CC BY-NC-ND 4.0 · Laryngorhinootologie 2022; 101(S 01): S160-S185
DOI: 10.1055/a-1647-8650
Referat

Patienten-Benefit und Lebensqualität nach Roboter-assistierten Operationen im Kopf-Hals-Bereich

Article in several languages: deutsch | English
Timon Hussain
1   Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Essen, Universität Duisburg-Essen
› Author Affiliations

Zusammenfassung

Robotische Systeme für den Einsatz bei Operationen im Kopf-Hals-Bereich befinden sich in unterschiedlichen Stadien der technischen Entwicklung und der klinischen Anwendung. Vorrangig kommen robotische Systeme bei transoralen Operationen im Bereich des Pharynx und Larynx zum Einsatz, erste Erkenntnisse liegen jedoch auch zu onkologischen und funktionellen Ergebnissen nach Roboter-assistierten Operationen an den Halsweichteilen, der Schilddrüse und im Bereich des Mittel- und Innenohrs vor. Das folgende Referat bietet einen Überblick über die Anwendungsbereiche der Roboter-assistierten Chirurgie im Kopf-Hals-Bereich im Hinblick auf den potenziellen Patienten-Benefit und die post-operative Lebensqualität. Der Schwerpunkt liegt dabei auf der Rolle der transoralen robotischen Chirurgie (TORS) bei der Resektion von Oropharynxkarzinomen. Für diesen Anwendungsbereich liegen umfangreiche und langfristige Erkenntnisse vor, welche funktionelle Vorteile für ausgewählte Oropharynxkarzinom-Patienten nach TORS im Vergleich zu Therapiealternativen wie der offenen Chirurgie und der primären Strahlentherapie zeigen. Da der TORS auch eine wichtige Rolle im Hinblick auf eine mögliche Therapiedeeskalation für HPV-positive Oropharynxkarzinom-Patienten zukommt, werden entsprechende laufende Studien vorgestellt. Bei der Beurteilung des Therapie-Benefits und der Lebensqualität ist insbesondere bei Tumorpatienten zu beachten, dass individuelle Patienten-Präferenzen deutlich variieren können. Beeinflussende Faktoren und Tools zur detaillierten Erfassung von Lebensqualitätsparametern werden daher zu Beginn des Referats erläutert.

Während einige robotische Systeme für den Einsatz in der Ohrchirurgie und Schädelbasischirurgie in Europa entwickelt und angewandt werden, kommen TORS-Systeme derzeit vor allem in Nordamerika und Asien zum Einsatz. Dies liegt darin begründet, dass in Europa und vor allem Deutschland mit der transoralen Laser-Mikrochirurgie (TLM) seit Jahrzenten eine bewährte Technologie für die transorale Tumorresektion zur Verfügung steht. Zukünftige Studien zum Vergleich von TORS und TLM mit einer detaillierten Erfassung von Lebensqualitätsparametern könnten dazu beitragen, geeignete Anwendungsbereiche für die jeweilige Technologie zu identifizieren.



Publication History

Article published online:
23 May 2022

© 2022. Thieme. All rights reserved. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 McCulloch P. et al. Progress in clinical research in surgery and IDEAL. Lancet 2018; 392: 88-94
  • 2 Kwoh YS. et al. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 1988; 35: 153-160
  • 3 Hockstein NG, O’Malley BW, Weinstein GS. Assessment of intraoperative safety in transoral robotic surgery. Laryngoscope 2006; 116: 165-168
  • 4 O’Malley BW, Weinstein GS, Hockstein NG. Transoral robotic surgery (TORS): glottic microsurgery in a canine model. J Voice 2006; 20: 263-268
  • 5 Hockstein NG. et al. Robotic microlaryngeal surgery: a technical feasibility study using the daVinci surgical robot and an airway mannequin. Laryngoscope 2005; 115: 780-785
  • 6 Weinstein GS, O’Malley B W, Hockstein NG. Transoral robotic surgery: supraglottic laryngectomy in a canine model. Laryngoscope 2005; 115: 1315-1319
  • 7 O’Malley BW. et al. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 2006; 116: 1465-1472
  • 8 Chen AY. A shifting paradigm for patients with head and neck cancer: transoral robotic surgery (TORS). Oncology (Williston Park). 2010 24. p. 1030, 1032
  • 9 Bhayani MK, Holsinger FC, Lai SY. A shifting paradigm for patients with head and neck cancer: transoral robotic surgery (TORS). Oncology (Williston Park) 2010; 24: 1010-1015
  • 10 Ang KK. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010; 363: 24-35
  • 11 Gillison ML. et al. Epidemiology of Human Papillomavirus-Positive Head and Neck Squamous Cell Carcinoma. J Clin Oncol 2015; 33: 3235-3242
  • 12 Steiner W. Experience in endoscopic laser surgery of malignant tumours of the upper aero-digestive tract. Adv Otorhinolaryngol 1988; 39: 135-144
  • 13 Porter ME. What is value in health care?. N Engl J Med 2010; 363: 2477-2481
  • 14 McNeil BJ, Weichselbaum R, Pauker SG. Speech and survival: tradeoffs between quality and quantity of life in laryngeal cancer. N Engl J Med 1981; 305: 982-987
  • 15 van der Donk J. et al. Patient participation in clinical decision-making for treatment of T3 laryngeal cancer: a comparison of state and process utilities. J Clin Oncol 1995; 13: 2369-2378
  • 16 Hamilton DW. et al. Quality compared to quantity of life in laryngeal cancer: A time trade-off study. Head Neck 2016; 38: E631-E637
  • 17 Laccourreye O. et al. Total laryngectomy or laryngeal preservation for advanced laryngeal cancer. Impact of the functional risk upon the patient’s preferences. Eur Ann Otorhinolaryngol Head Neck Dis 2014; 131: 93-97
