Angewandte Nuklearmedizin 2022; 45(04): 325-344
DOI: 10.1055/a-1712-6205
CME-Fortbildung

FDG-PET-Bildgebung der limbischen Enzephalitis

FDG-PET imaging of limbic encephalitis
Ralph Buchert
,
Sebastian Rauer
,
Philipp T. Meyer

Bei der limbischen Enzephalitis liefert die zerebrale FDG-PET essenzielle Informationen zur Unterstützung von Diagnose, Prognose und Therapiekontrolle. Mit zunehmender Bedeutung der limbischen Enzephalitis als „not to miss“-Diagnose wird der Stellenwert der zerebralen FDG-PET bei dieser Fragestellung weiter steigen. Zudem kommt der FDG-PET-Ganzkörperaufnahme bei Verdacht auf eine paraneoplastische Genese und unauffälligem Tumorscreening in den Routineuntersuchungen eine Schlüsselrolle zu.

Abstract

FDG-PET of the brain provides essential information to support diagnosis, prognosis and therapy monitoring in limbic encephalitis. With increasing attention to limbic encephalitis as „not to miss“ diagnosis, the importance of brain FDG-PET will continue to increase for this indication. Furthermore, whole-body FDG-PET/CT plays a key role in cases of suspected paraneoplastic genesis and unremarkable conventional imaging.

Kernaussagen
  • Der Nachweis eines mesiotemporalen Hypermetabolismus mittels FDG-PET erlaubt bei passender Klinik die Diagnose einer definiten limbischen Enzephalitis auch bei unauffälliger MRT.

  • Die FDG-PET zeigt bei limbischer Enzephalitis einen mesiotemporalen Hypermetabolismus in der akuten/subakuten Phase („inflammatory active State“) und einen mesiotemporalen Hypometabolismus in der postinflammatorischen chronischen Phase („State of Damage“).

  • Ein mesiotemporaler Hypermetabolismus kann bei paraneoplastischer und bei nicht-paraneoplastischer Genese der limbischen Enzephalitis auftreten.

  • Bei Patienten mit Anti-LGI1-Enzephalitis im Stadium der faziobrachialen dystonen Anfälle zeigt die FDG-PET einen stark ausgeprägten Hypermetabolismus in den Basalganglien.

  • Ein Hypometabolismus mit starker Betonung posteriorer Hirnregionen und Beteiligung des visuellen Kortex spricht für eine Anti-NMDAR Enzephalitis, insbesondere bei jungen Frauen.

  • Durch den Nachweis der Normalisierung des zerebralen Glukosestoffwechsels mittels FDG-PET-Verlauf kann ein Therapieerfolg objektiviert werden. Ein unzureichendes Therapieansprechen kann durch Nachweis eines „State of Damage“ dokumentiert werden.

  • Mit PET/MRT-Hybridsystemen können komplementäre Informationen von MRT und FDG-PET bei der limbischen Enzephalitis in einem Untersuchungsgang gewonnen werden, sodass eine Verzögerung der Therapie durch eine separate PET nach einem Normalbefund in der MRT vermieden wird.

  • Die dedizierte FDG-PET des Gehirns und die FDG-PET/CT des Körperstamms zur Tumorsuche können problemlos in einer Sitzung kombiniert werden, wobei die Schwelle für die Indikation zur jeweils ergänzenden Untersuchung bei Enzephalitisverdacht sehr niedrig angesetzt werden sollte.

  • Die zerebrale FDG-PET im Rahmen einer Ganzkörper-PET zur Tumorsuche bei limbischer Enzephalitis sollte als dedizierte Hirnaufnahme nach dem zentrumspezifischen Protokoll erfolgen.



