Angewandte Nuklearmedizin 2022; 45(04): 273-277
DOI: 10.1055/a-1712-6095
Nuklearmedizinische Hirnbildgebung
Übersicht

Tau-PET Bildgebung der Bewegungsstörungen

Tau-PET imaging in movement disorders
Leonie Beyer
1   Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
,
Matthias Brendel
1   Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
2   German Center for Neurodegenerative Diseases (DZNE), Munich
3   Munich Cluster for Systems Neurology (SyNergy), Munich
› Author Affiliations

Zusammenfassung

Innerhalb der Bewegungsstörungen bilden die Tauopathien eine heterogene Gruppe neurodegenerativer Erkrankungen ab, zu denen die Progressive supranukläre Blickparese (PSP) und die kortikobasale Degeneration (CBD) zählen. Seit mehr als 10 Jahren werden tau-spezifische Radiotracer zur Verwendung mittels Positronen-Emissions-Tomografie (PET) entwickelt. Während Tau-PET-Radioliganden der ersten Generation nur einen moderaten Nutzen bei der Detektion der Bewegungsstörungen mit Tau Pathologie belegen konnten, zeigten weiterentwickelte Tau-PET-Radioliganden ein größeres Potenzial für die Differenzialdiagnostik. Zukünftig könnte die Tau-PET bei Bewegungsstörungen zum Screening bei gegen Tau gerichteten Therapiestudien dienen.

Abstract

Within movement disorders, tauopathies form a heterogeneous group of neurodegenerative diseases, which include progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). For more than 10 years, tau-specific radiotracers have been developed for use with positron emission tomography (PET). While first-generation tau-PET radioligands only showed a moderate benefit in the detection of movement disorders with tau pathology, more advanced tau-PET radioligands showed greater potential for differential diagnostics. In the future, tau-PET could serve as a screening for anti-tau therapy studies in movement disorders.