  • 18 Blanchard P. et al. Assessing head and neck cancer patient preferences and expectations: A systematic review. Oral Oncol 2016; 62: 44-53
  • 19 Brehaut JC. et al. Validation of a decision regret scale. Med Decis Making 2003; 23: 281-292
  • 20 Gill SS. et al. Priorities for the head and neck cancer patient, their companion and members of the multidisciplinary team and decision regret. Clin Oncol (R Coll Radiol) 2011; 23: 518-524
  • 21 Chaturvedi AK. et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 2011; 29: 4294-4301
  • 22 Ringash J. Survivorship and Quality of Life in Head and Neck Cancer. J Clin Oncol 2015; 33: 3322-3327
  • 23 Pow EH. et al. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: initial report on a randomized controlled clinical trial. Int J Radiat Oncol Biol Phys 2006; 66: 981-991
  • 24 Rathod S. et al. Quality-of-life (QOL) outcomes in patients with head and neck squamous cell carcinoma (HNSCC) treated with intensity-modulated radiation therapy (IMRT) compared to three-dimensional conformal radiotherapy (3D-CRT): evidence from a prospective randomized study. Oral Oncol 2013; 49: 634-642
  • 25 Nutting CM. et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol 2011; 12: 127-136
  • 26 de Almeida JR. et al. A systematic review of transoral robotic surgery and radiotherapy for early oropharynx cancer: a systematic review. Laryngoscope 2014; 124: 2096-2102
  • 27 Charters E. et al. Swallowing and communication outcomes following primary transoral robotic surgery. Head Neck 2021; 43: 2013-2023
  • 28 Jalukar V. et al. Health states following head and neck cancer treatment: patient, health-care professional, and public perspectives. Head Neck 1998; 20: 600-608
  • 29 List MA. et al. How Do head and neck cancer patients prioritize treatment outcomes before initiating treatment?. J Clin Oncol 2000; 18: 877-884
  • 30 List MA. et al. Prioritizing treatment outcomes: head and neck cancer patients versus nonpatients. Head Neck 2004; 26: 163-170
  • 31 Sharp HM. et al. Patients’ priorities among treatment effects in head and neck cancer: evaluation of a new assessment tool. Head Neck 1999; 21: 538-546
  • 32 Kanatas A. et al. Issues patients would like to discuss at their review consultation: variation by early and late stage oral, oropharyngeal and laryngeal subsites. Eur Arch Otorhinolaryngol 2013; 270: 1067-1074
  • 33 Brotherston DC. et al. Patient preferences for oropharyngeal cancer treatment de-escalation. Head Neck 2013; 35: 151-159
  • 34 Hodder SC. et al. Multiattribute utility assessment of outcomes of treatment for head and neck cancer. Br J Cancer 1997; 75: 898-902
  • 35 Rogers SN. et al. Importance-rating using the University of Washington quality of life questionnaire in patients treated by primary surgery for oral and oro-pharyngeal cancer. J Craniomaxillofac Surg 2002; 30: 125-132
  • 36 Govender R. et al. Speech and swallowing rehabilitation following head and neck cancer: are we hearing the patient’s voice? Our experience with ten patients. Clin Otolaryngol 2013; 38: 433-437
  • 37 Tschiesner U. et al. Priorities of head and neck cancer patients: a patient survey based on the brief ICF core set for HNC. Eur Arch Otorhinolaryngol 2013; 270: 3133-3142
  • 38 Mehnert A, de Boer A, Feuerstein M. Employment challenges for cancer survivors. Cancer 2013; 119: 2151-2159
  • 39 Guyatt GH, Feeny DH, Patrick DL. Measuring health-related quality of life. Ann Intern Med 1993; 118: 622-629
  • 40 Windon MJ. et al. Priorities of human papillomavirus-associated oropharyngeal cancer patients at diagnosis and after treatment. Oral Oncol 2019; 95: 11-15
  • 41 Terrell JE. et al. Clinical predictors of quality of life in patients with head and neck cancer. Arch Otolaryngol Head Neck Surg 2004; 130: 401-408
  • 42 Rogers SN. et al. Patients experience with long-term percutaneous endoscopic gastrostomy feeding following primary surgery for oral and oropharyngeal cancer. Oral Oncol 2007; 43: 499-507
  • 43 Grant DG. et al. Complications following gastrostomy tube insertion in patients with head and neck cancer: a prospective multi-institution study, systematic review and meta-analysis. Clin Otolaryngol 2009; 34: 103-112
  • 44 Paleri V, Patterson J. Use of gastrostomy in head and neck cancer: a systematic review to identify areas for future research. Clin Otolaryngol 2010; 35: 177-189
  • 45 Heah H. et al. Decreased gastrostomy tube incidence and weight loss after transoral robotic surgery for low- to intermediate-risk oropharyngeal squamous cell carcinoma. Head Neck 2018; 40: 2507-2513
  • 46 Achim V. et al. Long-term Functional and Quality-of-Life Outcomes After Transoral Robotic Surgery in Patients With Oropharyngeal Cancer. JAMA Otolaryngol Head Neck Surg 2018; 144: 18-27
  • 47 Peng LC. et al. Prospective evaluation of patient reported swallow function with the Functional Assessment of Cancer Therapy (FACT), MD Anderson Dysphagia Inventory (MDADI) and the Sydney Swallow Questionnaire (SSQ) in head and neck cancer patients. Oral Oncol 2018; 84: 25-30
  • 48 List MA. et al. The Performance Status Scale for Head and Neck Cancer Patients and the Functional Assessment of Cancer Therapy-Head and Neck Scale. A study of utility and validity. Cancer 1996; 77: 2294-2301
