Subscribe to RSS
DOI: 10.1055/a-1712-6140
Update FDG-PET in der Demenzdiagnostik
Update FDG-PET for the etiological diagnosis of cognitive impairmentZusammenfassung
Dieser Artikel soll ein Update zu unserem Übersichtsartikel „FDG-PET in der Differenzialdiagnostik neurodegenerativer Demenzerkrankungen“ aus 2016 geben. Seitdem wurden zahlreiche neue, technisch hochwertige Studien mit großen Patientenkollektiven sowie systematische Übersichtsarbeiten internationaler Expertengruppen veröffentlicht. Außer den aktualisierten Best-Practice-Empfehlungen dieser Expertengruppen sollen in diesem Update einige ausgewählte neue Entwicklungen vorgestellt und diskutiert werden, die aus unserer Sicht für den Einsatz der FDG-PET des Gehirns in der klinischen Routineversorgung von Patienten mit kognitiven Einschränkungen besonders relevant sind, oder in naher Zukunft besonders relevant werden könnten. Dazu gehören neue diagnostische Optionen durch die verbesserte räumliche Auflösung der klinischen Hirn-PET mit „extraschnellen“ Time-of-Flight Ganzkörper-PET/CT-Systemen und der Einsatz Künstlicher Intelligenz zur automatischen Klassifikation der FDG-PET des Gehirns basierend auf konventionellen Kovarianzanalysen oder Deep Learning mit künstlichen neuronalen Netzen.
Abstract
This article is intended to provide an update on our 2016 review article „FDG-PET in the differential diagnosis of neurodegenerative dementia“. Since then, numerous high-quality studies with large patient samples have been published and systematically reviewed by international expert groups. This update will present the best-practice recommendations devised by these expert groups. In addition, a few selected developments will be discussed which, in our view, are particularly relevant for FDG-PET of the brain in routine care of patients with cognitive impairment such as new diagnostic options made possible by the considerable improvement of the spatial resolution of clinical brain PET with „extra-fast“ time-of-flight whole-body PET/CT systems or the use of artificial intelligence for the automatic classification of brain FDG-PET images trained by conventional covariance analysis or deep learning with artificial neural networks.
Schlüsselwörter
[18F]Fluorodesoxyglukose - Alzheimer-Krankheit - neurodegenerative Erkrankungen - Differenzialdiagnose - Datenanalyse - Künstliche IntelligenzKeywords
Fluorodeoxyglucose F18 - Alzheimer disease - neurodegenerative diseases - diagnosis, differential - data analysis - artificial intelligencePublication History
Article published online:
02 December 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Aiello LC, Wheeler P. The Expensive-Tissue Hypothesis - the Brain and the Digestive-System in Human and Primate Evolution. Current Anthropology 1995; 36: 199-221
- 2 Mergenthaler P, Lindauer U, Dienel GA. et al. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends in Neurosciences 2013; 36: 587-597
- 3 Huisman MC, van Golen LW, Hoetjes NJ. et al. Cerebral blood flow and glucose metabolism in healthy volunteers measured using a high-resolution PET scanner. EJNMMI Res 2012; 2: 63
- 4 Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism 2001; 21: 1133-1145
- 5 Deitmer JW, Theparambil SM, Ruminot I. et al. Energy Dynamics in the Brain: Contributions of Astrocytes to Metabolism and pH Homeostasis. Front Neurosci 2019; 13: 1301
- 6 van Hall G, Stromstad M, Rasmussen P. et al. Blood lactate is an important energy source for the human brain. Journal of Cerebral Blood Flow and Metabolism 2009; 29: 1121-1129