Publication History

Article published online:
02 December 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Dubey D, Pittock SJ, Kelly CR. et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol 2018; 83: 166-177
  • 2 Uy CE, Binks S, Irani SR. Autoimmune encephalitis: clinical spectrum and management. Pract Neurol 2021; 21: 412-423
  • 3 [Anonym]. Fortschritte bei der Autoimmunenzephalitis: spezifische Diagnose, sequenzielle Therapie und Netflix. In: Deutsche Gesellschaft für Neurologie; 2018.
  • 4 Kelley BP, Patel SC, Marin HL. et al. Autoimmune Encephalitis: Pathophysiology and Imaging Review of an Overlooked Diagnosis. Am J Neuroradiol 2017; 38: 1070-1078
  • 5 Abboud H, Probasco JC, Irani S. et al. Autoimmune encephalitis: proposed best practice recommendations for diagnosis and acute management. J Neurol Neurosurg Psychiatry 2021; 92: 757-768
  • 6 Baumgartner A, Rauer S, Hottenrott T. et al. Admission diagnoses of patients later diagnosed with autoimmune encephalitis. J Neurol 2019; 266: 124-132
  • 7 Doss S, Wandinger KP, Hyman BT. et al. High prevalence of NMDA receptor IgA/IgM antibodies in different dementia types. Ann Clin Transl Neurol 2014; 1: 822-832
  • 8 Corsellis JA, Goldberg GJ, Norton AR. „Limbic encephalitis“ and its association with carcinoma. Brain 1968; 91: 481-496
  • 9 Haberlandt E, Bast T, Ebner A. et al. Limbic encephalitis in children and adolescents. Arch Dis Child 2011; 96: 186-191
  • 10 Gultekin SH, Rosenfeld MR, Voltz R. et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain 2000; 123: 1481-1494
  • 11 Bien CG, Schulze-Bonhage A, Deckert M. et al. Limbic encephalitis not associated with neoplasm as a cause of temporal lobe epilepsy. Neurology 2000; 55: 1823-1828
  • 12 Graus F, Escudero D, Oleaga L. et al. Syndrome and outcome of antibody-negative limbic encephalitis. Eur J Neurol 2018; 25: 1011-1016
  • 13 van Sonderen A, Thijs RD, Coenders EC. et al. Anti-LGI1 encephalitis: Clinical syndrome and long-term follow-up. Neurology 2016; 87: 1449-1456
  • 14 Bien CG. Principles of autoimmune and paraneoplastic encephalitis. Nervenarzt 2018; 89: 934-941
  • 15 Dalmau J, Graus F. Antibody-Mediated Encephalitis. N Engl J Med 2018; 378: 840-851
  • 16 Graus F, Titulaer MJ, Balu R. et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016; 15: 391-404
  • 17 Hellwig S, Domschke K, Meyer PT. Update on PET in neurodegenerative and neuroinflammatory disorders manifesting on a behavioural level: imaging for differential diagnosis. Curr Opin Neurol 2019; 32: 548-556
  • 18 Albert ML, Darnell JC, Bender A. et al. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med 1998; 4: 1321-1324
  • 19 Bien CG, Vincent A, Barnett MH. et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 2012; 135: 1622-1638
  • 20 Cellucci T, Van Mater H, Graus F. et al. Clinical approach to the diagnosis of autoimmune encephalitis in the pediatric patient. Neurol Neuroimmunol Neuroinflamm 2020; 7
  • 21 Sun B, Ramberger M, O'Connor KC. et al. The B cell immunobiology that underlies CNS autoantibody-mediated diseases. Nat Rev Neurol 2020; 16: 481-492
  • 22 Troscher AR, Klang A, French M. et al. Selective Limbic Blood-Brain Barrier Breakdown in a Feline Model of Limbic Encephalitis with LGI1 Antibodies. Front Immunol 2017; 8: 1364
  • 23 van Sonderen A, Petit-Pedrol M, Dalmau J. et al. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol 2017; 13: 290-301