  • 49 Salassa JR. A functional outcome swallowing scale for staging oropharyngeal dysphagia. Dig Dis 1999; 17: 230-234
  • 50 Belafsky PC. et al. Validity and reliability of the Eating Assessment Tool (EAT-10). Ann Otol Rhinol Laryngol 2008; 117: 919-924
  • 51 Cheney DM. et al. The Ability of the 10-Item Eating Assessment Tool (EAT-10) to Predict Aspiration Risk in Persons With Dysphagia. Ann Otol Rhinol Laryngol 2015; 124: 351-354
  • 52 Florie M. et al. EAT-10 Scores and Fiberoptic Endoscopic Evaluation of Swallowing in Head and Neck Cancer Patients. Laryngoscope 2021; 131: E45-E51
  • 53 Chen AY. et al. The development and validation of a dysphagia-specific quality-of-life questionnaire for patients with head and neck cancer: the M. D. Anderson dysphagia inventory. Arch Otolaryngol Head Neck Surg 2001; 127: 870-876
  • 54 Iseli TA. et al. Functional outcomes after transoral robotic surgery for head and neck cancer. Otolaryngol Head Neck Surg 2009; 141: 166-171
  • 55 Kelly AM, Drinnan MJ, Leslie P. Assessing penetration and aspiration: how do videofluoroscopy and fiberoptic endoscopic evaluation of swallowing compare?. Laryngoscope 2007; 117: 1723-1727
  • 56 Hutcheson KA. et al. Dynamic Imaging Grade of Swallowing Toxicity (DIGEST): Scale development and validation. Cancer 2017; 123: 62-70
  • 57 Hutcheson KA. et al. Dysphagia After Primary Transoral Robotic Surgery With Neck Dissection vs Nonsurgical Therapy in Patients With Low- to Intermediate-Risk Oropharyngeal Cancer. JAMA Otolaryngol Head Neck Surg 2019; 145: 1053-1063
  • 58 Ojo B. et al. A systematic review of head and neck cancer quality of life assessment instruments. Oral Oncol 2012; 48: 923-937
  • 59 Bjordal K. et al. Quality of life in head and neck cancer patients: validation of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-H&N35. J Clin Oncol 1999; 17: 1008-1019
  • 60 Osoba D. et al. Analysis and interpretation of health-related quality-of-life data from clinical trials: basic approach of The National Cancer Institute of Canada Clinical Trials Group. Eur J Cancer 2005; 41: 280-287
  • 61 El-Deiry MW. et al. Influences and predictors of long-term quality of life in head and neck cancer survivors. Arch Otolaryngol Head Neck Surg 2009; 135: 380-384
  • 62 Rosenthal DI. et al. Measuring head and neck cancer symptom burden: the development and validation of the M. D. Anderson symptom inventory, head and neck module. Head Neck 2007; 29: 923-931
  • 63 Amit M. et al. Patient-reported outcomes of symptom burden in patients receiving surgical or nonsurgical treatment for low-intermediate risk oropharyngeal squamous cell carcinoma: A comparative analysis of a prospective registry. Oral Oncol 2019; 91: 13-20
  • 64 Ling DC. et al. Oncologic outcomes and patient-reported quality of life in patients with oropharyngeal squamous cell carcinoma treated with definitive transoral robotic surgery versus definitive chemoradiation. Oral Oncol 2016; 61: 41-46
  • 65 Schuler PJ. Robotic Surgery – Who is The Boss?. Laryngorhinootologie 2018; 97: S231-S278
  • 66 Schuler PJ. et al. Robot-assisted head and neck surgery. HNO 2021; 69: 131-139
  • 67 Moon AS. et al. Robotic Surgery in Gynecology. Surg Clin North Am 2020; 100: 445-460
  • 68 Mikhail D. et al. Urologic Robotic Surgery. Surg Clin North Am 2020; 100: 361-378
  • 69 Park YM. et al. The First Human Trial of Transoral Robotic Surgery Using a Single-Port Robotic System in the Treatment of Laryngo-Pharyngeal Cancer. Ann Surg Oncol 2019; 26: 4472-4480
  • 70 Mendelsohn AH, Lawson G. Single-port transoral robotic surgery hypopharyngectomy. Head Neck. 2021
  • 71 Orosco RK. et al. Transoral supraglottic laryngectomy using a next-generation single-port robotic surgical system. Head Neck. 2019; 41: 2143-2147
  • 72 Hasskamp P. et al. First use of a new retractor in transoral robotic surgery (TORS). Eur Arch Otorhinolaryngol 2016; 273: 1913-1917
  • 73 Lang S. et al. A european multicenter study evaluating the flex robotic system in transoral robotic surgery. Laryngoscope 2017; 127: 391-395
  • 74 Hussain T. et al. The Flex robotic system compared to transoral laser microsurgery for the resection of supraglottic carcinomas: first results and preliminary oncologic outcomes. Eur Arch Otorhinolaryngol 2020; 277: 917-924
  • 75 Mattheis S. et al. Transoral resection of supraglottic laryngeal tumors with the Flex Robotic System. HNO. 2020
  • 76 Blanco RG. et al. Transoral robotic surgery of the vocal cord. J Laparoendosc Adv Surg Tech A 2011; 21: 157-159
  • 77 Kayhan FT, Kaya KH, Sayin I. Transoral robotic cordectomy for early glottic carcinoma. Ann Otol Rhinol Laryngol 2012; 121: 497-502
  • 78 Lallemant B. et al. Transoral robotic surgery for the treatment of T1-T2 carcinoma of the larynx: preliminary study. Laryngoscope 2013; 123: 2485-2490
  • 79 Canis M. et al. Transoral laser microsurgery for T1a glottic cancer: review of 404 cases. Head Neck 2015; 37: 889-895
  • 80 Canis M. et al. Transoral laser microsurgery in treatment of pT2 and pT3 glottic laryngeal squamous cell carcinoma – results of 391 patients. Head Neck 2014; 36: 859-866
  • 81 Canis M. et al. Results of 226 patients with T3 laryngeal carcinoma after treatment with transoral laser microsurgery. Head Neck 2014; 36: 652-659