- 7 Hasselbalch SG, Knudsen GM, Jakobsen J. et al. Brain Metabolism during Short-Term Starvation in Humans. Journal of Cerebral Blood Flow and Metabolism 1994; 14: 125-131
- 8 Hawkins RA, Mans AM, Davis DW. et al. Glucose Availability to Individual Cerebral Structures Is Correlated to Glucose-Metabolism. Journal of Neurochemistry 1983; 40: 1013-1018
- 9 Fairclough SH, Houston K. A metabolic measure of mental effort. Biological Psychology 2004; 66: 177-190
- 10 Kadekaro M, Crane AM, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci U S A 1985; 82: 6010-6013
- 11 Sokoloff L. Energetics of functional activation in neural tissues. Neurochemical Research 1999; 24: 321-329
- 12 Sokoloff L. Sites and Mechanisms of Function-Related Changes in Energy-Metabolism in the Nervous-System. Developmental Neuroscience 1993; 15: 194-206
- 13 Rocher AB, Chapon F, Blaizot X. et al. Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 2003; 20: 1894-1898
- 14 Zimmer ER, Parent MJ, Souza DG. et al. [(18)F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci 2017; 20: 393-395
- 15 Xiang X, Wind K, Wiedemann T. et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci Transl Med 2021; 13: eabe5640
- 16 Reivich M, Kuhl D, Wolf A. et al. Measurement of local cerebral glucose metabolism in man with 18F-2-fluoro-2-deoxy-d-glucose. Acta Neurol Scand Suppl 1977; 64: 190-191
- 17 Mazziotta JC, Phelps ME, Miller J. et al. Tomographic Mapping of Human Cerebral Metabolism - Normal Unstimulated State. Neurology 1981; 31: 503-516
- 18 Kuhl DE, Phelps ME, Hoffman EJ. et al. Initial Clinical Experience with F-18–2-Fluoro-2-Deoxy-D-Glucose for Determination of Local Cerebral Glucose-Utilization by Emission Computed Tomography. Acta Neurologica Scandinavica 1977; 56: 192-193
- 19 Yonekura Y, Benua RS, Brill AB. et al. Increased accumulation of 2-deoxy-2-[18F]Fluoro-D-glucose in liver metastases from colon carcinoma. J Nucl Med 1982; 23: 1133-1137
- 20 Friedland RP, Budinger TF, Ganz E. et al. Regional Cerebral Metabolic Alterations in Dementia of the Alzheimer Type - Positron Emission Tomography with [Fluorodeoxyglucose-F-18. Journal of Computer Assisted Tomography 1983; 7: 590-598
- 21 Alavi A, Reivich M, Ferris S. et al. Regional cerebral glucose metabolism in aging and senile dementia as determined by 18F-deoxyglucose and positron emission tomography. Exp Brain Res 1982; (Suppl. 05) 187-195
- 22 Kapogiannis D, Mattson MP. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's disease (vol 10, pg 187, 2011). Lancet Neurology 2011; 10: 115-115
- 23 Jack CR, Knopman DS, Jagust WJ. et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12: 207-16
- 24 Alavi A, Dann R, Chawluk J. et al. Positron Emission Tomography Imaging of Regional Cerebral Glucose-Metabolism. Seminars in Nuclear Medicine 1986; 16: 2-34
- 25 Klupp E, Forster S, Grimmer T. et al. In Alzheimer's disease, hypometabolism in low-amyloid brain regions may be a functional consequence of pathologies in connected brain regions. Brain Connect 2014; 4: 371-83
- 26 Minoshima S, Mosci K, Cross D. et al. Brain F-18-FDG PET for Clinical Dementia Workup: Differential Diagnosis of Alzheimer's Disease and Other Types of Dementing Disorders. Seminars in Nuclear Medicine 2021; 51: 230-240
- 27 Buchert R, Förster S. FDG-PET in der Differentialdiagnostik neurodegenerativer Demenzerkrankungen. Der Nuklearmediziner 2016; 39: 287-298
