Angewandte Nuklearmedizin 2022; 45(03): 217-226
DOI: 10.1055/a-1715-5184
Technik
Übersicht

Digitale Positronenemissionstomografie – Entwicklung, Detektortechnologie und Perspektiven

Digital positron emission tomography – Development, detector technology and perspectives
Sandra Laura Kazek
1   Klinik für Nuklearmedizin, Universitätsklinik Essen, Westdeutschen Tumorzentrum, Universität Dusiburg-Essen, D-45147 Essen, Deutschland
,
Walter Jentzen
1   Klinik für Nuklearmedizin, Universitätsklinik Essen, Westdeutschen Tumorzentrum, Universität Dusiburg-Essen, D-45147 Essen, Deutschland
,
Robert Seifert
1   Klinik für Nuklearmedizin, Universitätsklinik Essen, Westdeutschen Tumorzentrum, Universität Dusiburg-Essen, D-45147 Essen, Deutschland
,
Ken Herrmann
1   Klinik für Nuklearmedizin, Universitätsklinik Essen, Westdeutschen Tumorzentrum, Universität Dusiburg-Essen, D-45147 Essen, Deutschland
,
David Kersting
1   Klinik für Nuklearmedizin, Universitätsklinik Essen, Westdeutschen Tumorzentrum, Universität Dusiburg-Essen, D-45147 Essen, Deutschland
› Author Affiliations

Zusammenfassung

Dieser Übersichtsartikel präsentiert die Entwicklung und den technischen Fortschritt der Positronenemissionstomografie (PET) hin zum digital arbeitenden PET-System (dPET). Der Fokus liegt hierbei auf den PET-Hardwarekomponenten zur Detektierung sowie Verarbeitung und Ortung des Signals zur klinischen Bildgebung. Es werden technische Unterscheidungen und Vorteile der dPET-Systeme gegenüber konventionellen PET-Systemen aufgezeigt. Dazu zählen zum Beispiel größere Detektorflächen mit sehr empfindlichen und kompakten Photodetektorsystemen in Verbindung mit einer verbesserten Elektronik zur schnellen Berechnung der Orts-, Zeit- und Energieauflösungen der Signale. Die daraus neu erschlossenen Anwendungsbereiche und Perspektiven in der dPET-Bildgebung werden zusätzlich thematisiert.

Abstract

This review article presents the development and technical progress of positron emission tomography (PET) towards the digital working PET system (dPET). The focus is on the PET hardware components for detecting, processing, and locating the signal for clinical imaging. Technical differences and advantages of dPET systems over conventional PET systems are highlighted. These include, for example, larger detector areas with very sensitive and compact photodetector systems combined with improved electronics to rapidly calculate the spatial, time and energy resolutions of annihilation events. The resulting new application areas and perspectives in dPET imaging will be additionally addressed.



Publication History

Article published online:
16 August 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Referenzen

