Subscribe to RSS
DOI: 10.1055/a-1677-7644
Gentherapie bei angeborenen Defekten der Immunität

ZUSAMMENFASSUNG
Seit 50 Jahren werden angeborene Defekte der Immunität erfolgreich durch eine allogene hämatopoetische Stammzelltransplantation behandelt. Neben verschiedenen Faktoren, wie z. B. Grunderkrankungen und Komorbiditäten, ist die geeignete Spenderverfügbarkeit von Bedeutung. Die Spender-gegen-Empfänger-Erkrankung ist gerade im HLA-nicht-angepassten Setting eine wesentliche Ursache für Morbidität und Mortalität. Seit über 30 Jahren ist man bestrebt, für diese seltenen Erkrankungen gentherapeutische Konzepte zu entwickeln. Der schwere kombinierte Immundefekt, die chronisch-septische Granulomatose und das Wiskott-Aldrich-Syndom zählen zu den ersten genetischen Erkrankungen, die mittels viraler Vektoren durch ein Genadditionsverfahren behandelt werden konnten. Lehren aus diesen Studien konnten auch für eine Reihe nicht-immunologischer Erkrankungen gezogen werden. Überschattet wurden die initial erfolgversprechenden Behandlungsergebnisse mit dem häufigen Auftreten von Leukämien. Modifikationen viraler Vektoren durch zahlreiche Sicherheitsmechanismen sind nun Bestandteil moderner Gentherapiestudien, sodass mittlerweile diese Plattform für eine Reihe weiterer Erkrankung zur Verfügung steht.
Publication History
Article published online:
25 February 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG,
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 O’Reilly RJ. Robert Alan Good, MD, PhD. Biol Blood Marrow Transplant. 2003; 09: 608-609
- 2 Booth C, Veys P. T cell depletion in paediatric stem cell transplantation. Clin Exp Immunol 2013; 172: 139-147
- 3 Ferrari G, Thrasher AJ, Aiuti A. Gene therapy using haematopoietic stem and progenitor cells. Nat Rev Genet 2021; 22: 216-234
- 4 Bousfiha A, Jeddane L, Picard C. et al Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. Journal of clinical immunology 2020; 40: 66-81
- 5 Gennery AR, Albert MH, Slatter MA. et al Hematopoietic Stem Cell Transplantation for Primary Immunodeficiencies. Front Pediatr 2019; 07: 445
- 6 Lankester AC, Albert MH, Booth C. et al EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transplant 2021; 56 (09) 2052-2062
- 7 Fischer A, Notarangelo LD, Neven B. et al Severe combined immunodeficiencies and related disorders. Nature reviews Disease primers 2015; 01: 15061
- 8 Gaspar HB, Cooray S, Gilmour KC. et al Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Science translational medicine 2011; 03: 97 ra80
- 9 Pai SY, Logan BR, Griffith LM. et al Transplantation outcomes for severe combined immunodeficiency, 2000–2009. The New England journal of medicine 2014; 371: 434-446
- 10 Currier R, Puck JM. SCID newborn screening: What we’ve learned. The Journal of allergy and clinical immunology 2021; 147: 417-426
- 11 Gungor T, Chiesa R. Cellular Therapies in Chronic Granulomatous Disease. Front Pediatr 2020; 08: 327
- 12 Albert MH, Freeman AF. Wiskott-Aldrich Syndrome (WAS) and Dedicator of Cytokinesis 8- (DOCK8) Deficiency. Front Pediatr 2019; 07: 451
- 13 Blaese RM, Culver KW, Miller AD. et al T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 1995; 270: 475-480
- 14 Bordignon C, Notarangelo LD, Nobili N. et al Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science 1995; 270: 470-475
- 15 Aiuti A, Vai S, Mortellaro A. et al Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nature medicine 2002; 08: 423-425
- 16 Hacein-Bey-Abina S, Hauer J, Lim A. et al Efficacy of gene therapy for X-linked severe combined immunodeficiency. The New England journal of medicine 2010; 363: 355-364
- 17 Hacein-Bey-Abina S, Le Deist F, Carlier F. et al Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. The New England journal of medicine 2002; 346: 1185-1193
- 18 Howe SJ, Mansour MR, Schwarzwaelder K. et al Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. The Journal of clinical investigation 2008; 118: 3143-3150
- 19 Gaspar HB, Cooray S, Gilmour KC. et al Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency. Science translational medicine 2011; 03: 97ra79