  • 24 Kornau HC, Kreye J, Stumpf A. et al. Human Cerebrospinal fluid monoclonal LGI1 autoantibodies increase neuronal excitability. Ann Neurol 2020; 87: 405-418
  • 25 Velasco R, Villagran M, Jove M. et al. Encephalitis Induced by Immune Checkpoint Inhibitors: A Systematic Review. JAMA Neurol 2021; 78: 864-873
  • 26 Binks S, Varley J, Lee W. et al. Distinct HLA associations of LGI1 and CASPR2-antibody diseases. Brain 2018; 141: 2263-2271
  • 27 Dalmau J, Geis C, Graus F. Autoantibodies to Synaptic Receptors and Neuronal Cell Surface Proteins in Autoimmune Diseases of the Central Nervous System. Physiol Rev 2017; 97: 839-887
  • 28 Shir D, Day GS. Deciphering the contributions of neuroinflammation to neurodegeneration: lessons from antibody-mediated encephalitis and coronavirus disease 2019. Curr Opin Neurol 2022; 35: 212-219
  • 29 Kunchok A, McKeon A, Zekeridou A. et al. Autoimmune/Paraneoplastic Encephalitis Antibody Biomarkers: Frequency, Age, and Sex Associations. Mayo Clin Proc 2022; 97: 547-559
  • 30 Budhram A, Leung A, Nicolle MW. et al. Diagnosing autoimmune limbic encephalitis. Can Med Assoc J 2019; 191: E529-E534
  • 31 Kao YC, Lin MI, Weng WC. et al. Neuropsychiatric Disorders Due to Limbic Encephalitis: Immunologic Aspect. Int J Mol Sci 2020; 22
  • 32 Prüß H. Neuroimmunologie: Neues zur limbischen Enzephalitis. Akt Neurol 2013; 40: 127-136
  • 33 Younger DS. Autoimmune Encephalitides. Neurol Clin 2019; 37: 359-381
  • 34 Behrman S, Lennox B. Autoimmune encephalitis in the elderly: who to test and what to test for. Evid Based Ment Health 2019; 22: 172-176
  • 35 Sechi E, Flanagan EP. Diagnosis and Management of Autoimmune Dementia. Curr Treat Options Neurol 2019; 21: 11
  • 36 Darnell RB, Posner JB. A new cause of limbic encephalopathy. Brain 2005; 128: 1745-1746
  • 37 Najjar S, Pearlman D, Zagzag D. et al. Spontaneously resolving seronegative autoimmune limbic encephalitis. Cogn Behav Neurol 2011; 24: 99-105
  • 38 Neurologie DGf. Immunvermittelte Erkrankungen der grauen ZNS-Substanz sowie Neurosarkoidose. AWMF-Registernummer 030/120; 2012
  • 39 Neurologie DGf. Paraneoplastische neurologische Syndrome (S1-Leitlinine mit interdisziplinärer Abstimmung). AWMF-Registernummer 030/064; 2015
  • 40 Rossling R, Pruss H. Apheresis in Autoimmune Encephalitis and Autoimmune Dementia. J Clin Med 2020; 9
  • 41 Finke C, Pruss H, Heine J. et al. Evaluation of Cognitive Deficits and Structural Hippocampal Damage in Encephalitis With Leucine-Rich, Glioma-Inactivated 1 Antibodies. JAMA Neurol 2017; 74: 50-59
  • 42 Thompson J, Bi M, Murchison AG. et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 2018; 141: 348-356
  • 43 Vollmer TL, McCarthy M. Autoimmune encephalitis A more treatable tragedy if diagnosed early. Neurology 2016; 86: 1655-1656
  • 44 Vincent A, Buckley C, Schott JM. et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 2004; 127: 701-712
  • 45 Abboud H, Probasco J, Irani SR. et al. Autoimmune encephalitis: proposed recommendations for symptomatic and long-term management. J Neurol Neurosurg Psychiatry 2021;
  • 46 Kohler J, Hufschmidt A, Hermle L. et al. Limbic Encephalitis - 2 Cases. J Neuroimmunol 1988; 20: 177-178
  • 47 Liu X, Yu T, Zhao X. et al. (18) F-fluorodeoxy-glucose positron emission tomography pattern and prognostic predictors in patients with anti-GABAB receptor encephalitis. CNS Neurosci Ther 2022; 28: 269-278