Publication History

Article published online:
02 December 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Levin J, Kurz A, Arzberger T. et al. The Differential Diagnosis and Treatment of Atypical Parkinsonism. Dtsch Arztebl Int 2016; 113: 61-9
  • 2 Mukaetova-Ladinska EB, Harrington CR, Roth M. et al. Biochemical and anatomical redistribution of tau protein in Alzheimer's disease. Am J Pathol 1993; 143: 565-78
  • 3 Zhao Q, Liu M, Ha L. et al. Quantitative (18)F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients. Front Neurol 2019; 10: 486
  • 4 Lemoine L, Gillberg PG, Svedberg M. et al. Comparative binding properties of the tau PET tracers THK5117, THK5351, PBB3, and T807 in postmortem Alzheimer brains. Alzheimers Res Ther 2017; 9: 96
  • 5 Vermeiren C, Motte P, Viot D. et al. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases. Mov Disord 2018; 33: 273-281
  • 6 Ng KP, Pascoal TA, Mathotaarachchi S. et al. Monoamine oxidase B inhibitor, selegiline, reduces (18)F-THK5351 uptake in the human brain. Alzheimers Res Ther 2017; 9: 25
  • 7 Leuzy A, Chiotis K, Lemoine L. et al. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Molecular psychiatry 2019;
  • 8 Aguero C, Dhaynaut M, Normandin MD. et al. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun 2019; 7: 37
  • 9 Kroth H, Oden F, Molette J. et al. Discovery and preclinical characterization of [(18)F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer's disease and other tauopathies. Eur J Nucl Med Mol Imaging 2019;
  • 10 Honer M, Gobbi L, Knust H. et al. Preclinical Evaluation of (18)F-RO6958948, (11)C-RO6931643, and (11)C-RO6924963 as Novel PET Radiotracers for Imaging Tau Aggregates in Alzheimer Disease. J Nucl Med 2018; 59: 675-681
  • 11 Zhang W, Tarutani A, Newell KL. et al. Novel tau filament fold in corticobasal degeneration. Nature 2020; 580: 283-287
  • 12 Lowe VJ, Curran G, Fang P. et al. and Murray ME. An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun 2016; 4: 58
  • 13 Sander K, Lashley T, Gami P. et al. Characterization of tau positron emission tomography tracer [(18)F]AV-1451 binding to postmortem tissue in Alzheimer's disease, primary tauopathies, and other dementias. Alzheimers Dement 2016; 12: 1116-1124
  • 14 Soleimani-Meigooni DN, Iaccarino L, La Joie R. et al. 18F-flortaucipir PET to autopsy comparisons in Alzheimer's disease and other neurodegenerative diseases. Brain 2020;
  • 15 Josephs K, Tosakulwong N, Weigand S. et al. Relationship between (18)F-flortaucipir uptake and histologic lesion types in 4-repeat tauopathies. J Nucl Med 2021;
  • 16 Schonhaut DR, McMillan CT, Spina S. et al. (18) F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: A multicenter study. Annals of neurology 2017; 82: 622-634
  • 17 Coakeley S, Cho SS, Koshimori Y. et al. Positron emission tomography imaging of tau pathology in progressive supranuclear palsy. J Cereb Blood Flow Metab 2017; 37: 3150-3160
  • 18 Smith R, Schöll M, Widner H. et al. In vivo retention of (18)F-AV-1451 in corticobasal syndrome. Neurology 2017; 89: 845-853
  • 19 Brendel M, Barthel H, van Eimeren T. et al. Assessment of 18F-PI-2620 as a Biomarker in Progressive Supranuclear Palsy. JAMA Neurol 2020; 77: 1408-1419
  • 20 Palleis C, Brendel M, Finze A. et al. Cortical [(18) F]PI-2620 Binding Differentiates Corticobasal Syndrome Subtypes. Mov Disord 2021; 36: 2104-2115
  • 21 Song M, Beyer L, Kaiser L. et al. Binding characteristics of [(18)F]PI-2620 distinguish the clinically predicted tau isoform in different tauopathies by PET. J Cereb Blood Flow Metab 2021; 41: 2957-2972
  • 22 Song M, Scheifele M, Barthel H. et al. Feasibility of short imaging protocols for [(18)F]PI-2620 tau-PET in progressive supranuclear palsy. Eur J Nucl Med Mol Imaging 2021; 48: 3872-3885
  • 23 Tezuka T, Takahata K, Seki M. et al. Evaluation of [(18)F]PI-2620, a second-generation selective tau tracer, for assessing four-repeat tauopathies. Brain Commun 2021; 3: fcab190
  • 24 Franzmeier N, Brendel M, Beyer L. et al. Tau deposition patterns are associated with functional connectivity in primary tauopathies. Nat Commun 2022; 13: 1362
  • 25 Tagai K, Ono M, Kubota M. et al. High-Contrast In Vivo Imaging of Tau Pathologies in Alzheimer's and Non-Alzheimer's Disease Tauopathies. Neuron 2021; 109: 42-58 e8
  • 26 Li L, Liu FT, Li M. et al. Clinical Utility of (18) F-APN-1607 Tau PET Imaging in Patients with Progressive Supranuclear Palsy. Mov Disord 2021; 36: 2314-2323
  • 27 Shi Y, Murzin AG, Falcon B. et al. Cryo-EM structures of tau filaments from Alzheimer's disease with PET ligand APN-1607. Acta neuropathologica 2021; 141: 697-708
  • 28 Lindberg A, Knight AC, Sohn D. et al. Radiosynthesis, In Vitro and In Vivo Evaluation of [(18)F]CBD-2115 as a First-in-Class Radiotracer for Imaging 4R-Tauopathies. ACS Chem Neurosci 2021; 12: 596-602
  • 29 Salloway S, Sperling R. Phase 3 trials of solanezumab and bapineuzumab for Alzheimer's disease. N Engl J Med 2014; 370: 1460