- 20 Braun CJ, Boztug K, Paruzynski A. et al Gene therapy for Wiskott-Aldrich syndrome-long-term efficacy and genotoxicity. Science translational medicine 2014; 06: 227ra233
- 21 Stein S, Ott MG, Schultze-Strasser S. et al Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nature medicine 2010; 16: 198-204
- 22 Fischer A, Hacein-Bey-Abina S. Gene therapy for severe combined immunodeficiencies and beyond. J Exp Med 2020; 217 (02) e20190607
- 23 Houghton BC, Booth C. Gene Therapy for Primary Immunodeficiency. Hemasphere 2021; 05: e509
- 24 Kohn DB, Booth C, Shaw KL. et al Autologous Ex Vivo Lentiviral Gene Therapy for Adenosine Deaminase Deficiency. The New England journal of medicine 2021; 384: 2002-2013
- 25 Kohn DB, Booth C, Kang EM. et al Lentiviral gene therapy for X-linked chronic granulomatous disease. Nature medicine 2020; 26: 200-206
- 26 Ferrua F, Cicalese MP, Galimberti S. et al Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase ½ clinical study. Lancet Haematol 2019; 06: e239-e253
- 27 De Ravin SS, Wu X, Moir S. et al Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Science translational medicine 2016; 08: 335ra357
- 28 Hacein-Bey Abina S, Gaspar HB, Blondeau J. et al Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. Jama 2015; 313: 1550-1563
- 29 Hacein-Bey-Abina S, Pai SY, Gaspar HB. et al A modified gamma-retrovirus vector for X-linked severe combined immunodeficiency. The New England journal of medicine 2014; 371: 1407-1417
- 30 Rai R, Thrasher AJ, Cavazza A. Gene Editing for the Treatment of Primary Immunodeficiency Diseases. Human gene therapy 2021; 32: 43-51
- 31 Genovese P, Schiroli G, Escobar G. et al Targeted genome editing in human repopulating haematopoietic stem cells. Nature 2014; 510: 235-240
- 32 Rai R, Romito M, Rivers E. et al Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott-Aldrich Syndrome. Nature communications 2020; 11: 4034
- 33 Brault J, Liu TQ, Bello EAB. et al CRISPR-targeted MAGT1 insertion restores XMEN patient hematopoietic stem cells and lymphocytes. Blood 2021
- 34 Panchal N, Ghosh S, Booth C. T cell gene therapy to treat immunodeficiency. Br J Haematol 2021; 192: 433-443
- 35 Onodera M, Ariga T, Kawamura N. et al Successful peripheral T-lymphocyte-directed gene transfer for a patient with severe combined immune deficiency caused by adenosine deaminase deficiency. Blood 1998; 91: 30-36
- 36 Biasco L, Scala S, Basso Ricci L. et al In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Science translational medicine 2015; 07: 273ra213
- 37 Romero Z, Torres S, Cobo M. et al A tissue-specific, activation-inducible, lentiviral vector regulated by human CD40L proximal promoter sequences. Gene therapy 2011; 18: 364-371
- 38 Hubbard N, Hagin D, Sommer K. et al Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome. Blood 2016; 127: 2513-2522
- 39 Passerini L, Rossi Mel E, Sartirana C. et al CD4(+) T cells from IPEX patients convert into functional and stable regulatory T cells by FOXP3 gene transfer. Science translational medicine 2013; 05: 215ra174
- 40 Passerini L, Bacchetta R. Forkhead-Box-P3 Gene Transfer in Human CD4(+) T Conventional Cells for the Generation of Stable and Efficient Regulatory T Cells, Suitable for Immune Modulatory Therapy. Frontiers in immunology 2017; 08: 1282
- 41 Panchal N, Houghton B, Diez B. et al Transfer of gene-corrected T cells corrects humoral and cytotoxic defects in patients with X-linked lymphoproliferative disease. The Journal of allergy and clinical immunology 2018; 142: 235-245 e236
- 42 Ghosh S, Carmo M, Calero-Garcia M. et al T-cell gene therapy for perforin deficiency corrects cytotoxicity defects and prevents hemophagocytic lymphohistiocytosis manifestations. The Journal of allergy and clinical immunology 2018; 142: 904-913 e903
- 43 Soheili T, Riviere J, Ricciardelli I. et al Gene-corrected human Munc13-4-deficient CD8 + T cells can efficiently restrict EBV-driven lymphoproliferation in immunodeficient mice. Blood 2016; 128: 2859-2862
- 44 Dettmer V, Bloom K, Gross M. et al Retroviral UNC13D Gene Transfer Restores Cytotoxic Activity of T Cells Derived from Familial Hemophagocytic Lymphohistiocytosis Type 3 Patients In Vitro. Human gene therapy 2019; 30: 975-984