  • 82 Kassam AB. et al. The Operating Room of the Future Versus the Future of the Operating Room. Otolaryngol Clin North Am 2017; 50: 655-671
  • 83 Mattheis S. et al. First Use of a New Robotic Endoscope Guiding System in Endoscopic Orbital Decompression. Ear Nose Throat J 2019; 145561319885803
  • 84 Friedrich DT. et al. An Innovate Robotic Endoscope Guidance System for Transnasal Sinus and Skull Base Surgery: Proof of Concept. J Neurol Surg B Skull Base 2017; 78: 466-472
  • 85 Kristin J. et al. Development of a new endoscope holder for head and neck surgery – from the technical design concept to implementation. Eur Arch Otorhinolaryngol 2015; 272: 1239-1244
  • 86 Marinho MM. et al. SmartArm: Integration and validation of a versatile surgical robotic system for constrained workspaces. Int J Med Robot 2020; 16: e2053
  • 87 Swaney PJ. et al. Endonasal Skull Base Tumor Removal Using Concentric Tube Continuum Robots: A Phantom Study. J Neurol Surg B Skull Base 2015; 76: 145-149
  • 88 Gilbert H. et al. A robot for transnasal surgery featuring needle-sized tentacle-like arms. Expert Rev Med Devices 2014; 11: 5-7
  • 89 Kratchman LB. et al. Force Perception Thresholds in Cochlear Implantation Surgery. Audiol Neurootol 2016; 21: 244-249
  • 90 Riojas KE, Labadie RF. Robotic Ear Surgery. Otolaryngol Clin North Am 2020; 53: 1065-1075
  • 91 Labadie RF. et al. Minimally invasive image-guided cochlear implantation surgery: first report of clinical implementation. Laryngoscope 2014; 124: 1915-1922
  • 92 Yoo MH. et al. A cadaver study of mastoidectomy using an image-guided human-robot collaborative control system. Laryngoscope Investig Otolaryngol 2017; 2: 208-214
  • 93 Rothbaum DL. et al. Robot-assisted stapedotomy: micropick fenestration of the stapes footplate. Otolaryngol Head Neck Surg 2002; 127: 417-426
  • 94 Liu WP. et al. Cadaveric feasibility study of da Vinci Si-assisted cochlear implant with augmented visual navigation for otologic surgery. JAMA Otolaryngol Head Neck Surg 2014; 140: 208-214
  • 95 Hofer M. et al. A surgical micromanipulator in ear surgery: potential and comparison to freehand preparation. HNO 2012; 60: 109-116
  • 96 Yasin R. et al. Steerable Robot-assisted Micromanipulation in the Middle Ear: Preliminary Feasibility Evaluation. Otol Neurotol 2017; 38: 290-295
  • 97 Vittoria S. et al. Robot-based assistance in middle ear surgery and cochlear implantation: first clinical report. Eur Arch Otorhinolaryngol 2021; 278: 77-85
  • 98 Daoudi H. et al. Robot-assisted Cochlear Implant Electrode Array Insertion in Adults: A Comparative Study With Manual Insertion. Otol Neurotol 2021; 42: e438-e444
  • 99 Dillon NP. et al. Cadaveric Testing of Robot-Assisted Access to the Internal Auditory Canal for Vestibular Schwannoma Removal. Otol Neurotol 2017; 38: 441-447
  • 100 Caversaccio M. et al. Robotic middle ear access for cochlear implantation: First in man. PLoS One 2019; 14: e0220543
  • 101 Bray F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424
  • 102 Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer 2018; 18: 269-282
  • 103 Mahal BA. et al. Incidence and Demographic Burden of HPV-Associated Oropharyngeal Head and Neck Cancers in the United States. Cancer Epidemiol Biomarkers Prev 2019; 28: 1660-1667
  • 104 Marur S, Forastiere AA. Head and Neck Squamous Cell Carcinoma: Update on Epidemiology, Diagnosis, and Treatment. Mayo Clin Proc 2016; 91: 386-396
  • 105 Wittekindt C. et al. Increasing Incidence rates of Oropharyngeal Squamous Cell Carcinoma in Germany and Significance of Disease Burden Attributed to Human Papillomavirus. Cancer Prev Res (Phila) 2019; 12: 375-382
  • 106 Wuerdemann N. et al. Risk Factors for Overall Survival Outcome in Surgically Treated Human Papillomavirus-Negative and Positive Patients with Oropharyngeal Cancer. Oncol Res Treat 2017; 40: 320-327
  • 107 O’Sullivan B. et al. Outcomes of HPV-related oropharyngeal cancer patients treated by radiotherapy alone using altered fractionation. Radiother Oncol 2012; 103: 49-56
  • 108 O’Sullivan B. et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol 2016; 17: 440-451
  • 109 Haughey BH, Sinha P. Prognostic factors and survival unique to surgically treated p16+oropharyngeal cancer. Laryngoscope 2012; 122: S13-S33
  • 110 Cohen MA. et al. Transoral robotic surgery and human papillomavirus status: Oncologic results. Head Neck 2011; 33: 573-580
  • 111 Moore EJ. et al. Transoral robotic surgery for oropharyngeal carcinoma: Surgical margins and oncologic outcomes. Head Neck 2018; 40: 747-755
  • 112 Machtay M. et al. Factors associated with severe late toxicity after concurrent chemoradiation for locally advanced head and neck cancer: an RTOG analysis. J Clin Oncol 2008; 26: 3582-3589
  • 113 Garden AS. et al. Disease-control rates following intensity-modulated radiation therapy for small primary oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2007; 67: 438-444
  • 114 Chen MM, Holsinger FC. Morbidity and Mortality Associated With Robotic Head and Neck Surgery: An Inquiry of the Food and Drug Administration Manufacturer and User Facility Device Experience Database. JAMA Otolaryngol Head Neck Surg 2016; 142: 405-406
