der DGHNO-KHC. 2021
- 126 Rahne T, Plontke SK. Device-based treatment of mixed hearing loss: An audiological comparison of current hearing systems. HNO 2016; 64: 91-100
- 127 Rahne T. Physical audiological principles of implantable hearing systems: About power transmission, coupling and power output. HNO 2019.
- 128 Beleites T, Neudert M, Bornitz M. et al. Sound transfer of active middle ear implants. Otolaryngol Clin North Am 2014; 47: 859-891
- 129 Bornitz M, Hardtke H-J, Zahnert T. Evaluation of implantable actuators by means of a middle ear simulation model. Hear Res 2010; 263: 145-151
- 130 Bornitz M, Lasurashvili N, Neudert M. et al. Coupling of active middle ear implants-biomechanical aspects. HNO 2021;
- 131 Luers JC, Hüttenbrink K-B, Zahnert T. et al. Vibroplasty for mixed and conductive hearing loss. Otol Neurotol 2013; 34: 1005-1012
- 132 Fröhlich L, Rahne T, Plontke SK. et al. Intraoperative quantification of floating mass transducer coupling quality in active middle ear implants: a multicenter study. Eur Arch Otorhinolaryngol 2020.
- 133 Fröhlich L, Rahne T, Plontke SK. et al. Intraoperative Recording of Auditory Brainstem Responses for Monitoring of Floating Mass Transducer Coupling Efficacy During Revision Surgery-Proof of Concept. Otol Neurotol 2020; 41: e168-e171
- 134 Geiger U, Radeloff A, Hagen R. et al. Intraoperative Estimation of the Coupling Efficiency and Clinical Outcomes of the Vibrant Soundbridge Active Middle Ear Implant Using Auditory Brainstem Response Measurements. Am J Audiol 2019; 28: 553-559
- 135 Winter M, Weber BP, Lenarz T. Measurement method for the assessment of transmission properties of implantable hearing aids. Biomed Tech (Berl) 2002; 47: 726-727
- 136 Strenger T, Brandstetter M, Stark T. et al. Neue klinische Anwendungen der Laser-Doppler-Vibrometrie in der Otologie. HNO 2018; 66: 265-279
- 137 Gamm UA, Prenzler NK, Timm ME. et al. Performance Evaluation of Coupling Variants for an Active Middle Ear Implant Actuator: Output, Conductive Losses, and Stability of Coupling With Ambient Pressure Changes. Otol Neurotol 2021; 42: e690
- 138 Baumgartner WD. Langzeitresultate aktiver Mittelohrimplantate. Sommertagung 2021 Otologie/Neurootologie der Donaugesellschaft der ORL in wissenschaftlicher Kooperation mit der ADANO, St. Pölten. 2021
- 139 Schraven SP, Rak K, Cebulla M. et al. Surgical Impact of Coupling an Active Middle Ear Implant to Short Incus Process. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad. Otol Neurotol 2018; 39: 688-692
- 140 Schraven SP, Dalhoff E, Wildenstein D. et al. Alternative Fixation of an Active Middle Ear Implant at the Short Incus Process. Audiol Neurotol 2014; 19: 1-11
- 141 Rahne T, Skarzynski PH, Hagen R. et al. A retrospective European multicenter analysis of the functional outcomes after active middle ear implant surgery using the third generation vibroplasty couplers. Eur Arch Otorhinolaryngol 2021; 278: 67-75
- 142 Edlinger SH, Hasenzagl M, Schoerg P. et al. Long-Term Safety and Quality of Life after Vibroplasty in Sensorineural Hearing Loss: Short/Long Incus Process Coupler. Audiol Neurootol 2021: 1–9. doi:10.1159/000516144
- 143 Zhang J, Zou D, Tian J. et al. A comparative finite-element analysis of acoustic transmission in human cochlea during forward and reverse stimulations. Appl Acoust 2019; 145: 278-289
- 144 Nakajima HH, Dong W, Olson ES. et al. Evaluation of round window stimulation using the floating mass transducer by intracochlear sound pressure measurements in human temporal bones. Otol Neurotol 2010; 31: 506-511
- 145 Zahnert T, Löwenheim H, Beutner D. et al. Multicenter Clinical Trial of Vibroplasty Couplers to Treat Mixed/Conductive Hearing Loss: First Results. Audiol Neurootol 2016; 21: 212-222
- 146 Zahnert T. Teil- und vollimplantierbare Hörgeräte: Indikationsgrenzen und Behandlungsergebnisse. 29. Jahrestagung der Vereinigung Mitteldeutscher HNO-Ärzte, Erfurt. 2020