- 28 Nobili F, Arbizu J, Bouwman F. et al. European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain (18) F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur J Neurol 2018; 25: 1201-1217
- 29 Agosta F, Altomare D, Festari C. et al. Clinical utility of FDG-PET in amyotrophic lateral sclerosis and Huntington's disease. European Journal of Nuclear Medicine and Molecular Imaging 2018; 45: 1546-1556
- 30 Arbizu J, Festari C, Altomare D. et al. Clinical utility of FDG-PET for the clinical diagnosis in MCI. Eur J Nucl Med Mol Imaging 2018; 45: 1497-1508
- 31 Bouwman F, Orini S, Gandolfo F. et al. Diagnostic utility of FDG-PET in the differential diagnosis between different forms of primary progressive aphasia. Eur J Nucl Med Mol Imaging 2018; 45: 1526-1533
- 32 Drzezga A, Altomare D, Festari C. et al. Diagnostic utility of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) in asymptomatic subjects at increased risk for Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging 2018; 45: 1487-1496
- 33 Nestor PJ, Altomare D, Festari C. et al. Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia. European Journal of Nuclear Medicine and Molecular Imaging 2018; 45: 1509-1525
- 34 Nobili F, Festari C, Altomare D. et al. Automated assessment of FDG-PET for differential diagnosis in patients with neurodegenerative disorders. European Journal of Nuclear Medicine and Molecular Imaging 2018; 45: 1557-1566
- 35 Walker Z, Gandolfo F, Orini S. et al. Clinical utility of FDG PET in Parkinson's disease and atypical parkinsonism associated with dementia. European Journal of Nuclear Medicine and Molecular Imaging 2018; 45: 1534-1545
- 36 Garibotto V, Herholz K, Boccardi M. et al. Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework. Neurobiol Aging 2017; 52: 183-195
- 37 Chetelat G, Arbizu J, Barthel H. et al. Amyloid-PET and (18)F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias. Lancet Neurol 2020; 19: 951-962
- 38 Chetelat G, Arbizu J, Barthel H. et al. Finding our way through the labyrinth of dementia biomarkers. Eur J Nucl Med Mol Imaging 2021; 48: 2320-2324
- 39 Frisoni GB, Bocchetta M, Chetelat G. et al. Imaging markers for Alzheimer disease Which vs how. Neurology 2013; 81: 487-500
- 40 Mijnhout GS, RiphagenHoekstra OS. Update of the FDG PET search strategy. Nucl Med Commun 2004; 25: 1187-1189
- 41 Musiek ES, Chen Y, Korczykowski M. et al. Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer's disease. Alzheimers Dement 2012; 8: 51-59
- 42 Riederer I, Bohn KP, Preibisch C. et al. Alzheimer Disease and Mild Cognitive Impairment: Integrated Pulsed Arterial Spin-Labeling MRI and (18)F-FDG PET. Radiology 2018; 288: 198-206
- 43 Guedj E, Varrone A, Boellaard R. et al. EANM procedure guidelines for brain PET imaging using [(18)F]FDG, version 3. Eur J Nucl Med Mol Imaging 2022; 49: 632-651
- 44 Jellinger KA. Recent update on the heterogeneity of the Alzheimer's disease spectrum. Journal of Neural Transmission 2022; 129: 1-24
- 45 Salat DH, Robinson ME, Miller DR. et al. Neuroimaging of deployment-associated traumatic brain injury (TBI) with a focus on mild TBI (mTBI) since 2009. Brain Inj 2017; 31: 1204-1219
- 46 Townley RA, Botha H, Graff-Radford J. et al. (18)F-FDG PET-CT pattern in idiopathic normal pressure hydrocephalus. Neuroimage Clin 2018; 18: 897-902
- 47 Brendel M, Reinisch V, Kalinowski E. et al. Hypometabolism in Brain of Cognitively Normal Patients with Depressive Symptoms is Accompanied by Atrophy-Related Partial Volume Effects. Current Alzheimer Research 2016; 13: 475-486
