Z Gastroenterol 2022; 60(01): 58-66
DOI: 10.1055/a-1714-9246
Übersicht

Inflammation in alcohol-associated liver disease progression

Entzündung beim Fortschreiten der alkoholbedingten Lebererkrankung
Sophie Lotersztajn
1   Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France (Ringgold ID: RIN555089)
,
Antonio Riva
2   The Roger Williams Institute of Hepatology, Foundation for Liver Research affiliated with King’s College London, King's College London, London, United Kingdom of Great Britain and Northern Ireland (Ringgold ID: RIN4616)
,
3   Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (Ringgold ID: RIN9144)
,
Steven Dooley
4   Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany (Ringgold ID: RIN9144)
,
Shilpa Chokshi
2   The Roger Williams Institute of Hepatology, Foundation for Liver Research affiliated with King’s College London, King's College London, London, United Kingdom of Great Britain and Northern Ireland (Ringgold ID: RIN4616)
,
Bin Gao
5   Laboratory of Liver diseases, National Institute on Alcohol Abuse and Alcoholism Laboratory of Liver Diseases, Bethesda, United States (Ringgold ID: RIN573244)
› Author Affiliations
Supported by: LiSyM PTJ-FKZ 031L0257A,PTJ-FKZ: 031 L0043
Supported by: Institut National de la Santé et de la Recherche Médicale ANR 19-CE14-0041-02,ANR-20-CE14-0038-01

Abstract

Chronic alcohol consumption induces stress and damage in alcohol metabolising hepatocytes, which leads to inflammatory and fibrogenic responses. Besides these direct effects, alcohol disrupts intestinal barrier functions and induces gut microbial dysbiosis, causing translocation of bacteria or microbial products through the gut mucosa to the liver and, which induce inflammation indirectly. Inflammation is one of the key drivers of alcohol-associated liver disease progression from steatosis to severe alcoholic hepatitis. The current standard of care for the treatment of severe alcoholic hepatitis is prednisolone, aiming to reduce inflammation. Prednisolone, however improves only short-term but not long-term survival rates in those patients, and even increases the risk for bacterial infections. Thus, recent studies focus on the exploration of more specific inflammatory targets for the treatment of severe alcoholic hepatitis. These comprise, among others interference with inflammatory cytokines, modulation of macrophage phenotypes or targeting of immune cell communication, as summarized in the present overview. Although several approaches give promising results in preclinical studies, data robustness and ability to transfer experimental results to human disease is still not sufficient for effective clinical translation.

Zusammenfassung

Chronischer Alkoholkonsum verursacht Stress und schädigt die den Alkohol metabolisierenden Hepatozyten, was zu entzündlichen und fibrogenen Reaktionen führt. Neben diesen direkten Auswirkungen stört Alkohol die Funktionen der Darmbarriere und führt zu einer Dysbiose des Darmmikrobioms, wodurch Bakterien oder mikrobielle Produkte durch die Darmschleimhaut in die Leber gelangen und so über den indirekten Weg Entzündungsreaktionen hervorrufen. Entzündung ist eine der Hauptursachen für das Fortschreiten der alkoholbedingten Lebererkrankung von der Steatose zur schweren alkoholischen Hepatitis. Die derzeitige Standardbehandlung der schweren alkoholischen Hepatitis ist Prednisolon, um die Entzündung zu reduzieren. Prednisolon verbessert jedoch nur die kurzfristigen, nicht aber die langfristigen Überlebensraten der Patienten und erhöht sogar das Risiko für bakterielle Infektionen. Daher konzentrieren sich Forschung und Studien neuerdings auf spezifischere Entzündungsziele zur Behandlung der schweren alkoholischen Hepatitis. Dazu gehören unter anderem die Beeinflussung entzündlicher Zytokine, die Modulation von Makrophagen-Phänotypen oder die gezielte Beeinflussung der Immunzellkommunikation, wie in der vorliegenden Übersicht zusammengefasst. Obwohl verschiedene Ansätze in präklinischen Studien vielversprechende Ergebnisse liefern, ist die Robustheit der Daten und damit die Übertragbarkeit auf die menschliche Krankheit für eine effektive klinische Umsetzung noch nicht ausreichend.



Publication History

Received: 15 October 2021

Accepted: 06 December 2021

Article published online:
18 January 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Reference

