Hamostaseologie 2022; 42(04): 230-238
DOI: 10.1055/a-1661-0240
Review Article

Pulmonary Hypertension and COVID-19

Laura Castiglione
1   Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
,
Michal Droppa
1   Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
› Author Affiliations

Abstract

Coronavirus disease 2019 (COVID-19) is a primary respiratory infectious disease, which can result in pulmonary and cardiovascular complications. From its first appearance in the city of Wuhan (China), the infection spread worldwide, leading to its declaration as a pandemic on March 11, 2020. Clinical research on SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) suggests that the virus may determine changes in the pulmonary hemodynamics through mechanisms of endothelial dysfunction, vascular leak, thrombotic microangiopathy, and venous thromboembolism that are similar to those leading to pulmonary hypertension (PH). Current available studies report echocardiographic signs of PH in approximately 12 to 13% of hospitalized patients with COVID-19. Those with chronic pulmonary obstructive disease, congestive heart failure, pulmonary embolism, and prior PH are at increased risk to develop or worsen PH. Evidence of PH seems to be associated with increased disease severity and poor outcome. Because of the importance of the pulmonary hemodynamics in the pathophysiology of COVID-19, there is growing interest in exploring the potential therapeutical benefits of inhaled vasodilators in patients with COVID-19. Treatment with inhaled nitric oxide and prostacyclin has shown encouraging results through improvement of systemic oxygenation, reduction of systolic pulmonary arterial pressure, and prevention of right ventricular failure; however, data from randomized control trials are still required.

Zusammenfassung

COVID-19 ist eine respiratorische Infektionskrankheit, die zu pulmologischen und kardiologischen Komplikationen führen kann. Seit dem ersten Auftreten in Wuhan (China), breitete sich die Virusinfektion weltweit aus, bis zur Einstufung als Pandemie am 11. März 2020. SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) beeinträchtigt die Lungenhämodynamik durch verschiedene Mechanismen, wie endotheliale Dysfunktion, vaskuläres Leck, thrombotische Mikroangiopathie und Lungenarterienembolie. Diese sind pathophysiologisch ähnlich zu denen, die zur pulmonalen Hypertonie (PH) führen. In den aktuellen Studien finden sich Hinweise auf eine PH in 12-13% von hospitalisierten Patienten mit COVID-19. Vorbestehende chronische obstruktive Lungenerkrankungen, Herzinsuffizienz, Lungenarterienembolie und pulmonale Hypertonie sind relevante Risikofaktoren für die Entwicklung oder Verschlechterung einer PH im Rahmen der viralen Infektion. Anderseits korreliert die PH mit einem schwereren Krankheitsbild und einer schlechteren Prognose. In Hinblick auf die Beteiligung des pulmonalen Kreislaufs in der Pathophysiologie von COVID-19, besteht ein wachsendes Interesse an einem potentiellen therapeutischen Nutzen von inhalativen Vasodilatatoren. Obwohl die Therapien mit inhalativem Stickstoffmonoxid und Prostacyclin ermutigenden Ergebnisse gezeigt hatten (Verbesserung der systemischen Oxygenierung, Senkung des systolischen pulmonalen Drucks und Vorbeugung der Rechtsherzinsuffizienz), ist eine stärkere Evidenz von randomisierten kontrollierten Studien erforderlich.