  • 115 Chia SH, Gross ND, Richmon JD. Surgeon experience and complications with Transoral Robotic Surgery (TORS). Otolaryngol Head Neck Surg 2013; 149: 885-892
  • 116 Pollei TR. et al. Analysis of postoperative bleeding and risk factors in transoral surgery of the oropharynx. JAMA Otolaryngol Head Neck Surg 2013; 139: 1212-1218
  • 117 Weinstein GS. et al. Transoral robotic surgery: a multicenter study to assess feasibility, safety, and surgical margins. Laryngoscope 2012; 122: 1701-1707
  • 118 Laccourreye O. et al. Postoperative hemorrhage after transoral oropharyngectomy for cancer of the lateral oropharynx. Ann Otol Rhinol Laryngol 2015; 124: 361-367
  • 119 Asher SA. et al. Hemorrhage after transoral robotic-assisted surgery. Otolaryngol Head Neck Surg 2013; 149: 112-117
  • 120 Lorincz BB. et al. Functional outcomes, feasibility, and safety of resection of transoral robotic surgery: single-institution series of 35 consecutive cases of transoral robotic surgery for oropharyngeal squamous cell carcinoma. Head Neck 2015; 37: 1618-1624
  • 121 Moore EJ. et al. Long-term functional and oncologic results of transoral robotic surgery for oropharyngeal squamous cell carcinoma. Mayo Clin Proc 2012; 87: 219-225
  • 122 Vergez S. et al. Initial multi-institutional experience with transoral robotic surgery. Otolaryngol Head Neck Surg 2012; 147: 475-481
  • 123 Bollig CA. et al. Prophylactic arterial ligation following transoral robotic surgery: A systematic review and meta-analysis. Head Neck 2020; 42: 739-746
  • 124 Sethi RKV, Chen MM, Malloy KM. Complications of Transoral Robotic Surgery. Otolaryngol Clin North Am 2020; 53: 1109-1115
  • 125 Kubik M. et al. Effect of transcervical arterial ligation on the severity of postoperative hemorrhage after transoral robotic surgery. Head Neck 2017; 39: 1510-1515
  • 126 Hockstein NG, Weinstein GS, O’Malley B W. Maintenance of hemostasis in transoral robotic surgery. ORL J Otorhinolaryngol Relat Spec 2005; 67: 220-224
  • 127 Goepfert RP. et al. Symptom burden as a driver of decisional regret in long-term oropharyngeal carcinoma survivors. Head Neck 2017; 39: 2151-2158
  • 128 Aubry K. et al. Morbidity and mortality revue of the French group of transoral robotic surgery: a multicentric study. J Robot Surg 2016; 10: 63-67
  • 129 Albergotti WG. et al. A prospective evaluation of short-term dysphagia after transoral robotic surgery for squamous cell carcinoma of the oropharynx. Cancer 2017; 123: 3132-3140
  • 130 Choby GW. et al. Transoral robotic surgery alone for oropharyngeal cancer: quality-of-life outcomes. JAMA Otolaryngol Head Neck Surg 2015; 141: 499-504
  • 131 Leonhardt FD. et al. Transoral robotic surgery for oropharyngeal carcinoma and its impact on patient-reported quality of life and function. Head Neck 2012; 34: 146-154
  • 132 More YI. et al. Functional swallowing outcomes following transoral robotic surgery vs primary chemoradiotherapy in patients with advanced-stage oropharynx and supraglottis cancers. JAMA Otolaryngol Head Neck Surg 2013; 139: 43-48
  • 133 Park YM. et al. The long-term oncological and functional outcomes of transoral robotic surgery in patients with hypopharyngeal cancer. Oral Oncol 2017; 71: 138-143
  • 134 Genden EM. et al. Transoral robotic resection and reconstruction for head and neck cancer. Laryngoscope 2011; 121: 1668-1674
  • 135 Ryan WR. et al. Oncologic outcomes of human papillomavirus-associated oropharynx carcinoma treated with surgery alone: A 12-institution study of 344 patients. Cancer. 2021
  • 136 Liederbach E. et al. The national landscape of human papillomavirus-associated oropharynx squamous cell carcinoma. Int J Cancer 2017; 140: 504-512
  • 137 Ford SE. et al. Transoral robotic versus open surgical approaches to oropharyngeal squamous cell carcinoma by human papillomavirus status. Otolaryngol Head Neck Surg 2014; 151: 606-611
  • 138 Mahmoud O. et al. Transoral robotic surgery for oropharyngeal squamous cell carcinoma in the era of human papillomavirus. Head Neck 2018; 40: 710-721
  • 139 Jefferson GD, Frey H. Open Versus Robotic Surgery for Oropharyngeal Cancer. Otolaryngol Clin North Am 2020; 53: 995-1003
  • 140 Sload R. et al. The Role of Transoral Robotic Surgery in the Management of HPV Negative Oropharyngeal Squamous Cell Carcinoma. Curr Oncol Rep 2016; 18: 53
  • 141 Biron VL. et al. Transoral robotic surgery with radial forearm free flap reconstruction: case control analysis. J Otolaryngol Head Neck Surg 2017; 46: 20
  • 142 Kwan BYM. et al. Transoral robotic surgery for head and neck malignancies: Imaging features in presurgical workup. Head Neck 2019; 41: 4018-4025
  • 143 Gun R. et al. Transoral Surgical Anatomy and Clinical Considerations of Lateral Oropharyngeal Wall, Parapharyngeal Space, and Tongue Base. Otolaryngol Head Neck Surg 2016; 154: 480-485
  • 144 Dziegielewski PT. et al. The mandibulotomy: friend or foe? Safety outcomes and literature review. Laryngoscope 2009; 119: 2369-2375
  • 145 Dziegielewski PT. et al. The lip-splitting mandibulotomy: aesthetic and functional outcomes. Oral Oncol 2010; 46: 612-617
  • 146 White H. et al. Salvage surgery for recurrent cancers of the oropharynx: comparing TORS with standard open surgical approaches. JAMA Otolaryngol Head Neck Surg 2013; 139: 773-778