- 48 Caroli A, Prestia A, Galluzzi S. et al. Mild cognitive impairment with suspected nonamyloid pathology (SNAP): Prediction of progression. Neurology 2015; 84: 508-515
- 49 Iaccarino L, Sala A, Perani D. et al. Predicting long-term clinical stability in amyloid-positive subjects by FDG-PET. Ann Clin Transl Neurol 2019; 6: 1113-1120
- 50 Ou YN, Xu W, Li JQ. et al. FDG-PET as an independent biomarker for Alzheimer's biological diagnosis: a longitudinal study. Alzheimers Res Ther 2019; 11: 57
- 51 Jack CR, Bennett DA, Blennow K. et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement 2018; 14: 535-562
- 52 Jack CR, Bennett DA, Blennow K. et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 2016; 87: 539-547
- 53 Tan MS, Ji X, Li JQ. et al. Longitudinal trajectories of Alzheimer's ATN biomarkers in elderly persons without dementia. Alzheimers Res Ther 2020; 12: 55
- 54 Silverman DH, Small GW, Chang CY. et al. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA 2001; 286: 2120-2127
- 55 Boyle PA, Yu L, Wilson RS. et al. Person-specific contribution of neuropathologies to cognitive loss in old age. Ann Neurol 2018; 83: 74-83
- 56 Kantarci K, Boeve BF, Przybelski SA. et al. FDG PET metabolic signatures distinguishing prodromal DLB and prodromal AD. Neuroimage Clin 2021; 31: 102754
- 57 Nelson PT, Dickson DW, Trojanowski JQ. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142: 1503-1527
- 58 Crary JF, Trojanowski JQ, Schneider JA. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 2014; 128: 755-766
- 59 Minoshima S, Cross D, Thientunyakit T. et al. (18)F-FDG PET Imaging in Neurodegenerative Dementing Disorders: Insights into Subtype Classification, Emerging Disease Categories, and Mixed Dementia with Copathologies. J Nucl Med 2022; 63: 2S-12S
- 60 Brenowitz WD, Monsell SE, Schmitt FA. et al. Hippocampal sclerosis of aging is a key Alzheimer's disease mimic: clinical-pathologic correlations and comparisons with both alzheimer's disease and non-tauopathic frontotemporal lobar degeneration. J Alzheimers Dis 2014; 39: 691-702
- 61 Nelson PT, Schmitt FA, Lin Y. et al. Hippocampal sclerosis in advanced age: clinical and pathological features. Brain 2011; 134: 1506-1518
- 62 Siadaty MS, Shu J. Proportional odds ratio model for comparison of diagnostic tests in meta-analysis. BMC Med Res Methodol 2004; 4: 27
- 63 Zhang R, Xu XJ, Yu H. et al. Factors Influencing Alzheimer's Disease Risk: Whether and How They are Related to the APOE Genotype . Neuroscience Bulletin 2022; 38: 809-819
- 64 Webster-Cordero F, Gimenez-Llort L. The Challenge of Subjective Cognitive Complaints and Executive Functions in Middle-Aged Adults as a Preclinical Stage of Dementia: A Systematic Review. Geriatrics (Basel) 2022; 7
- 65 Lesman-Segev OH, La Joie R, Iaccarino L. et al. Diagnostic Accuracy of Amyloid versus F-18-Fluorodeoxyglucose Positron Emission Tomography in Autopsy-Confirmed Dementia. Annals of Neurology 2021; 89: 389-401
- 66 Buchert R, Buhmann C, Apostolova I. et al. Nuclear Imaging in the Diagnosis of Clinically Uncertain Parkinsonian Syndromes . Deutsches Arzteblatt International 2019; 116: 747-754
- 67 Jie CVML, Treyer V, Schibli R. et al. Tauvid (TM): The First FDA-Approved PET Tracer for Imaging Tau Pathology in Alzheimer's Disease . Pharmaceuticals 2021; 14: 110