  • 48 Dinoto A, Cheli M, Ajcevic M. et al. ASL MRI and 18F-FDG-PET in autoimmune limbic encephalitis: clues from two paradigmatic cases. Neurol Sci 2021; 42: 3423-3425
  • 49 Sarria-Estrada S, Toledo M, Lorenzo-Bosquet C. et al. Neuroimaging in status epilepticus secondary to paraneoplastic autoimmune encephalitis. Clin Radiol 2014; 69: 795-803
  • 50 Mutke MA, Madai VI, von Samson-Himmelstjerna FC. et al. Clinical evaluation of an arterial-spin-labeling product sequence in steno-occlusive disease of the brain. PLoS One 2014; 9: e87143
  • 51 Heine J, Pruss H, Bartsch T. et al. Imaging of autoimmune encephalitis--Relevance for clinical practice and hippocampal function. Neuroscience 2015; 309: 68-83
  • 52 Ball C, Fisicaro R, Morris 3rd L. et al. Brain on fire: an imaging-based review of autoimmune encephalitis. Clin Imaging 2022; 84: 1-30
  • 53 Blanc F, Ruppert E, Kleitz C. et al. Acute limbic encephalitis and glutamic acid decarboxylase antibodies: a reality?. J Neurol Sci 2009; 287: 69-71
  • 54 Troester F, Weske G, Schlaudraff E. et al. Image of the month. FDG-PET in paraneoplastic limbic encephalitis. Eur J Nucl Med Mol Imaging 2009; 36: 539
  • 55 Kassubek J, Juengling FD, Nitzsche EU. et al. Limbic encephalitis investigated by 18FDG-PET and 3D MRI. J Neuroimaging 2001; 11: 55-59
  • 56 Provenzale JM, Barboriak DP, Coleman RE. Limbic encephalitis: comparison of FDG PET and MR imaging findings. AJR Am J Roentgenol 1998; 170: 1659-1660
  • 57 Malter MP, Helmstaedter C, Urbach H. et al. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol 2010; 67: 470-478
  • 58 Spatola M, Stojanova V, Prior JO. et al. Serial brain (1)(8)FDG-PET in anti-AMPA receptor limbic encephalitis. J Neuroimmunol 2014; 271: 53-55
  • 59 Masangkay N, Basu S, Moghbel M. et al. Brain 18F-FDG-PET characteristics in patients with paraneoplastic neurological syndrome and its correlation with clinical and MRI findings. Nucl Med Commun 2014; 35: 1038-1046
  • 60 Fakhoury T, Abou-Khalil B, Kessler RM. Limbic encephalitis and hyperactive foci on PET scan. Seizure 1999; 8: 427-431
  • 61 Cistaro A, Caobelli F, Quartuccio N. et al. Uncommon 18F-FDG-PET/CT findings in patients affected by limbic encephalitis: hyper-hypometabolic pattern with double antibody positivity and migrating foci of hypermetabolism. Clin Imaging 2015; 39: 329-333
  • 62 Thomas AC, Brown RK, Begum R. et al. Autoimmune limbic encephalitis detected on FDG brain scan performed for the evaluation of dementia. Clin Nucl Med 2015; 40: 358-359
  • 63 Santiago MDC, Jurado RS, Llorens RS. et al. Limbic Encephalitis Diagnosed With F-18-FDG PET/CT. Clinical Nuclear Medicine 2016; 41: E101-E103
  • 64 Newey CR, Sarwal A, Hantus S. [F-18]-Fluoro-Deoxy-Glucose Positron Emission Tomography Scan Should Be Obtained Early in Cases of Autoimmune Encephalitis. Autoimmun Dis 2016;
  • 65 Taneja S, Suri V, Ahuja A. et al. Simultaneous 18F- FDG PET/MRI in Autoimmune Limbic Encephalitis. Indian J Nucl Med 2018; 33: 174-176
  • 66 Deuschl C, Ruber T, Ernst L. et al. F-18-FDG-PET/MRI in the diagnostic work-up of limbic encephalitis. Plos One 2020; 15
  • 67 Morbelli S, Djekidel M, Hesse S. et al. Role of F-18-FDG-PET imaging in the diagnosis of autoimmune encephalitis. Lancet Neurology 2016; 15: 1009-1010
  • 68 Moreno-Ajona D, Prieto E, Grisanti F. et al. (18)F-FDG-PET Imaging Patterns in Autoimmune Encephalitis: Impact of Image Analysis on the Results. Diagnostics (Basel) 2020; 10