  • 147 Lee SY. et al. Comparison of oncologic and functional outcomes after transoral robotic lateral oropharyngectomy versus conventional surgery for T1 to T3 tonsillar cancer. Head Neck 2014; 36: 1138-1145
  • 148 Cracchiolo JR. et al. Increase in primary surgical treatment of T1 and T2 oropharyngeal squamous cell carcinoma and rates of adverse pathologic features: National Cancer Data Base. Cancer 2016; 122: 1523-1532
  • 149 Parsons JT. et al. Squamous cell carcinoma of the oropharynx: surgery, radiation therapy, or both. Cancer 2002; 94: 2967-2980
  • 150 Steiner W. et al. Transoral laser microsurgery for squamous cell carcinoma of the base of the tongue. Arch Otolaryngol Head Neck Surg 2003; 129: 36-43
  • 151 Chen AY. et al. Changes in treatment of advanced oropharyngeal cancer, 1985-2001. Laryngoscope 2007; 117: 16-21
  • 152 Nichols AC. et al. Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): an open-label, phase 2, randomised trial. Lancet Oncol 2019; 20: 1349-1359
  • 153 Sinha P. et al. Survival for HPV-positive oropharyngeal squamous cell carcinoma with surgical versus non-surgical treatment approach: A systematic review and meta-analysis. Oral Oncol 2018; 86: 121-131
  • 154 Wang MB. et al. HPV-Positive Oropharyngeal Carcinoma: A Systematic Review of Treatment and Prognosis. Otolaryngol Head Neck Surg 2015; 153: 758-769
  • 155 Baudelet M. et al. Very late xerostomia, dysphagia, and neck fibrosis after head and neck radiotherapy. Head Neck 2019; 41: 3594-3603
  • 156 Yeh DH. et al. Transoral robotic surgery vs. radiotherapy for management of oropharyngeal squamous cell carcinoma – A systematic review of the literature. Eur J Surg Oncol 2015; 41: 1603-1614
  • 157 Setton J. et al. A multi-institution pooled analysis of gastrostomy tube dependence in patients with oropharyngeal cancer treated with definitive intensity-modulated radiotherapy. Cancer 2015; 121: 294-301
  • 158 Chen AM. et al. Comparison of functional outcomes and quality of life between transoral surgery and definitive chemoradiotherapy for oropharyngeal cancer. Head Neck 2015; 37: 381-385
  • 159 Doescher J, Veit JA, Hoffmann TK. The 8th edition of the AJCC Cancer Staging Manual : Updates in otorhinolaryngology, head and neck surgery. HNO 2017; 65: 956-961
  • 160 Huang SH. et al. Primary surgery versus (chemo)radiotherapy in oropharyngeal cancer: the radiation oncologist’s and medical oncologist’s perspectives. Curr Opin Otolaryngol Head Neck Surg 2015; 23: 139-147
  • 161 Lazarus CL. et al. Prospective instrumental evaluation of swallowing, tongue function, and QOL measures following transoral robotic surgery alone without adjuvant therapy. Head Neck 2019; 41: 322-328
  • 162 Huang SH. et al. Refining American Joint Committee on Cancer/Union for International Cancer Control TNM stage and prognostic groups for human papillomavirus-related oropharyngeal carcinomas. J Clin Oncol 2015; 33: 836-845
  • 163 Spector ME. et al. Patterns of nodal metastasis and prognosis in human papillomavirus-positive oropharyngeal squamous cell carcinoma. Head Neck 2014; 36: 1233-1240
  • 164 Lewis JS. et al. Extracapsular extension is a poor predictor of disease recurrence in surgically treated oropharyngeal squamous cell carcinoma. Mod Pathol 2011; 24: 1413-1420
  • 165 Sinha P. et al. High metastatic node number, not extracapsular spread or N-classification is a node-related prognosticator in transorally-resected, neck-dissected p16-positive oropharynx cancer. Oral Oncol 2015; 51: 514-520
  • 166 Maxwell JH. et al. Extracapsular spread in head and neck carcinoma: impact of site and human papillomavirus status. Cancer 2013; 119: 3302-3308
  • 167 Shevach J. et al. Extracapsular extension is associated with worse distant control and progression-free survival in patients with lymph node-positive human papillomavirus-related oropharyngeal carcinoma. Oral Oncol 2017; 74: 56-61
  • 168 Kompelli AR. et al. Prognostic Impact of High-Risk Pathologic Features in HPV-Related Oropharyngeal Squamous Cell Carcinoma and Tobacco Use. Otolaryngol Head Neck Surg 2019; 160: 855-861
  • 169 Bauer E. et al. Extranodal extension is a strong prognosticator in HPV-positive oropharyngeal squamous cell carcinoma. Laryngoscope 2020; 130: 939-945
  • 170 Freitag J. et al. Extracapsular extension of neck nodes and absence of human papillomavirus 16-DNA are predictors of impaired survival in p16-positive oropharyngeal squamous cell carcinoma. Cancer 2020; 126: 1856-1872
  • 171 Swisher-McClure S. et al. A Phase 2 Trial of Alternative Volumes of Oropharyngeal Irradiation for De-intensification (AVOID): Omission of the Resected Primary Tumor Bed After Transoral Robotic Surgery for Human Papilloma Virus-Related Squamous Cell Carcinoma of the Oropharynx. Int J Radiat Oncol Biol Phys 2020; 106: 725-732
  • 172 Ma DJ. et al. Phase II Evaluation of Aggressive Dose De-Escalation for Adjuvant Chemoradiotherapy in Human Papillomavirus-Associated Oropharynx Squamous Cell Carcinoma. J Clin Oncol 2019; 37: 1909-1918
  • 173 Ferris RL. et al. Transoral robotic surgical resection followed by randomization to low- or standard-dose IMRT in resectable p16+locally advanced oropharynx cancer: A trial of the ECOG-ACRIN Cancer Research Group (E3311). Journal of Clinical Oncology. 2020 38.