- 147 Busch S, Lenarz T, Maier H. Comparison of Alternative Coupling Methods of the Vibrant Soundbridge Floating Mass Transducer. Audiol Neurootol 2016; 21: 347-355
- 148 Zahnert T, Bornitz M, Hüttenbrink KB. Experiments on the coupling of an active middle ear implant to the stapes footplate. Adv Otorhinolaryngol 2010; 69: 32-37
- 149 Hüttenbrink K-B, Beutner D, Bornitz M. et al. Clip vibroplasty: experimental evaluation and first clinical results. Otol Neurotol 2011; 32: 650-653
- 150 Stieger C, Rosowski JJ, Nakajima HH. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea. Hear Res 2013; 301: 105-114
- 151 Zhang J, Tian J, Ta N. et al. Finite element analysis of round-window stimulation of the cochlea in patients with stapedial otosclerosis. J Acoust Soc Am 2019; 146: 4122-4130
- 152 Beltrame AM, Martini A, Prosser S. et al. Coupling the Vibrant Soundbridge to Cochlea Round Window: Auditory Results in Patients With Mixed Hearing Loss. Otol Neurotol 2009; 30: 194-201
- 153 Pennings RJE, Ho A, Brown J. et al. Analysis of Vibrant Soundbridge placement against the round window membrane in a human cadaveric temporal bone model. Otol Neurotol 2010; 31: 998-1003
- 154 Rajan GP, Lampacher P, Ambett R. et al. Impact of Floating Mass Transducer Coupling and Positioning in Round Window Vibroplasty. Otol Neurotol 2011; 32: 271-277
- 155 Schraven SP, Gromann W, Rak K. et al. Long-term Stability of the Active Middle-ear Implant with Floating-mass Transducer Technology: A Single-center Study. Otol Neurotol 2016; 37: 252-266
- 156 Schwab B, Grigoleit S, Teschner M. Do We Really Need a Coupler for the Round Window Application of an AMEI?. Otol Neurotol 2013; 34: 1181-1185
- 157 Gostian A-O, Schwarz D, Mandt P. et al. Performance of the round window soft coupler for the backward stimulation of the cochlea in a temporal bone model. Eur Arch Otorhinolaryngol 2016; 273: 3651-3661
- 158 Müller M, Salcher R, Lenarz T. et al. The Hannover Coupler: Controlled Static Prestress in Round Window Stimulation With the Floating Mass Transducer. Otol Neurotol 2017; 38: 1186-1192
- 159 Müller M, Salcher R, Prenzler N. et al. Redesign of the Hannover Coupler: Optimized Vibration Transfer from Floating Mass Transducer to Round Window. BioMed Res Int 2018; 2018. doi:10.1155/2018/3701954
- 160 Knölke N, Murawski D, Wardenga N. et al. The Hannover Coupler V2: Audiological outcomes of a round window coupler for vibrant soundbridge. In: Laryngo-Rhino-Otologie. Georg Thieme Verlag KG; 2021. 10.1055/s-0041-1728438
- 161 Wardenga N, Maier H, Lenarz T. A new coupling device for precise round window coupling of the Vibrant Soundbridge – First audiological results. In: Laryngo-Rhino-Otologie. Georg Thieme Verlag KG; 2019: 11207. 10.1055/s-0039-1686536
- 162 Lenarz T, Zimmermann D, Maier H. et al. Case Report of a New Coupler for Round Window Application of an Active Middle Ear Implant. Otol Neurotol 2018; 39: e1060-e1063
- 163 Zahnert T, Mlynski R, Löwenheim H. et al. Long-Term Outcomes of Vibroplasty Coupler Implantations to Treat Mixed/Conductive Hearing Loss. Audiol Neurootol 2018; 23: 316-325
- 164 Maier H, Gamm UA, Prenzler NK. et al. Einfluss von barometrischen Druckänderungen am Trommelfell auf die Kopplungseffizienz eines Mittelohrimplantataktuators. In: Laryngo-Rhino-Otologie. © Georg Thieme Verlag KG; 2020. 10.1055/s-0040-1711800
- 165 Müller C, Zahnert T, Ossmann S. et al. Vibroplasty combined with tympanic membrane reconstruction in middle ear ventilation disorders. Hear Res 2019; 378:166–175. doi: 10.1016/j.heares.2019.02.012
- 166 Vyskocil E, Riss D, Honeder C. et al. Vibroplasty in mixed and conductive hearing loss: Comparison of different coupling methods. The Laryngoscope 2014; 124: 1436-1443
- 167 Beleites T, Neudert M, Beutner D. et al. Experience With Vibroplasty Couplers at the Stapes Head and Footplate. Otol Neurotol 2011; 32: 1468-1472