  • 1 Gao B, Ahmad MF, Nagy LE. et al. Inflammatory pathways in alcoholic steatohepatitis. J Hepatol 2019; 70: 249-259
  • 2 Mallat A, Lotersztajn S. Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis. Am J Physiol Cell Physiol 2013; 305: C789-799
  • 3 Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 2015; 61: 1066-1079
  • 4 Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol 2017; 66: 1300-1312
  • 5 Ramachandran P, Pellicoro A, Vernon MA. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 2012; 109: E3186-3195
  • 6 Allaire M, Rautou PE, Codogno P. et al. Autophagy in liver diseases: Time for translation?. J Hepatol 2019; 70: 985-998
  • 7 Gual P, Gilgenkrantz H, Lotersztajn S. Autophagy in chronic liver diseases: the two faces of Janus. Am J Physiol Cell Physiol 2017; 312: C263-C273
  • 8 Gao J, Wei B, de Assuncao TM. et al. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol 2020; 73: 1144-1154
  • 9 Lodder J, Denaes T, Chobert MN. et al. Macrophage autophagy protects against liver fibrosis in mice. Autophagy 2015; 11: 1280-1292
  • 10 Wan J, Weiss E, Ben Mkaddem S. et al. LC3-associated phagocytosis protects against inflammation and liver fibrosis via immunoreceptor inhibitory signaling. Sci Transl Med 15.04.2020; 12 (539): eaaw8523
  • 11 Gilgenkrantz H, Mallat A, Moreau R. et al. Targeting cell-intrinsic metabolism for antifibrotic therapy. J Hepatol 2021; 74: 1442-1454
  • 12 Lefere S, Tacke F. Macrophages in obesity and non-alcoholic fatty liver disease: Crosstalk with metabolism. JHEP Rep 2019; 1: 30-43
  • 13 Nomura DK, Morrison BE, Blankman JL. et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 2011; 334: 809-813
  • 14 Habib A, Chokr D, Wan J. et al. Inhibition of monoacylglycerol lipase, an anti-inflammatory and antifibrogenic strategy in the liver. Gut 2019; 68: 522-532
  • 15 Tardelli M, Bruschi FV, Fuchs CD. et al. Monoacylglycerol Lipase Inhibition Protects From Liver Injury in Mouse Models of Sclerosing Cholangitis. Hepatology 2020; 71: 1750-1765
  • 16 Lemmers A, Moreno C, Gustot T. et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 2009; 49: 646-657
  • 17 Hegde P, Weiss E, Paradis V. et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat Commun 2018; 9: 2146
  • 18 Guillot A, Hamdaoui N, Bizy A. et al. Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver. Hepatology 2014; 59: 296-306
  • 19 Meng F, Wang K, Aoyama T. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 2012; 143: 765-776.e763
  • 20 EASL. EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J Hepatol 2018; 69: 154-181
  • 21 Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 2015; 12: 231-242
  • 22 Albillos A, Lario M, Alvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol 2014; 61: 1385-1396
  • 23 Vergis N, Atkinson SR, Knapp S. et al. In Patients With Severe Alcoholic Hepatitis, Prednisolone Increases Susceptibility to Infection and Infection-Related Mortality, and Is Associated With High Circulating Levels of Bacterial DNA. Gastroenterology 2017; 152: 1068-1077.e1064
  • 24 Chokshi S. Can we reliably predict response to corticosteroid treatment in severe alcoholic hepatitis?. Hepatol Commun 2018; 2: 625-627
  • 25 Van der Merwe S, Chokshi S, Bernsmeier C. et al. The multifactorial mechanisms of bacterial infection in decompensated cirrhosis. J Hepatol 2021; 75 (Suppl. 01) S82-S100
  • 26 Riva A, Chokshi S. Immune checkpoint receptors: homeostatic regulators of immunity. Hepatol Int 2018; 12: 223-236
  • 27 Pappu R, Rutz S, Ouyang W. Regulation of epithelial immunity by IL-17 family cytokines. Trends Immunol 2012; 33: 343-349
  • 28 Wen Y, Lambrecht J, Ju C. et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 2021; 18: 45-56
  • 29 Sarin SK, Pande A, Schnabl B. Microbiome as a therapeutic target in alcohol-related liver disease. J Hepatol 2019; 70: 260-272
  • 30 Riva A, Palma E, Devshi D. et al. Soluble TIM3 and Its Ligands Galectin-9 and CEACAM1 Are in Disequilibrium During Alcohol-Related Liver Disease and Promote Impairment of Anti-bacterial Immunity. Front Physiol 2021; 12: 632502
  • 31 Möller-Hackbarth K, Dewitz C, Schweigert O. et al. A disintegrin and metalloprotease (ADAM) 10 and ADAM17 are major sheddases of T cell immunoglobulin and mucin domain 3 (Tim-3). J Biol Chem 2013; 288: 34529-34544
  • 32 Nielsen C, Ohm-Laursen L, Barington T. et al. Alternative splice variants of the human PD-1 gene. Cell Immunol 2005; 235: 109-116
  • 33 Toubal A, Nel I, Lotersztajn S. et al. Mucosal-associated invariant T cells and disease. Nat Rev Immunol 2019; 19: 643-657