  • 1 Sweet WH. The uses of nuclear disintegration in the diagnosis and treatment of brain tumor. N Engl J Med 1951; 245: 875-8
  • 2 Anger HO, Gottschalk A. Localization of brain tumors with the positron scintillation camera. J Nucl Med 1963; 4: 326-30
  • 3 Burnham CA, Brownell GL. A Multi-Crystal Positron Camera. IEEE Transactions on Nuclear Science 1972; 19: 201-205
  • 4 Ter-Pogossian MM, Phelps ME, Hoffman EJ. et al. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 1975; 114: 89-98
  • 5 Ter-Pogossian MM, Eichling JO, Davis DO. et al. The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15. J Clin Invest 1970; 49: 381-391
  • 6 Phelps ME, Huang SC, Hoffman EJ. et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979; 6: 371-388
  • 7 Ido T, Wan C-N, Casella V. et al. Labeled 2-deoxy-d-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-d-glu-cose, 2-deoxy-2-fluoro-d-mannose and 14C-2-deoxy-2-fluoro-d-glucose. J Label Compd Radiopharm 14: 175-183
  • 8 Weber MJ, Monchamp RR. Luminescenceof Bi4Ge3O12: spectraland decay properties. JAppl Phys 1973; 44: 549-599
  • 9 Holte S, Ostertag H, Kesselberg MA. preliminaiy evaluation of a dual ctystal positron camera. IEEE Trans. Nucl. Sci.; Journal Volume: 35:1; Conference: 34. nuclear science symposium and 19. nuclear power systems symposium, San Francisco, CA, USA, 21 Oct 1987 . CONF-871006-Journal ID: CODEN: IETNA; TRN: 88-025827.
  • 10 Dahlbom M. Physics of PET and SPECT Imaging. Boca Roton, FL: CRC Press, Taylor & Francis Group; 2017
  • 11 Grazioso R, Zhang N, Corbeil J. et al. APD-based PET detector for simultaneous PET/MR imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2006; 569: 301-305
  • 12 Shah KS, Farrell R, Grazioso R. et al. Position-sensitive avalanche photodiodes for gamma-ray imaging. IEEE Trans. Nucl. Sci 2002; 49: 1687-1692
  • 13 Roncali E, Cherry SR. Application of silicon photomultipliers to positron emission tomography. Ann Biomed Eng 2011; 39: 1358-1377
  • 14 Therrien AC, Berube BL, Chalesboi S. et al. Modeling of single photon avalanche diode array detectors for PET applications," 2011 IEEE Nuclear Science Symposium Conference Record, 2011, pp. 48-53 // EEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 61, NO. 1, FEBRUARY 2014.
  • 15 van Sluis J, de Jong J, Schaar J. et al. Performance Characteristics of the Digital Biograph Vision PET/CT System. J Nucl Med 2019; 60: 1031-1036
  • 16 Zhang J, Maniawski P, Knopp MV. Performance evaluation of the next generation solid-state digital photon counting PET/CT system. EJNMMI Res 2018; 8: 97
  • 17 Berg E, Cherry SR. Innovations in Instrumentation for Positron Emission Tomography. Semin Nucl Med 2018; 48: 311-331
  • 18 Alberts I, Sachpekidis C, Prenosil G. et al. Digital PET/CT allows for shorter acquisition protocols or reduced radiopharmaceutical dose in [18F]-FDG PET/CT. Ann Nucl Med 2021; 35: 485-492
  • 19 Weber M, Jentzen W, Hofferber R. et al. Evaluation of 18F-FDG PET/CT images acquired with a reduced scan time duration in lymphoma patients using the digital biograph vision. BMC Cancer 2021; 21: 62
  • 20 Weber M, Jentzen W, Hofferber R. et al. Evaluation of [68Ga]Ga-PSMA PET/CT images acquired with a reduced scan time duration in prostate cancer patients using the digital biograph vision. EJNMMI Res 2021; 11: 2
  • 21 Seifert R, Kessel K, Schlack K. et al. PSMA PET total tumor volume predicts outcome of patients with advanced prostate cancer receiving [177Lu]Lu-PSMA-617 radioligand therapy in a bicentric analysis. Eur J Nucl Med Mol Imaging 2021; 48: 1200-1210
  • 22 Seifert R, Kessel K, Schlack K. et al. Total tumor volume reduction and low PSMA expression in patients receiving Lu-PSMA therapy. Theranostics 2021; 11: 8143-8151
