Subscribe to RSS
DOI: 10.1055/a-1712-6180
Update nuklearmedizinische Bildgebung von Gehirntumoren und -metastasen
Update nuclear medicine imaging of brain tumours and metastasesZusammenfassung
In der Hirntumordiagnostik hat die PET mit radioaktiv markierten Aminosäuren in den letzten Jahren zunehmend an Bedeutung gewonnen und ist in vielen Zentren bereits als ergänzendes Diagnoseverfahren neben der MRT etabliert. Die Aminosäure-PET bietet wichtige Zusatzinformationen bei der diagnostischen Zuordnung unklarer zerebraler Läsionen und eine verbesserte Darstellung der Tumorausdehnung von zerebralen Gliomen, welche bei der Prognostik und Therapieplanung wichtige Hilfestellung bieten kann. Des Weiteren kann mit der Aminosäure-PET sowohl bei Gliomen als auch bei Hirnmetastasen eine Tumorprogression oder -rezidiv mit hoher Genauigkeit von unspezifischen posttherapeutischen Veränderungen in der MRT differenziert werden sowie Therapieeffekte zuverlässiger und frühzeitiger beurteilt werden.
Abstract
PET using radiolabelled amino acids has gained increasing interest in the diagnostics of brain tumors in the last years and has been established in many neurooncological centers as a complementary diagnostic tool to MRI. Amino acid PET offers important additional information in the diagnosis and prognosis of unclear brain lesions and an improved delineation of tumor extent of cerebral gliomas, which is helpful for therapy planning. Furthermore, amino acid imaging helps to differentiate tumor progression or recurrence from unspecific posttherapeutic changes for both cerebral gliomas and brain metastases and to detect the metabolic response during tumor therapy earlier than with conventional MRI.
Publication History
Article published online:
02 December 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Ostrom QT, Gittleman H, Liao P. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 2014; 16: iv1-63
- 2 Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep 2012; 14: 48-54
- 3 Brandsma D, van den Bent MJ. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 2009; 22: 633-638
- 4 Minniti G, Clarke E, Lanzetta G. et al. Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol 2011; 6: 48
- 5 Galldiks N, Stoffels G, Filss C. et al. The use of dynamic O-(2–18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol 2015; 17: 1293-1300
- 6 Ceccon G, Lohmann P, Stoffels G. et al. Dynamic O-(2–18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro Oncol 2017; 19: 281-288
- 7 Padma MV, Said S, Jacobs M. et al. Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 2003; 64: 227-237
- 8 Yoon JH, Kim JH, Kang WJ. et al. Grading of cerebral glioma with multiparametric MR imaging and 18F-FDG-PET: concordance and accuracy. Eur Radiol 2014; 24: 380-389
- 9 Prieto E, Marti-Climent JM, Dominguez-Prado I. et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med 2011; 52: 865-872
- 10 Albert NL, Weller M, Suchorska B. et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 2016; 18: 1199-1208
- 11 Law I, Albert NL, Arbizu J. et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 2019; 46: 540-557
- 12 Habermeier A, Graf J, Sandhofer BF. et al. System L amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-L-tyrosine (FET). Amino Acids 2015; 47: 335-344
- 13 Vettermann F, Suchorska B, Unterrainer M. et al. Non-invasive prediction of IDH-wildtype genotype in gliomas using dynamic (18)F-FET PET. Eur J Nucl Med Mol Imaging 2019; 46: 2581-2589
- 14 Ginet M, Zaragori T, Marie PY. et al. Integration of dynamic parameters in the analysis of (18)F-FDopa PET imaging improves the prediction of molecular features of gliomas. Eur J Nucl Med Mol Imaging 2020; 47: 1381-1390
- 15 Nomura Y, Asano Y, Shinoda J. et al. Characteristics of time-activity curves obtained from dynamic (11)C-methionine PET in common primary brain tumors. J Neurooncol 2018; 138: 649-658
- 16 Cicone F, Filss CP, Minniti G. et al. Volumetric assessment of recurrent or progressive gliomas: comparison between F-DOPA PET and perfusion-weighted MRI. Eur J Nucl Med Mol Imaging 2015; 42: 905-915