Publication History

Received: 25 June 2021

Accepted: 05 October 2021

Article published online:
21 December 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zhu N, Zhang D, Wang W. et al; China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382 (08) 727-733
  • 2 Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 2020; 324 (08) 782-793
  • 3 Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol 2020; 5 (07) 831-840
  • 4 Potus F, Mai V, Lebret M. et al. Novel insights on the pulmonary vascular consequences of COVID-19. Am J Physiol Lung Cell Mol Physiol 2020; 319 (02) L277-L288
  • 5 Galiè N, Humbert M, Vachiery JL. et al; ESC Scientific Document Group. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2016; 37 (01) 67-119
  • 6 Simonneau G, Gatzoulis MA, Adatia I. et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013; 62 (25, Suppl): D34-D41
  • 7 Guignabert C, Tu L, Girerd B. et al. New molecular targets of pulmonary vascular remodeling in pulmonary arterial hypertension: importance of endothelial communication. Chest 2015; 147 (02) 529-537
  • 8 Deng Q, Hu B, Zhang Y. et al. Suspected myocardial injury in patients with COVID-19: evidence from front-line clinical observation in Wuhan, China. Int J Cardiol 2020; 311: 116-121
  • 9 Pagnesi M, Baldetti L, Beneduce A. et al. Pulmonary hypertension and right ventricular involvement in hospitalised patients with COVID-19. Heart 2020; 106 (17) 1324-1331
  • 10 Caravita S, Baratto C, Di Marco F. et al. Haemodynamic characteristics of COVID-19 patients with acute respiratory distress syndrome requiring mechanical ventilation. An invasive assessment using right heart catheterization. Eur J Heart Fail 2020; 22 (12) 2228-2237
  • 11 Mandler D, Lichtblau M, Ulrich S. The course of COVID-19 in a 55-year-old patient diagnosed with severe idiopathic pulmonary arterial hypertension. Pulm Circ 2020; 10 (03) 2045894020936659
  • 12 Zamanian RT, Pollack Jr CV, Gentile MA. et al. Outpatient inhaled nitric oxide in a patient with vasoreactive idiopathic pulmonary arterial hypertension and COVID-19 infection. Am J Respir Crit Care Med 2020; 202 (01) 130-132
  • 13 Ackermann M, Verleden SE, Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 2020; 383 (02) 120-128
  • 14 Buja LM, Wolf D, Zhao B. et al. The emerging spectrum of cardiopulmonary pathology of the coronavirus disease 2019 (COVID-19): Report of 3 autopsies from Houston, Texas, and review of autopsy findings from other United States cities. Cardiovasc Pathol 2020; 48: 107233
  • 15 Mueller KAL, Langnau C, Günter M. et al. Numbers and phenotype of non-classical CD14dimCD16+ monocytes are predictors of adverse clinical outcome in patients with coronary artery disease and severe SARS-CoV-2 infection. Cardiovasc Res 2021; 117 (01) 224-239
  • 16 Zaid Y, Puhm F, Allaeys I. et al. Platelets can associate with SARS-Cov-2 RNA and are hyperactivated in COVID-19. Circ Res 2020; 127 (11) 1404-1418
  • 17 Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020; 135 (23) 2033-2040
  • 18 Langnau C, Rohlfing A-K, Gekeler S. et al. Platelet activation and plasma levels of furin are associated with prognosis of patients with coronary artery disease and COVID-19. Arterioscler Thromb Vasc Biol 2021; 41 (06) 2080-2096
  • 19 Klok FA, Kruip MJHA, van der Meer NJM. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145-147
  • 20 Scudiero F, Silverio A, Di Maio M. et al; Cov-IT Network. Pulmonary embolism in COVID-19 patients: prevalence, predictors and clinical outcome. Thromb Res 2021; 198: 34-39
  • 21 Bompard F, Monnier H, Saab I. et al. Pulmonary embolism in patients with COVID-19 pneumonia. Eur Respir J 2020; 56 (01) 2001365
  • 22 Léonard-Lorant I, Delabranche X, Séverac F. et al. Acute pulmonary embolism in patients with COVID-19 at CT angiography and relationship to d-dimer levels. Radiology 2020; 296 (03) E189-E191
  • 23 Poyiadji N, Cormier P, Patel PY. et al. Acute pulmonary embolism and COVID-19. Radiology 2020; 297 (03) E335-E338
  • 24 Konstantinides SV, Meyer G, Becattini C. et al; ESC Scientific Document Group. 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J 2020; 41 (04) 543-603
  • 25 Vieillard-Baron A, Schmitt JM, Augarde R. et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med 2001; 29 (08) 1551-1555