- 168 Fisch U, Mattox D. Microsurgery of the skull base /. Stuttgart; New York: Thieme; 1988. Im Internet: http://primoproxy.slub-dresden.de/cgi-bin/permalink.pl?libero_mab215374720
- 169 Grossöhmichen M, Salcher R, Lenarz T. et al. The Effect of Simulated Mastoid Obliteration on the Mechanical Output of Electromagnetic Transducers. Otol Neurotol 2016; 37: 919-925
- 170 Linder T, Schlegel C, DeMin N. et al. Active middle ear implants in patients undergoing subtotal petrosectomy: new application for the Vibrant Soundbridge device and its implication for lateral cranium base surgery. Otol Neurotol 2009; 30: 41-47
- 171 Henseler MA, Polanski JF, Schlegel C. et al. Active middle ear implants in patients undergoing subtotal petrosectomy: long-term follow-up. Otol Neurotol 2014; 35: 437-441
- 172 Ihler F, Köhler S, Meyer AC. et al. Mastoid cavity obliteration and Vibrant Soundbridge implantation for patients with mixed hearing loss. The Laryngoscope 2014; 124: 531-537
- 173 Dejaco D, Riedl D, Gottfried T. et al. Modified-Power-Piston: Short-Incudial-Process-Vibroplasty and Simultaneous Stapedotomy in Otosclerosis. Otol Neurotol 2019; 40: 292-300
- 174 Burian A, Gerlinger I, Toth T. et al. Stapedotomy with incus vibroplasty-A novel surgical solution of advanced otosclerosis and its place among existing therapeutic modalities-Hungarian single institutional experiences. Auris Nasus Larynx 2020; 47: 55-64
- 175 Didczuneit-Sandhop B, Langer J. Use of the Carina active middle ear implant in otosclerosis patients. HNO 2021. doi: 10.1007/s00106-020-00984-0
- 176 Wardenga N, Diedrich V, Waldmann B. et al. Hearing Aid Treatment in Patients with Mixed Hearing Loss. Part I: Expected Benefit and Limitations after Stapes Surgery. Audiol Neurootol 2020; 25: 125-132
- 177 Lailach S, Schenke T, Beleites T. et al. Die präoperative Knochenleitungsschwelle als Prädiktor der gesundheitsbezogenen Lebensqualität nach Stapesplastik? 25. Jahrestagung der Vereinigung mitteldeutscher Hals-Nasen-Ohrenärzte, Halle/Saale. 2016
- 178 Neudert M. Quality in middle ear surgery-a critical position determination. Laryngorhinootologie 2020; 99: S222-S271
- 179 Lassaletta L, Calvino M, Sánchez-Cuadrado I. et al. Pros and Cons of Round Window Vibroplasty in Open Cavities: Audiological, Surgical, and Quality of Life Outcomes. Otol Neurotol 2015; 36: 944-952
- 180 Baumgartner W-D, Böheim K, Hagen R. et al. The vibrant soundbridge for conductive and mixed hearing losses: European multicenter study results. Adv Otorhinolaryngol 2010; 69: 38-50
- 181 Bernardeschi D, Hoffman C, Benchaa T. et al. Functional results of Vibrant Soundbridge middle ear implants in conductive and mixed hearing losses. Audiol Neurootol 2011; 16: 381-387
- 182 Brkic FF, Riss D, Auinger A. et al. Long-Term Outcome of Hearing Rehabilitation With An Active Middle Ear Implant. The Laryngoscope 2019; 129: 477-481
- 183 Grégoire A, Van Damme J-P, Gilain C. et al. Our auditory results using the Vibrant Soundbridge on the long process of the incus: 20 years of data. Auris Nasus Larynx 2018; 45: 66-72
- 184 Schmuziger N, Schimmann F, àWengen D. et al. Long-term assessment after implantation of the Vibrant Soundbridge device.. Otol Neurotol 2006; 27: 183-188
- 185 Sprinzl GM, Schoerg P, Muck S. et al. Long-Term Stability and Safety of the Soundbridge Coupled to the Round Window. The Laryngoscope 2020;
- 186 Spiegel JL, Kutsch L, Jakob M. et al. Long-Term Stability and Functional Outcome of an Active Middle Ear Implant Regarding Different Coupling Sites. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2020; 41: 60-67
- 187 Lau K, Scotta G, Barauna I. et al. Surgical and audiological outcomes of a fully implantable middle ear implant: early results from a retrospective multicentre study. Eur Arch Otorhinolaryngol 2020; 277: 2721-2727
- 188 Peixoto MdaC, Miranda C, Bento M. et al. The first results of a totally implanted active middle ear device. Eur Arch Otorhinolaryngol 2019; 276: 2775-2781