- 17 Bogsrud TV, Londalen A, Brandal P. et al. 18F-Fluciclovine PET/CT in Suspected Residual or Recurrent High-Grade Glioma. Clin Nucl Med 2019; 44: 605-611
- 18 Albano D, Tomasini D, Bonu M. et al. (18)F-Fluciclovine ((18)F-FACBC) PET/CT or PET/MRI in gliomas/glioblastomas. Ann Nucl Med 2020; 34: 81-86
- 19 Michaud L, Beattie BJ, Akhurst T. et al. 18)F-Fluciclovine ((18)F-FACBC. Eur J Nucl Med Mol Imaging 2020; 47: 1353-1367
- 20 Ono M, Oka S, Okudaira H. et al. Comparative evaluation of transport mechanisms of trans-1-amino-3-[(1)(8)F]fluorocyclobutanecarboxylic acid and L-[methyl-(1)(1)C]methionine in human glioma cell lines. Brain Res 2013; 1535: 24-37
- 21 Tsuyuguchi N, Terakawa Y, Uda T. et al. Diagnosis of Brain Tumors Using Amino Acid Transport PET Imaging with (18)F-fluciclovine: A Comparative Study with L-methyl-(11)C-methionine PET Imaging. Asia Ocean J Nucl Med Biol 2017; 5: 85-94
- 22 Swissmedic. Swiss Agency for Therapeutic Products. Journal Swissmedic 2020; 19: 485
- 23 Bundesamt-für-Justiz. AmRadV. 2007 Accessed September 13, 2022 at: https://www.gesetze-im-internet.de/amradv/BJNR005020987.html
- 24 Bundesausschuss G. ASV bei Gehirntumoren. 2021 Accessed September 13, 2022 at: https://www.g-ba.de/beschluesse/5207/
- 25 Hutterer M GN, Hau P, Langen KJ. Pitfalls of [F18]-FET PET in the Diagnostics of Brain Tumors. Der Nuklearmediziner 2015; 38: 1-9
- 26 Herholz K, Holzer T, Bauer B. et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998; 50: 1316-1322
- 27 Rapp M, Heinzel A, Galldiks N. et al. Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med 2013; 54: 229-235
- 28 Galldiks N, Niyazi M, Grosu AL. et al. Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients – a report of the PET/RANO group. Neuro Oncol 2021; 23: 881-893
- 29 Galldiks N, Langen KJ, Albert NL. et al. PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol 2019; 21: 585-595
- 30 Schillaci O, Filippi L, Manni C. et al. Single-photon emission computed tomography/computed tomography in brain tumors. Semin Nucl Med 2007; 37: 34-47
- 31 Hellwig D, Ketter R, Romeike BF. et al. Prospective study of p-[123I]iodo-L-phenylalanine and SPECT for the evaluation of newly diagnosed cerebral lesions: specific confirmation of glioma. Eur J Nucl Med Mol Imaging 2010; 37: 2344-2353
- 32 Langen KJ, Pauleit D, Coenen HH. 3-[(123)I]Iodo-alpha-methyl-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2002; 29: 625-631
- 33 Collet S, Valable S, Constans JM. et al. [(18)F]-fluoro-L-thymidine PET and advanced MRI for preoperative grading of gliomas. Neuroimage Clin 2015; 8: 448-454
- 34 Nikaki A, Angelidis G, Efthimiadou R. et al. (18)F-fluorothymidine PET imaging in gliomas: an update. Ann Nucl Med 2017; 31: 495-505
- 35 Hatakeyama T, Kawai N, Nishiyama Y. et al. 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 2008; 35: 2009-2017
- 36 Nowosielski M, DiFranco MD, Putzer D. et al. An intra-individual comparison of MRI, [18F]-FET and [18F]-FLT PET in patients with high-grade gliomas. PLoS One 2014; 9: e95830
- 37 Calabria FF, Barbarisi M, Gangemi V. et al. Molecular imaging of brain tumors with radiolabeled choline PET. Neurosurg Rev 2018; 41: 67-76
- 38 Ohtani T, Kurihara H, Ishiuchi S. et al. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med 2001; 28: 1664-1670
- 39 Sollini M, Sghedoni R, Erba PA. et al. Diagnostic performances of [18f]fluorocholine positron emission tomography in brain tumors. Q J Nucl Med Mol Imaging 2018; 62: 209-219
- 40 Grech-Sollars M, Ordidge KL, Vaqas B. et al. Imaging and Tissue Biomarkers of Choline Metabolism in Diffuse Adult Glioma: 18F-Fluoromethylcholine PET/CT, Magnetic Resonance Spectroscopy, and Choline Kinase alpha. Cancers (Basel) 2019; 11
- 41 Choudhary G, Langen KJ, Galldiks N. et al. Investigational PET tracers for high-grade gliomas. Q J Nucl Med Mol Imaging 2018; 62: 281-294