  • 26 Archer SL, Sharp WW, Weir EK. Differentiating COVID-19 pneumonia from acute respiratory distress syndrome and high altitude pulmonary edema: therapeutic implications. Circulation 2020; 142 (02) 101-104
  • 27 Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D. COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med 2020; 201 (10) 1299-1300
  • 28 Guan WJ, Ni ZY, Hu Y. et al; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382 (18) 1708-1720
  • 29 Richard C, Warszawski J, Anguel N. et al; French Pulmonary Artery Catheter Study Group. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2003; 290 (20) 2713-2720
  • 30 Li Y, Li H, Zhu S. et al. Prognostic value of right ventricular longitudinal strain in patients with COVID-19. JACC Cardiovasc Imaging 2020; 13 (11) 2287-2299
  • 31 Rath D, Petersen-Uribe Á, Avdiu A. et al. Impaired cardiac function is associated with mortality in patients with acute COVID-19 infection. Clin Res Cardiol 2020; 109 (12) 1491-1499
  • 32 Gaston B, Drazen JM, Loscalzo J, Stamler JS. The biology of nitrogen oxides in the airways. Am J Respir Crit Care Med 1994; 149 (2, Pt 1): 538-551
  • 33 Galiè N, Ghofrani HA, Torbicki A. et al; Sildenafil Use in Pulmonary Arterial Hypertension (SUPER) Study Group. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 2005; 353 (20) 2148-2157
  • 34 Reinert JP, Reinert NJ. The role of phosphodiesterase-5 inhibitors in COVID-19: an exploration of literature from similar pathologies. J Intensive Care Med 2021; 36 (01) 3-8
  • 35 Rossaint R, Falke KJ, López F, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 1993; 328 (06) 399-405
  • 36 Adhikari NKJ, Dellinger RP, Lundin S. et al. Inhaled nitric oxide does not reduce mortality in patients with acute respiratory distress syndrome regardless of severity: systematic review and meta-analysis. Crit Care Med 2014; 42 (02) 404-412
  • 37 Gebistorf F, Karam O, Wetterslev J, Afshari A. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev 2016; 2016 (06) CD002787
  • 38 Taylor RW, Zimmerman JL, Dellinger RP. et al; Inhaled Nitric Oxide in ARDS Study Group. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 2004; 291 (13) 1603-1609
  • 39 Afshari A, Brok J, Møller AM, Wetterslev J. Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children: a systematic review with meta-analysis and trial sequential analysis. Anesth Analg 2011; 112 (06) 1411-1421
  • 40 Feng WX, Yang Y, Wen J, Liu YX, Liu L, Feng C. Implication of inhaled nitric oxide for the treatment of critically ill COVID-19 patients with pulmonary hypertension. ESC Heart Fail 2021; 8 (01) 714-718
  • 41 Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol 2008; 93 (01) 141-147
  • 42 Franco V, Bradley EA, Badagliacca R. et al. Pulmonary vasodilators: beyond the bounds of pulmonary arterial hypertension therapy in COVID-19. Pulm Circ 2020; 10 (04) 2045894020970369
  • 43 van Heerden PV, Barden A, Michalopoulos N, Bulsara MK, Roberts BL. Dose-response to inhaled aerosolized prostacyclin for hypoxemia due to ARDS. Chest 2000; 117 (03) 819-827
  • 44 Domenighetti G, Stricker H, Waldispuehl B. Nebulized prostacyclin (PGI2) in acute respiratory distress syndrome: impact of primary (pulmonary injury) and secondary (extrapulmonary injury) disease on gas exchange response. Crit Care Med 2001; 29 (01) 57-62
  • 45 Fuller BM, Mohr NM, Skrupky L, Fowler S, Kollef MH, Carpenter CR. The use of inhaled prostaglandins in patients with ARDS: a systematic review and meta-analysis. Chest 2015; 147 (06) 1510-1522
  • 46 Royston D. Inhalational agents for pulmonary hypertension. Lancet 1993; 342 (8877): 941-942
  • 47 Sonti R, Pike CW, Cobb N. Responsiveness of inhaled epoprostenol in respiratory failure due to COVID-19. J Intensive Care Med 2021; 36 (03) 327-333
  • 48 Moezinia CJ, Ji-Xu A, Azari A, Horlick S, Denton C, Stratton R. Iloprost for COVID-19-related vasculopathy. Lancet Rheumatol 2020; 2 (10) e582-e583
  • 49 Sanghavi DK, Titus A, Caulfield TR, David Freeman W. Endotheliitis, endothelin, and endothelin receptor blockers in COVID-19. Med Hypotheses 2021; 150: 110564
  • 50 Badagliacca R, Sciomer S, Petrosillo N. Endothelin receptor antagonists for pulmonary arterial hypertension and COVID-19: Friend or foe?. J Heart Lung Transplant 2020; 39 (07) 729-730
  • 51 Abraham D. Role of endothelin in lung fibrosis. Eur Respir Rev 2008; 17 (109) 145-150