  • 69 Seniaray N, Verma R, Ranjan R. et al. Metabolic Imaging Patterns on F-18-FDG PET in Acute and Subacute LGI1 Autoimmune Limbic Encephalitis. Clinical Nuclear Medicine 2021; 46: e27-e28
  • 70 Caquot PA, Zizi G, Lelievre M. et al. F-18-FDG PET/CT in Anti-Leucine-Rich Glioma-Inactivated 1 Antibody Encephalitis Typical Pattern and Follow-up. Clinical Nuclear Medicine 2021; 46: 250-251
  • 71 Vercosa AFA, Mota IA, Flamini MEDD. et al. Paraneoplastic Limbic Encephalitis Secondary to SCLC on F-18-FDG PET/CT. Clinical Nuclear Medicine 2021; 46: 494-496
  • 72 Kim TJ, Lee ST, Shin JW. et al. Clinical manifestations and outcomes of the treatment of patients with GABAB encephalitis. J Neuroimmunol 2014; 270: 45-50
  • 73 Park S, Choi H, Cheon GJ. et al. 18F-FDG PET/CT in anti-LGI1 encephalitis: initial and follow-up findings. Clin Nucl Med 2015; 40: 156-158
  • 74 Cash SS, Larvie M, Dalmau J. Case records of the Massachusetts General Hospital. Case 34–2011: A 75-year-old man with memory loss and partial seizures. N Engl J Med 2011; 365: 1825-1833
  • 75 Shin YW, Lee ST, Shin JW. et al. VGKC-complex/LGI1-antibody encephalitis: clinical manifestations and response to immunotherapy. J Neuroimmunol 2013; 265: 75-81
  • 76 Basu S, Alavi A. Role of FDG-PET in the clinical management of paraneoplastic neurological syndrome: detection of the underlying malignancy and the brain PET-MRI correlates. Mol Imaging Biol 2008; 10: 131-137
  • 77 Scheid R, Lincke T, Voltz R. et al. Serial 18F-fluoro-2-deoxy-D-glucose positron emission tomography and magnetic resonance imaging of paraneoplastic limbic encephalitis. Arch Neurol 2004; 61: 1785-1789
  • 78 Ances BM, Vitaliani R, Taylor RA. et al. Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain 2005; 128: 1764-1777
  • 79 Chatzikonstantinou A, Szabo K, Ottomeyer C. et al. Successive affection of bilateral temporomesial structures in a case of non-paraneoplastic limbic encephalitis demonstrated by serial MRI and FDG-PET. J Neurol 2009; 256: 1753-1755
  • 80 Kunze A, Drescher R, Kaiser K. et al. Serial FDG PET/CT in autoimmune encephalitis with faciobrachial dystonic seizures. Clin Nucl Med 2014; 39: e436-438
  • 81 Baumgartner A, Rauer S, Mader I. et al. Cerebral FDG-PET and MRI findings in autoimmune limbic encephalitis: correlation with autoantibody types. J Neurol 2013; 260: 2744-2753
  • 82 Endres D, Pruss H, Dressing A. et al. Psychiatric Manifestation of Anti-LGI1 Encephalitis. Brain Sci 2020; 10
  • 83 Borghammer P, Cumming P, Aanerud J. et al. Subcortical elevation of metabolism in Parkinson's disease--a critical reappraisal in the context of global mean normalization. Neuroimage 2009; 47: 1514-1521
  • 84 Barrington SF, Koutroumanidis M, Agathonikou A. et al. Clinical value of „ictal“ FDG-positron emission tomography and the routine use of simultaneous scalp EEG studies in patients with intractable partial epilepsies. Epilepsia 1998; 39: 753-766
  • 85 Fisher RE, Patel NR, Lai EC. et al. Two different 18F-FDG brain PET metabolic patterns in autoimmune limbic encephalitis. Clin Nucl Med 2012; 37: e213-218
  • 86 Leypoldt F, Buchert R, Kleiter I. et al. Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease. J Neurol Neurosurg Psychiatry 2012; 83: 681-686
  • 87 Moubtakir A, Dejust S, Godard F. et al. 18F-FDG PET/CT in Anti-NMDA Receptor Encephalitis: Typical Pattern and Follow-up. Clin Nucl Med 2018; 43: 520-521