- 189 Edfeldt L, Strömbäck K, Grendin J. et al. Evaluation of cost-utility in middle ear implantation in the „Nordic School“: a multicenter study in Sweden and Norway. Cochlear Implants Int 2014; 15: S65-S67
- 190 Snik AFM, van Duijnhoven NTL, Mylanus EAM. et al. Estimated cost-effectiveness of active middle-ear implantation in hearing-impaired patients with severe external otitis. Arch Otolaryngol-Head Neck Surg 2006; 132: 1210-1215
- 191 Monksfield P, Jowett S, Reid A. et al. Cost-effectiveness Analysis of the Bone-Anchored Hearing Device. Otol Neurotol 2011; 32: 1192-1197
- 192 Cheng AK, Niparko JK. Cost-Utility of the Cochlear Implant in Adults: A Meta-analysis. Arch Otolaryngol Neck Surg 1999; 125: 1214-1218
- 193 Baumann I, Gerendas B, Plinkert PK. et al. General and disease-specific quality of life in patients with chronic suppurative otitis media–a prospective study. Health Qual Life Outcomes 2011; 9: 48
- 194 Lailach S, Langanke T, Zahnert T. et al. Impact of depressive disorders on quality of life after middle ear surgery in patients with chronic otitis media. Eur Arch Otorhinolaryngol 2020. doi: 10.1007/s00405-020-06397-7
- 195 Snik AFM, van Duijnhoven NTL, Mulder JJS. et al. Evaluation of the subjective effect of middle ear implantation in hearing-impaired patients with severe external otitis. J Am Acad Audiol 2007; 18: 496-503
- 196 Monini S, Bianchi A, Talamonti R. et al. Patient satisfaction after auditory implant surgery: ten-year experience from a single implanting unit center. Acta Otolaryngol (Stockh) 2017; 137: 389-397
- 197 Mosnier I, Sterkers O, Bouccara D. et al. Benefit of the Vibrant Soundbridge device in patients implanted for 5 to 8 years. Ear Hear 2008; 29: 281-284
- 198 Seebacher J, Weichbold V, Schörg P. et al. Subjective Hearing Impression and Quality of Life in Patients With Bilateral Active Middle Ear Implants. Otol Neurotol 2020; 41: e641-e647
- 199 Atas A, Tutar H, Gunduz B. et al. Vibrant SoundBridge application to middle ear windows versus conventional hearing aids: a comparative study based on international outcome inventory for hearing aids. Eur Arch Otorhinolaryngol 2014; 271: 35-40
- 200 Yu JKY, Tsang WSS, Wong TKC. et al. Outcome of vibrant soundbridge middle ear implant in cantonese-speaking mixed hearing loss adults. Clin Exp Otorhinolaryngol 2012; 5: S82-S88
- 201 Iwasaki S, Usami S-I, Takahashi H. et al. Round Window Application of an Active Middle Ear Implant: A Comparison With Hearing Aid Usage in Japan. Otol Neurotol 2017; 38: e145-e151
- 202 Zwartenkot JW, Hashemi J, Cremers CWRJ. et al. Active middle ear implantation for patients with sensorineural hearing loss and external otitis: long-term outcome in patient satisfaction. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 2013; 34: 855-861
- 203 Zimmermann D, Busch S, Lenarz T. et al. Audiological Results with the SAMBA Audio Processor in Comparison to the Amadé for the Vibrant Soundbridge. Audiol Neurootol 2020; 25: 164-172
- 204 Kludt E, Büchner A, Schwab B. et al. Indication of direct acoustical cochlea stimulation in comparison to cochlear implants. Hear Res 2016; 340: 185-190
- 205 Schwab B, Kludt E, Maier H. et al. Subtotal petrosectomy and CodacsTM: new possibilities in ears with chronic infection. Eur Arch Otorhinolaryngol 2016; 273: 1387-1391
- 206 Lenarz T, Zwartenkot JW, Stieger C. et al. Multicenter study with a direct acoustic cochlear implant. Otol Neurotol 2013; 34: 1215-1225
- 207 Lenarz T, Schwab B, Maier H. et al. Direct acoustic cochlear stimulation for therapy of severe to profound mixed hearing loss: CodacsTM Direct Acoustic Cochlear Implant System. HNO 2014; 62: 481-489
- 208 Leinung M, Zaretsky E, Lange BP. et al. Vibrant Soundbridge® in preschool children with unilateral aural atresia: acceptance and benefit. Eur Arch Otorhinolaryngol 2017; 274: 159-165