  • 34 Godfrey DI, Koay H-F, McCluskey J. et al. The biology and functional importance of MAIT cells. Nature Immunology 2019; 20: 1110-1128
  • 35 Riva A, Patel V, Kurioka A. et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut 2018; 67: 918-930
  • 36 Fernandez J, Prado V, Trebicka J. et al. Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe. Journal of Hepatology 2019; 70: 398-411
  • 37 Piano S, Fasolato S, Salinas F. et al. The empirical antibiotic treatment of nosocomial spontaneous bacterial peritonitis: Results of a randomized, controlled clinical trial. Hepatology 2016; 63: 1299-1309
  • 38 Kumar A, Chamoto K. Immune metabolism in PD-1 blockade-based cancer immunotherapy. Int Immunol 2021; 33: 17-26
  • 39 Ogando J, Saez ME, Santos J. et al. PD-1 signaling affects cristae morphology and leads to mitochondrial dysfunction in human CD8(+) T lymphocytes. J Immunother Cancer 2019; 7: 151
  • 40 Palma E, Riva A, Moreno C. et al. Perturbations in Mitochondrial Dynamics Are Closely Involved in the Progression of Alcoholic Liver Disease. Alcohol Clin Exp Res 2020; 44: 856-865
  • 41 Palma E, Ma X, Riva A. et al. Dynamin-1-Like Protein Inhibition Drives Megamitochondria Formation as an Adaptive Response in Alcohol-Induced Hepatotoxicity. Am J Pathol 2019; 189: 580-589
  • 42 Palma E, Doornebal EJ, Chokshi S. Precision-cut liver slices: a versatile tool to advance liver research. Hepatol Int 2019; 13: 51-57
  • 43 Ambade A, Lowe P, Kodys K. et al. Pharmacological Inhibition of CCR2/5 Signaling Prevents and Reverses Alcohol-Induced Liver Damage, Steatosis, and Inflammation in Mice. Hepatology 2019; 69: 1105-1121
  • 44 Marin V, Poulsen K, Odena G. et al. Hepatocyte-derived macrophage migration inhibitory factor mediates alcohol-induced liver injury in mice and patients. J Hepatol 2017; 67: 1018-1025
  • 45 Boetticher NC, Peine CJ, Kwo P. et al. A randomized, double-blinded, placebo-controlled multicenter trial of etanercept in the treatment of alcoholic hepatitis. Gastroenterology 2008; 135: 1953-1960
  • 46 Sharma P, Kumar A, Sharma BC. et al. Infliximab monotherapy for severe alcoholic hepatitis and predictors of survival: An open label trial. Journal of Hepatology 2009; 50: 584-591
  • 47 Tilg H, Jalan R, Kaser A. et al. Anti-tumor necrosis factor-alpha monoclonal antibody therapy in severe alcoholic hepatitis. Journal of Hepatology 2003; 38: 419-425
  • 48 Keane J, Gershon S, Wise RP. et al. Tuberculosis associated with infliximab, a tumor necrosis factor (alpha)-neutralizing agent. New England Journal of Medicine 2001; 345: 1098-1104
  • 49 Tilg H, Moschen AR, Szabo G. Interleukin-1 and inflammasomes in alcoholic liver disease/acute alcoholic hepatitis and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 2016; 64: 955-965
  • 50 Gao B, Shah VH. Combination therapy: New hope for alcoholic hepatitis?. Clin Res Hepatol Gastroenterol 2015; 39 (Suppl. 01) S7-S11
  • 51 Ki SH, Park O, Zheng M. et al. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology 2010; 52: 1291-1300
  • 52 Hwang S, He Y, Xiang X. et al. Interleukin-22 Ameliorates Neutrophil-Driven Nonalcoholic Steatohepatitis Through Multiple Targets. Hepatology 2020; 72: 412-429
  • 53 Xiang X, Feng D, Hwang S. et al. Interleukin-22 ameliorates acute-on-chronic liver failure by reprogramming impaired regeneration pathways in mice. J Hepatol 2020; 72: 736-745
  • 54 Xiang X, Hwang S, Feng D. et al. Interleukin-22 in alcoholic hepatitis and beyond. Hepatol Int 2020; 14: 667-676
  • 55 Eidenschenk C, Rutz S, Liesenfeld O. et al. Role of IL-22 in microbial host defense. Curr Top Microbiol Immunol 2014; 380: 213-236
  • 56 Arab JP, Sehrawat TS, Simonetto DA. et al. An Open-Label, Dose-Escalation Study to Assess the Safety and Efficacy of IL-22 Agonist F-652 in Patients With Alcohol-associated Hepatitis. Hepatology 2020; 72: 441-453
  • 57 Mewes C, Alexander T, Büttner B. et al. TIM-3 Genetic Variants Are Associated with Altered Clinical Outcome and Susceptibility to Gram-Positive Infections in Patients with Sepsis. Int J Mol Sci 2020; 21: 8318
  • 58 Hotchkiss RS, Colston E, Yende S. et al. Immune checkpoint inhibition in sepsis: a Phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab. Intensive Care Med 2019; 45: 1360-1371
  • 59 Patil NK, Guo Y, Luan L. et al. Targeting Immune Cell Checkpoints during Sepsis. Int J Mol Sci 2017; 18: 2413
  • 60 Gao DN, Yang ZX, Qi QH. Roles of PD-1, Tim-3 and CTLA-4 in immunoregulation in regulatory T cells among patients with sepsis. Int J Clin Exp Med 2015; 8: 18998-19005