  • 174 Waltonen JD. et al. Metastatic carcinoma of the neck of unknown primary origin: evolution and efficacy of the modern workup. Arch Otolaryngol Head Neck Surg 2009; 135: 1024-1029
  • 175 Strojan P. et al. Contemporary management of lymph node metastases from an unknown primary to the neck: II. a review of therapeutic options. Head Neck 2013; 35 p 286-293
  • 176 Schroeder L. et al. Human papillomavirus as prognostic marker with rising prevalence in neck squamous cell carcinoma of unknown primary: A retrospective multicentre study. Eur J Cancer 2017; 74: 73-81
  • 177 Stenmark MH. et al. Influence of human papillomavirus on the clinical presentation of oropharyngeal carcinoma in the United States. Laryngoscope 2017; 127: 2270-2278
  • 178 Madani I. et al. Intensity-modulated radiotherapy for cervical lymph node metastases from unknown primary cancer. Int J Radiat Oncol Biol Phys 2008; 71: 1158-1166
  • 179 Dong MJ. et al. Role of fluorodeoxyglucose-PET versus fluorodeoxyglucose-PET/computed tomography in detection of unknown primary tumor: a meta-analysis of the literature. Nucl Med Commun 2008; 29: 791-802
  • 180 Zhu L, Wang N. 18F-fluorodeoxyglucose positron emission tomography-computed tomography as a diagnostic tool in patients with cervical nodal metastases of unknown primary site: a meta-analysis. Surg Oncol 2013; 22: 190-194
  • 181 Cianchetti M. et al. Diagnostic evaluation of squamous cell carcinoma metastatic to cervical lymph nodes from an unknown head and neck primary site. Laryngoscope 2009; 119: 2348-2354
  • 182 Fu TS. et al. The role of transoral robotic surgery, transoral laser microsurgery, and lingual tonsillectomy in the identification of head and neck squamous cell carcinoma of unknown primary origin: a systematic review. J Otolaryngol Head Neck Surg 2016; 45: 28
  • 183 Farooq S. et al. Transoral tongue base mucosectomy for the identification of the primary site in the work-up of cancers of unknown origin: Systematic review and meta-analysis. Oral Oncol 2019; 91: 97-106
  • 184 Di Maio P. et al. Role of palatine tonsillectomy in the diagnostic workup of head and neck squamous cell carcinoma of unknown primary origin: A systematic review and meta-analysis. Head Neck 2019; 41: 1112-1121
  • 185 Waltonen JD. et al. Tonsillectomy vs. deep tonsil biopsies in detecting occult tonsil tumors. Laryngoscope 2009; 119: 102-106
  • 186 Karni RJ. et al. Transoral laser microsurgery: a new approach for unknown primaries of the head and neck. Laryngoscope 2011; 121: 1194-1201
  • 187 Mehta V. et al. A new paradigm for the diagnosis and management of unknown primary tumors of the head and neck: a role for transoral robotic surgery. Laryngoscope 2013; 123: 146-151
  • 188 de Almeida JR. Role of Transoral Robotic Surgery in the Work-up of the Unknown Primary. Otolaryngol Clin North Am 2020; 53: 965-980
  • 189 Geltzeiler M. et al. Transoral robotic surgery for management of cervical unknown primary squamous cell carcinoma: Updates on efficacy, surgical technique and margin status. Oral Oncol 2017; 66: 9-13
  • 190 Meccariello G. et al. The emerging role of trans-oral robotic surgery for the detection of the primary tumour site in patients with head-neck unknown primary cancers: A meta-analysis. Auris Nasus Larynx 2019; 46: 663-671
  • 191 Grewal AS. et al. Pharyngeal-sparing radiation for head and neck carcinoma of unknown primary following TORS assisted work-up. Laryngoscope 2020; 130: 691-697
  • 192 Ozbay I. et al. One-year quality of life and functional outcomes of transoral robotic surgery for carcinoma of unknown primary. Head Neck 2017; 39: 1596-1602
  • 193 Bradley TD, Floras JS. Obstructive sleep apnoea and its cardiovascular consequences. Lancet 2009; 373: 82-93
  • 194 McEvoy RD. et al. CPAP for Prevention of Cardiovascular Events in Obstructive Sleep Apnea. N Engl J Med 2016; 375: 919-931
  • 195 Kovatch KJ, Ali SA, Hoff PT. The Rise of Upper Airway Stimulation in the Era of Transoral Robotic Surgery for Obstructive Sleep Apnea. Otolaryngol Clin North Am 2020; 53: 1017-1029
  • 196 Hoff PT, D’Agostino MA, Thaler ER. Transoral robotic surgery in benign diseases including obstructive sleep apnea: Safety and feasibility. Laryngoscope 2015; 125: 1249-1253
  • 197 Lin HS. et al. Transoral robotic surgery for treatment of obstructive sleep apnea: factors predicting surgical response. Laryngoscope 2015; 125: 1013-1020
  • 198 Lechien JR. et al. Surgical, clinical, and functional outcomes of transoral robotic surgery used in sleep surgery for obstructive sleep apnea syndrome: A systematic review and meta-analysis. Head Neck 2021; 43: 2216-2239
  • 199 Paker M. et al. Long-term swallowing performance following transoral robotic surgery for obstructive sleep apnea. Laryngoscope 2019; 129: 422-428
  • 200 Hanna J. et al. Is robotic surgery an option for early T-stage laryngeal cancer? Early nationwide results. Laryngoscope 2020; 130: 1195-1201
  • 201 Lechien JR. et al. Surgical, clinical and functional outcomes of transoral robotic surgery for supraglottic laryngeal cancers: A systematic review. Oral Oncol 2020; 109: 104848
  • 202 Karabulut B. et al. Comparison of functional and oncological treatment outcomes after transoral robotic surgery and open surgery for supraglottic laryngeal cancer. J Laryngol Otol 2018; 132: 832-836
  • 203 Hans S. et al. Surgical, Oncological, and Functional Outcomes of Transoral Robotic Supraglottic Laryngectomy. Laryngoscope 2021; 131: 1060-1065
  • 204 Ansarin M. et al. Transoral robotic surgery vs transoral laser microsurgery for resection of supraglottic cancer: a pilot surgery. Int J Med Robot 2014; 10: 107-112
  • 205 De Virgilio A. et al. How to optimize laryngeal and hypopharyngeal exposure in transoral robotic surgery. Auris Nasus Larynx 2013; 40: 312-319
  • 206 Harris AT. et al. Transoral laser surgery for laryngeal carcinoma: has Steiner achieved a genuine paradigm shift in oncological surgery?. Ann R Coll Surg Engl 2018; 100: 2-5
  • 207 Kayhan FT, Koc AK, Erdim I. Oncological outcomes of early glottic carcinoma treated with transoral robotic surgery. Auris Nasus Larynx 2019; 46: 285-293
  • 208 Takes RP. et al. Current trends in initial management of hypopharyngeal cancer: the declining use of open surgery. Head Neck 2012; 34: 270-281
  • 209 De Virgilio A. et al. The Emerging Role of Robotic Surgery among Minimally Invasive Surgical Approaches in the Treatment of Hypopharyngeal Carcinoma: Systematic Review and Meta-Analysis. J Clin Med. 2019 8.