  • 88 Solnes LB, Jones KM, Rowe SP. et al. Diagnostic Value of (18)F-FDG PET/CT Versus MRI in the Setting of Antibody-Specific Autoimmune Encephalitis. J Nucl Med 2017; 58: 1307-1313
  • 89 Irani SR, Michell AW, Lang B. et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011; 69: 892-900
  • 90 Boesebeck F, Schwarz O, Dohmen B. et al. Faciobrachial dystonic seizures arise from cortico-subcortical abnormal brain areas. J Neurol 2013; 260: 1684-1686
  • 91 Fidzinski P, Jarius S, Gaebler C. et al. Faciobrachial dystonic seizures and antibodies to Lgi1 in a 92-year-old patient: a case report. J Neurol Sci 2014; 347: 404-405
  • 92 Rey C, Koric L, Guedj E. et al. Striatal hypermetabolism in limbic encephalitis. J Neurol 2012; 259: 1106-1110
  • 93 Bartlett EJ, Brodie JD, Simkowitz P. et al. Effects of haloperidol challenge on regional cerebral glucose utilization in normal human subjects. Am J Psychiatry 1994; 151: 681-686
  • 94 Probasco JC, Solnes L, Nalluri A. et al. Abnormal brain metabolism on FDG-PET/CT is a common early finding in autoimmune encephalitis. Neurol Neuroimmunol Neuroinflamm 2017; 4: e352
  • 95 De Leiris N, Ruel B, Vervandier J. et al. Decrease in the cortex/striatum metabolic ratio on [F-18]-FDG PET: a biomarker of autoimmune encephalitis. Eur J Nucl Med Mol I 2022; 49: 921-931
  • 96 Moloney P, Boylan R, Elamin M. et al. Semi-quantitative analysis of cerebral FDG-PET reveals striatal hypermetabolism and normal cortical metabolism in a case of VGKCC limbic encephalitis. Neuroradiol J 2017; 30
  • 97 Trevino-Peinado C, Arbizu J, Irimia P. et al. Monitoring the effect of immunotherapy in autoimmune limbic encephalitis using 18F-FDG PET. Clin Nucl Med 2015; 40: e441-443
  • 98 Bordonne M, Chawki MB, Doyen M. et al. Brain F-18-FDG PET for the diagnosis of autoimmune encephalitis: a systematic review and a meta-analysis. Eur J Nucl Med Mol I 2021; 48: 3847-3858
  • 99 Guerin J, Watson RE, Carr CM. et al. Autoimmune epilepsy: findings on MRI and FDG-PET. Br J Radiol 2019; 92: 20170869
  • 100 Hadjivassiliou M, Alder SJ, Van Beek EJ. et al. PET scan in clinically suspected paraneoplastic neurological syndromes: a 6-year prospective study in a regional neuroscience unit. Acta Neurol Scand 2009; 119: 186-193
  • 101 Sheikhbahaei S, Marcus CV, Fragomeni RS. et al. Whole-body (18)F-FDG PET and (18)F-FDG PET/CT in patients with suspected paraneoplastic syndrome: A systematic review and meta-analysis of diagnostic accuracy. J Nucl Med 2017; 58: 1031-1036
  • 102 Titulaer MJ, Soffietti R, Dalmau J. et al. Screening for tumours in paraneoplastic syndromes: report of an EFNS task force. Eur J Neurol 2011; 18: 19-e13
  • 103 McKeon A, Apiwattanakul M, Lachance DH. et al. Positron emission tomography-computed tomography in paraneoplastic neurologic disorders: systematic analysis and review. Arch Neurol 2010; 67: 322-329
  • 104 Wegner F, Wilke F, Raab P. et al. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography. BMC Neurol 2014; 14: 136
  • 105 Guedj E, Varrone A, Boellaard R. et al. EANM procedure guidelines for brain PET imaging using [F-18]FDG, version 3 (vol 49, pg 632, 2022). Eur J Nucl Med Mol I 2022;
  • 106 Morbelli S, Arbizu J, Booij J. et al. The need of standardization and of large clinical studies in an emerging indication of [(18)F]FDG PET: the autoimmune encephalitis. Eur J Nucl Med Mol Imaging 2017; 44: 353-357