- 42 Takenaka S, Asano Y, Shinoda J. et al. Comparison of (11)C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol Med Chir (Tokyo) 2014; 54: 280-289
- 43 Laudicella R, Quartuccio N, Alongi P. et al. F-18-FMISO PET imaging: insights over MRI in patients with glioma (vol 8, pg 3, 2020). Clinical and Translational Imaging 2020; 8: 123-123
- 44 Hirata K, Yamaguchi S, Shiga T. et al. The Roles of Hypoxia Imaging Using (18)F-Fluoromisonidazole Positron Emission Tomography in Glioma Treatment. J Clin Med 2019; 8
- 45 Gerstner ER, Zhang Z, Fink JR. et al. ACRIN 6684: Assessment of Tumor Hypoxia in Newly Diagnosed Glioblastoma Using 18F-FMISO PET and MRI. Clin Cancer Res 2016; 22: 5079-5086
- 46 Kanoto M, Kirii K, Hiraka T. et al. Correlation between hypoxic area in primary brain tumors and WHO grade: differentiation from malignancy using 18F-fluoromisonidazole positron emission tomography. Acta Radiol 2018; 59: 229-235
- 47 Galldiks N, Albert NL, Sommerauer M. et al. PET imaging in patients with meningioma-report of the RANO/PET Group. Neuro Oncol 2017; 19: 1576-1587
- 48 Zinnhardt B, Roncaroli F, Foray C. et al. Imaging of the glioma microenvironment by TSPO PET. Eur J Nucl Med Mol Imaging 2021; 49: 174-185
- 49 Unterrainer M, Fleischmann DF, Diekmann C. et al. Comparison of (18)F-GE-180 and dynamic (18)F-FET PET in high grade glioma: a double-tracer pilot study. Eur J Nucl Med Mol Imaging 2019; 46: 580-590
- 50 Cai L, Kirchleitner SV, Zhao D. et al. Glioblastoma Exhibits Inter-Individual Heterogeneity of TSPO and LAT1 Expression in Neoplastic and Parenchymal Cells. Int J Mol Sci 2020; 21
- 51 Galldiks N, Unterrainer M, Judov N. et al. Photopenic defects on O-(2-[18F]-fluoroethyl)-L-tyrosine PET: clinical relevance in glioma patients. Neuro Oncol 2019; 21: 1331-1338
- 52 Jansen NL, Suchorska B, Wenter V. et al. Prognostic Significance of Dynamic 18F-FET PET in Newly Diagnosed Astrocytic High-Grade Glioma. J Nucl Med 2015; 56: 9-15
- 53 Unterrainer M, Schweisthal F, Suchorska B. et al. Serial 18F-FET PET imaging of primarily 18F-FET-negative glioma - does it make sense?. J Nucl Med 2016;
- 54 Galldiks N, Stoffels G, Ruge MI. et al. Role of O-(2–18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med 2013; 54: 2046-2054
- 55 Kunz M, Albert NL, Unterrainer M. et al. Dynamic 18F-FET PET is a powerful imaging biomarker in gadolinium-negative gliomas. Neuro Oncol 2019; 21: 274-284
- 56 Lopez WO, Cordeiro JG, Albicker U. et al. Correlation of (18)F-fluoroethyl tyrosine positron-emission tomography uptake values and histomorphological findings by stereotactic serial biopsy in newly diagnosed brain tumors using a refined software tool. Onco Targets Ther 2015; 8: 3803-3815
- 57 Mosskin M, Ericson K, Hindmarsh T. et al. Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 1989; 30: 225-232
- 58 Pauleit D, Floeth F, Hamacher K. et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687
- 59 Kracht LW, Miletic H, Busch S. et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 2004; 10: 7163-7170
- 60 Song S, Cheng Y, Ma J. et al. Simultaneous FET-PET and contrast-enhanced MRI based on hybrid PET/MR improves delineation of tumor spatial biodistribution in gliomas: a biopsy validation study. Eur J Nucl Med Mol Imaging 2020;
- 61 Piroth MD, Holy R, Pinkawa M. et al. Prognostic impact of postoperative, pre-irradiation F-18-fluoroethyl-L-tyrosine uptake in glioblastoma patients treated with radiochemotherapy. Radiother Oncol 2011; 99: 218-224
- 62 Suchorska B, Jansen NL, Linn J. et al. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology 2015; 84: 710-719
- 63 Buchmann N, Klasner B, Gempt J. et al. (18)F-Fluoroethyl-l-Thyrosine Positron Emission Tomography to Delineate Tumor Residuals After Glioblastoma Resection: A Comparison with Standard Postoperative Magnetic Resonance Imaging. World Neurosurg 2016; 89: 420-426
- 64 Pirotte BJ, Levivier M, Goldman S. et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery 2009; 64: 471-481