  • 23 Seifert R, Herrmann K, Kleesiek J. et al. Semiautomatically Quantified Tumor Volume Using 68Ga-PSMA-11 PET as a Biomarker for Survival in Patients with Advanced Prostate Cancer. J Nucl Med 2020; 61: 1786-1792
  • 24 Alberts I, Prenosil G, Sachpekidis C. et al. Digital versus analogue PET in [68Ga]Ga-PSMA-11 PET/CT for recurrent prostate cancer: a matched-pair comparison. Eur J Nucl Med Mol Imaging 2020; 47: 614-623
  • 25 Kersting D, Jentzen W, Sraieb M. et al. Comparing lesion detection efficacy and image quality across different PET system generations to optimize the iodine-124 PET protocol for recurrent thyroid cancer. EJNMMI Phys 2021; 8: 14
  • 26 Kersting D, Jentzen W, Fragoso CostaP. et al. Silicon-photomultiplier-based PET/CT reduces the minimum detectable activity of iodine-124. Sci Rep 2021; 11: 17477
  • 27 Kunnen B, Beijst C, Lam MGEH. et al. Comparison of the Biograph Vision and Biograph mCT for quantitative 90Y PET/CT imaging for radioembolisation. EJNMMI Phys 2020; 7: 14
  • 28 Ferdinandus J, Costa Fragoso P, Kessler L. et al. Initial clinical experience with 90Y-FAPI-46 radioligand therapy for advanced stage solid tumors: a case series of nine patients. J Nucl Med 2021;
  • 29 Seifert R, Weber M, Kocakavuk E. et al. Artificial Intelligence and Machine Learning in Nuclear Medicine: Future Perspectives. Semin Nucl Med 2021; 51: 170-177
  • 30 Sanaat A, Shiri I, Arabi H. et al. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging 2021; 48: 2405-2415
  • 31 Chaudhari AS, Mittra E, Davidzon GA. et al. Low-count whole-body PET with deep learning in a multicenter and externally validated study. NPJ Digit Med 2021; 4: 127
  • 32 Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives. Eur J Nucl Med Mol Imaging 2021; 48: 21-39
  • 33 Muzi M, O'Sullivan F, Mankoff DA. et al. Quantitative assessment of dynamic PET imaging data in cancer imaging. Magn Reson Imaging 2012; 30: 1203-1215
  • 34 Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983; 3: 1-7
  • 35 Rahmim A, Lodge MA, Karakatsanis NA. et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging 2019; 46: 501-518
  • 36 Shi X, Liu S, Lin X. et al. Characterization of myocardial oxidative metabolism and myocardial external efficiency in high-risk alcohol cardiotoxicity and alcoholic cardiomyopathy via dynamic 11C-Acetate positron emission tomography. J Nucl Cardiol 2020;
  • 37 Conti M, Bendriem B. The new opportunities for high time resolution clinical TOF PET. Clin Transl Imaging 2019; 7: 139-147
  • 38 Conti M, Bendriem B. Biograph Vision Quadra, a Total Body PET scanner: why, what and what for? Presentation Edinburgh2021.
  • 39 Interview FlorisJansen, Chief Scientist GE Healthcar, 09.Dezember 2021.
  • 40 Whitepaper: Lightburst Digital Detector. GE Healthcare (2017). https://static1.squarespace.com/static/5a25ac3c914e6b61f6b983d8/t/5a31f8a8ec212deac346e90d/1513224366471/LDD_whitepaper_Final+JB50594XX.pdf
  • 41 Rausch I, Cal-González J, Dapra D. et al. Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard. EJNMMI Phys 2015; 2: 26
  • 42 Jha AK, Mithun S, Puranik AD. et al. Performance characteristic evaluation of a bismuth germanate-based high-sensitivity 5-ring discovery image quality positron emission tomography/computed tomography system as per National Electrical Manufacturers Association NU 2-2012. World J Nucl Med 2019; 18: 351-360
  • 43 van Sluis J, de Jong J, Schaar J. et al. Performance Characteristics of the Digital Biograph Vision PET/CT System. J Nucl Med 2019; 60: 1031-1036
  • 44 Chicheportiche A, Marciano R, Orevi M. et al. Comparison of NEMA characterizations for Discovery MI and Discovery MI-DR TOF PET/CT systems at different sites and with other commercial PET/CT systems. EJNMMI Phys 2020; 7: 4
  • 45 Datasheet Discovery MI Gen2, GE Healthcare, DOC2440914 Rev2, 2021.