  • 210 Weiss BG. et al. Transoral laser microsurgery for treatment for hypopharyngeal cancer in 211 patients. Head Neck 2017; 39: 1631-1638
  • 211 Kuo CL, Lee TL, Chu PY. Conservation surgery for hypopharyngeal cancer: changing paradigm from open to endoscopic. Acta Otolaryngol 2013; 133: 1096-1103
  • 212 Wang CC. et al. Transoral robotic surgery for early T classification hypopharyngeal cancer. Head Neck 2016; 38: 857-862
  • 213 Mazerolle P. et al. Oncological and functional outcomes of trans-oral robotic surgery for pyriform sinus carcinoma: A French GETTEC group study. Oral Oncol 2018; 86: 165-170
  • 214 Rudert HH, Hoft S. Transoral carbon-dioxide laser resection of hypopharyngeal carcinoma. Eur Arch Otorhinolaryngol 2003; 260: 198-206
  • 215 Vilaseca I. et al. CO2 laser surgery: a larynx preservation alternative for selected hypopharyngeal carcinomas. Head Neck 2004; 26: 953-959
  • 216 Suarez C. et al. Laser surgery for early to moderately advanced glottic, supraglottic, and hypopharyngeal cancers. Head Neck 2012; 34: 1028-1035
  • 217 Chan JY. et al. Transoral robotic surgery of the parapharyngeal space: a case series and systematic review. Head Neck 2015; 37: 293-298
  • 218 Douglas JE, Wen CZ, Rassekh CH. Robotic Management of Salivary Glands. Otolaryngol Clin North Am 2020; 53: 1051-1064
  • 219 De Virgilio A. et al. Trans-oral robotic surgery in the management of parapharyngeal space tumors: A systematic review. Oral Oncol 2020; 103: 104581
  • 220 Sukato DC. et al. Robotic versus conventional neck dissection: A systematic review and meta-analysis. Laryngoscope 2019; 129: 1587-1596
  • 221 Kim WS. et al. Learning curve for robot-assisted neck dissection in head and neck cancer: a 3-year prospective case study and analysis. JAMA Otolaryngol Head Neck Surg 2014; 140: 1191-1197
  • 222 Godse NR, Zhu TS, Duvvuri U. Robotic Neck Dissection. Otolaryngol Clin North Am 2020; 53: 1041-1049
  • 223 Miccoli P. et al. Minimally invasive video-assisted thyroidectomy: multiinstitutional experience. World J Surg 2002; 26: 972-975
  • 224 Holsinger FC, Chung WY. Robotic thyroidectomy. Otolaryngol Clin North Am 2014; 47: 373-378
  • 225 Kandil E. et al. Robotic Thyroidectomy Versus Nonrobotic Approaches: A Meta-Analysis Examining Surgical Outcomes. Surg Innov 2016; 23: 317-325
  • 226 Russell JO. et al. Remote-Access Thyroidectomy: A Multi-Institutional North American Experience with Transaxillary, Robotic Facelift, and Transoral Endoscopic Vestibular Approaches. J Am Coll Surg 2019; 228: 516-522
  • 227 Singh RP. et al. Robot-assisted excision of the submandibular gland by a postauricular facelift approach: comparison with the conventional transcervical approach. Br J Oral Maxillofac Surg 2017; 55: 1030-1034
  • 228 Lee HS. et al. Robot-assisted versus endoscopic submandibular gland resection via retroauricular approach: a prospective nonrandomized study. Br J Oral Maxillofac Surg 2014; 52: 179-184
  • 229 Murbe D. et al. Tremor in otosurgery: influence of physical strain on hand steadiness. Otol Neurotol 2001; 22: 672-677
  • 230 Torres R. et al. Atraumatic Insertion of a Cochlear Implant Pre-Curved Electrode Array by a Robot-Automated Alignment with the Coiling Direction of the Scala Tympani. Audiol Neurootol 2021; 1-8
  • 231 Jia H. et al. Robot-Assisted Electrode Array Insertion Becomes Available in Pediatric Cochlear Implant Recipients: First Report and an Intra-Individual Study. Front Surg 2021; 8: 695728
  • 232 Caversaccio M. et al. Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Otolaryngol 2017; 137: 447-454