- 65 Ort J, Hamou HA, Kernbach JM. et al. (18)F-FET-PET-guided gross total resection improves overall survival in patients with WHO grade III/IV glioma: moving towards a multimodal imaging-guided resection. J Neurooncol 2021; 155: 71-80
- 66 Filss CP, Schmitz AK, Stoffels G. et al. Flare Phenomenon in O-(2-(18)F-Fluoroethyl)-l-Tyrosine PET After Resection of Gliomas. J Nucl Med 2020; 61: 1294-1299
- 67 Piroth MD, Pinkawa M, Holy R. et al. Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. Results of a prospective phase II study. Strahlenther Onkol 2012; 188: 334-339
- 68 Munck Af Rosenschold P, Law I, Engelholm S. et al. Influence of volumetric modulated arc therapy and FET-PET scanning on treatment outcomes for glioblastoma patients. Radiother Oncol 2019; 130: 149-155
- 69 Louis DN, Perry A, Reifenberger G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131: 803-820
- 70 Louis DN, Perry A, Wesseling P. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021; 23: 1231-1251
- 71 Dunet V, Pomoni A, Hottinger A. et al. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol 2016; 18: 426-434
- 72 Langen KJ, Galldiks N, Hattingen E. et al. Advances in neuro-oncology imaging. Nat Rev Neurol 2017; 13: 279-289
- 73 Verger A, Kas A, Darcourt J. et al. PET Imaging in Neuro-Oncology: An Update and Overview of a Rapidly Growing Area. Cancers (Basel) 2022; 14
- 74 Suchorska B, Giese A, Biczok A. et al. Identification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neuro Oncol 2018; 20: 279-288
- 75 Lohmann P, Meissner AK, Kocher M. et al. Feature-based PET/MRI radiomics in patients with brain tumors. Neurooncol Adv 2020; 2: iv15-iv21
- 76 Smits A, Baumert BG. The Clinical Value of PET with Amino Acid Tracers for Gliomas WHO Grade II. Int J Mol Imaging 2011; 2011: 372509
- 77 Smits A, Westerberg E, Ribom D. Adding 11C-methionine PET to the EORTC prognostic factors in grade 2 gliomas. Eur J Nucl Med Mol Imaging 2008; 35: 65-71
- 78 Kunz M, Thon N, Eigenbrod S. et al. Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol 2011; 13: 307-316
- 79 Wen PY, Macdonald DR, Reardon DA. et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010; 28: 1963-1972
- 80 Galldiks N, Lohmann P, Albert NL. et al. Current status of PET imaging in neuro-oncology. Neurooncol Adv 2019; 1: vdz010
- 81 Basu S, Alavi A. Molecular imaging (PET) of brain tumors. Neuroimaging Clin N Am 2009; 19: 625-646
- 82 Langen KJ, Heinzel A, Lohmann P. et al. Advantages and limitations of amino acid PET for tracking therapy response in glioma patients. Expert Rev Neurother 2020; 20: 137-146
- 83 Galldiks N, Lohmann P, Werner JM. et al. Molecular imaging and advanced MRI findings following immunotherapy in patients with brain tumors. Expert Rev Anticancer Ther 2020; 20: 9-15
- 84 Jansen NL, Suchorska B, Schwarz SB. et al. [18F]fluoroethyltyrosine-positron emission tomography-based therapy monitoring after stereotactic iodine-125 brachytherapy in patients with recurrent high-grade glioma. Mol Imaging 2013; 12: 137-147
- 85 Galldiks N, Kocher M, Ceccon G. et al. Imaging challenges of immunotherapy and targeted therapy in patients with brain metastases: response, progression, and pseudoprogression. Neuro Oncol 2020; 22: 17-30
- 86 Steidl E, Langen KJ, Hmeidan SA. et al. Sequential implementation of DSC-MR perfusion and dynamic [(18)F]FET PET allows efficient differentiation of glioma progression from treatment-related changes. Eur J Nucl Med Mol Imaging 2021; 48: 1956-1965
- 87 Pyka T, Hiob D, Preibisch C. et al. Diagnosis of glioma recurrence using multiparametric dynamic 18F-fluoroethyl-tyrosine PET-MRI. Eur J Radiol 2018; 103: 32-37
- 88 Verburg N, Koopman T, Yaqub MM. et al. Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study. Neuro Oncol 2020; 22: 412-422
- 89 Langen KJ, Weckesser M. Recent advances of PET in the diagnosis of brain tumors. Front Radiat Ther Oncol 1999; 33: 9-22
- 90 Chen W. Clinical applications of PET in brain tumors. J Nucl Med 2007; 48: 1468-1481
- 91 Louis DN, Ohgaki H, Wiestler OD. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97-109