- 68 Barthel H. First Tau PET Tracer Approved: Toward Accurate In Vivo Diagnosis of Alzheimer Disease. J Nucl Med 2020; 61: 1409-1410
- 69 Smailagic N, Vacante M, Hyde C. et al. 1)(8)F-FDG PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI. Cochrane Database Syst Rev 2015; 1: CD010632
- 70 Morbelli S, Garibotto V, Van De Giessen E. et al. A Cochrane review on brain [(1)(8)F]FDG PET in dementia: limitations and future perspectives. Eur J Nucl Med Mol Imaging 2015; 42: 1487-1491
- 71 Frisoni GB, Boccardi M, Barkhof F. et al. Strategic roadmap for an early diagnosis of Alzheimer's disease based on biomarkers. Lancet Neurol 2017; 16: 661-676
- 72 Decision Memo for Positron Emission Tomography (FDG) and Other Neuroimaging Devices for Suspected Dementia (CAG-00088R). 2004 https://www.cms.gov/medicare-coverage-database/view/ncacal-decision-memo.aspx?proposed=N&ncaid=104
- 73 Buchert R, Santer R, Brenner W. et al. Computer simulations suggest that acute correction of hyperglycaemia with an insulin bolus protocol might be useful in brain FDG PET. Nuklearmedizin 2009; 48: 44-54
- 74 Zhang H, Wu P, Ziegler SI. et al. Data-driven identification of intensity normalization region based on longitudinal coherency of (18)F-FDG metabolism in the healthy brain. Neuroimage 2017; 146: 589-599
- 75 Henriksen OM, Holm S, Marner L. et al. Effect of blood glucose and body weight on image quality in brain [F-18]FDG PET imaging. Nuclear Medicine Communications 2020; 41: 1265-1274
- 76 Miceli A, Cossu V, Marini C. et al. 18F-Fluorodeoxyglucose Positron Emission Tomography Tracks the Heterogeneous Brain Susceptibility to the Hyperglycemia-Related Redox Stress. International Journal of Molecular Sciences 2020; 21
- 77 Ishibashi K, Kameyama M, Ishii K. Brain F-18-FDG distribution: which region is most affected by increased plasma glucose levels?. Annals of Nuclear Medicine 2019; 33: 303-304
- 78 Ishibashi K, Kawasaki K, Ishiwata K. et al. Reduced uptake of F-18-FDG and O-15-H2O in Alzheimer's disease-related regions after glucose loading. Journal of Cerebral Blood Flow and Metabolism 2015; 35: 1380-1385
- 79 Ishibashi K, Onishi A, Fujiwara Y. et al. Relationship Between Alzheimer Disease-Like Pattern of F-18-FDG and Fasting Plasma Glucose Levels in Cognitively Normal Volunteers. Journal of Nuclear Medicine 2015; 56: 229-233
- 80 Ishibashi K, Wagatsuma K, Ishiwata K. et al. Alteration of the Regional Cerebral Glucose Metabolism in Healthy Subjects by Glucose Loading. Human Brain Mapping 2016; 37: 2823-2832
- 81 Apostolova I, Lange C, Suppa P. et al. Impact of plasma glucose level on the pattern of brain FDG uptake and the predictive power of FDG PET in mild cognitive impairment. European Journal of Nuclear Medicine and Molecular Imaging 2018; 45: 1417-1422
- 82 Viglianti BL, Wale DJ, Ma T. et al. Effects of plasma glucose levels on regional cerebral 18F-fluorodeoxyglucose uptake: Implications for dementia evaluation with brain PET imaging. Biomed Pharmacother 2019; 112: 108628
- 83 Reesink FE, Garcia DV, Sanchez-Catasus CA. et al. Crossed Cerebellar Diaschisis in Alzheimer's Disease. Curr Alzheimer Res 2018; 15: 1267-1275
- 84 Franceschi AM, Clifton MA, Naser-Tavakolian K. et al. FDG PET/MRI for Visual Detection of Crossed Cerebellar Diaschisis in Patients With Dementia. American Journal of Roentgenology 2021; 216: 165-171
- 85 Provost K, La Joie R, Strom A. et al. Crossed cerebellar diaschisis on (18)F-FDG PET: Frequency across neurodegenerative syndromes and association with (11)C-PIB and (18)F-Flortaucipir. J Cereb Blood Flow Metab 2021; 41: 2329-2343
- 86 NEMA NU 2–2018: Performance Measurements of Positron Emission Tomographs (PET). 2018. National Electrical Manufacturers Association; Rosslyn, VA, USA:
- 87 Badawi RD, Shi HC, Hu PC. et al. First Human Imaging Studies with the EXPLORER Total-Body PET Scanner. Journal of Nuclear Medicine 2019; 60: 299-303
- 88 Cherry SR, Jones T, Karp JS. et al. Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care. Journal of Nuclear Medicine 2018; 59: 3-12
- 89 Karp JS, Viswanath V, Geagan MJ. et al. PennPET Explorer: Design and Preliminary Performance of a Whole-Body Imager. Journal of Nuclear Medicine 2020; 61: 136-143
- 90 Prenosil GA, Sari H, Furstner M. et al. Performance Characteristics of the Biograph Vision Quadra PET/CT System with a Long Axial Field of View Using the NEMA NU 2–2018 Standard. J Nucl Med 2022; 63: 476-484
- 91 Vandenberghe S, Mikhaylova E, D'Hoe E. et al. Recent developments in time-of-flight PET. Ejnmmi Physics 2016; 3
- 92 van Sluis J, de Jong J, Schaar J. et al. Performance Characteristics of the Digital Biograph Vision PET/CT System. J Nucl Med 2019; 60: 1031-1036
- 93 Rausch I, Ruiz A, Valverde-Pascual I. et al. Performance Evaluation of the Vereos PET/CT System According to the NEMA NU2–2012 Standard. Journal of Nuclear Medicine 2019; 60: 561-567
- 94 Hsu DFC, Ilan E, Peterson WT. et al. Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System. Journal of Nuclear Medicine 2017; 58: 1511-1518
- 95 Nguyen NC, Vercher-Conejero JL, Sattar A. et al. Image Quality and Diagnostic Performance of a Digital PET Prototype in Patients with Oncologic Diseases: Initial Experience and Comparison with Analog PET. Journal of Nuclear Medicine 2015; 56: 1378-1385
- 96 Schiller F, Frings L, Thurow J. et al. Limits for Reduction of Acquisition Time and Administered Activity in (18)F-FDG PET Studies of Alzheimer Dementia and Frontotemporal Dementia. J Nucl Med 2019; 60: 1764-1770
- 97 Ozden C, Frings L, Apostolova I. et al. FDG Uptake in the Basal Forebrain as Measured by Digital High-Resolution PET Is a Promising Marker of Basal Forebrain Degeneration in the Lewy Body Disease Spectrum: A Pilot Study. Clin Nucl Med 2020; 45: 261-266
- 98 Speck I, Arndt S, Thurow J. et al. High resolution [F-18]FDG PET of the inferior colliculi in single-sided deafness. Journal of Nuclear Medicine 2019; 60 (supplement 1): abstract 421 . https://jnm.snmjournals.org/content/60/supplement_1/421
- 99 Burdette JH, Minoshima S, Vander Borght T. et al. Alzheimer disease: improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections. Radiology 1996; 198: 837-843
- 100 Lehman VT, Carter RE, Claassen DO. et al. Visual Assessment Versus Quantitative Three-Dimensional Stereotactic Surface Projection Fluorodeoxyglucose Positron Emission Tomography for Detection of Mild Cognitive Impairment and Alzheimer Disease. Clinical Nuclear Medicine 2012; 37: 721-726
- 101 Alexander GE, Moeller JR. Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: A principal component approach to modeling brain function in disease. Human Brain Mapping 1994; 2: 1-16
- 102 Eidelberg D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci 2009; 32: 548-557
- 103 Moeller JR, Strother SC. A regional covariance approach to the analysis of functional patterns in positron emission tomographic data. J Cereb Blood Flow Metab 1991; 11: A121-A135
- 104 Moeller JR, Strother SC, Sidtis JJ. et al. Scaled subprofile model: a statistical approach to the analysis of functional patterns in positron emission tomographic data. J Cereb Blood Flow Metab 1987; 7: 649-58
- 105 Spetsieris P, Ma Y, Peng S. et al. Identification of disease-related spatial covariance patterns using neuroimaging data . J Vis Exp 2013; 76: 50319
- 106 Spetsieris PG, Eidelberg D. Scaled subprofile modeling of resting state imaging data in Parkinson's disease: methodological issues. Neuroimage 2011; 54: 2899-2914
- 107 Taherpour J, Jaber M, Voges B. et al. Predicting the outcome of epilepsy surgery by covariance pattern analysis of ictal perfusion SPECT. J Nucl Med 2021;
- 108 Eckert T, Tang C, Ma Y. et al. Abnormal metabolic networks in atypical parkinsonism. Mov Disord 2008; 23: 727-733
- 109 Eidelberg D, Moeller JR, Dhawan V. et al. The Metabolic Topography of Parkinsonism. Journal of Cerebral Blood Flow and Metabolism 1994; 14: 783-801
- 110 Ma Y, Tang C, Spetsieris PG. et al. Abnormal metabolic network activity in Parkinson's disease: test-retest reproducibility. J Cereb Blood Flow Metab 2007; 27: 597-605
- 111 Niethammer M, Tang CC, Feigin A. et al. A disease-specific metabolic brain network associated with corticobasal degeneration. Brain 2014; 137: 3036-3046
- 112 Tang CC, Poston KL, Eckert T. et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol 2010; 9: 149-158
- 113 Blazhenets G, Ma Y, Sorensen A. et al. Principal Components Analysis of Brain Metabolism Predicts Development of Alzheimer Dementia. J Nucl Med 2019; 60: 837-843
- 114 Blazhenets G, Ma Y, Sorensen A. et al. Predictive Value of (18)F-Florbetapir and (18)F-FDG PET for Conversion from Mild Cognitive Impairment to Alzheimer Dementia. J Nucl Med 2020; 61: 597-603
- 115 Yakushev I, Drzezga A, Habeck C. Metabolic connectivity: methods and applications. Curr Opin Neurol 2017; 30: 677-685
- 116 Buchert R, Krüger J, Gessert N. et al. Deep Learning in der SPECT und PET des Gehirns. Der Nuklearmediziner 2019; 42: 118-132
- 117 Ding Y, Sohn JH, Kawczynski MG. et al. A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using (18)F-FDG PET of the Brain. Radiology 2019; 290: 456-464
- 118 Trojanowski JQ, Vandeerstichele H, Korecka M. et al. Update on the biomarker core of the Alzheimer's Disease Neuroimaging Initiative subjects. Alzheimers & Dementia 2010; 6: 230-238
- 119 Larvie M. Machine Learning in Radiology: Resistance Is Futile. Radiology 2019; 290: 465-466
- 120 Sartor G. The impact of the General Data Protection Regulation (GDPR) on artificial intelligence. 2020 https://www.europarl.europa.eu/RegData/etudes/STUD/2020/641530/EPRS_STU(2020)641530_EN.pdf
- 121 Verwer EE, Golla SSV, Kaalep A. et al. Harmonisation of PET/CT contrast recovery performance for brain studies. Eur J Nucl Med Mol Imaging 2021; 48: 2856-2870
- 122 Boellaard R, Delgado-Bolton R, Oyen WJ. et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 2015; 42: 328-354
- 123 Kaalep A, Sera T, Oyen W. et al. EANM/EARL FDG-PET/CT accreditation - summary results from the first 200 accredited imaging systems. Eur J Nucl Med Mol Imaging 2018; 45: 412-422
- 124 Caminiti SP, Sala A, Presotto L. et al. Validation of FDG-PET datasets of normal controls for the extraction of SPM-based brain metabolism maps. European Journal of Nuclear Medicine and Molecular Imaging 2021; 48: 2486-2499
- 125 International Commission on Radiological Protection. ICRP Publication 73: Radiological Protection and Safety in Medicine. Annals of the ICRP. 1996