Angewandte Nuklearmedizin 2022; 45(03): 227-239
DOI: 10.1055/a-1715-5305
CME-Fortbildung

Digitale SPECT und PET: Klinische Konsequenzen

Digital SPECT and PET: Clinical consequences
Julian M.M. Rogasch

Bei der Betrachtung physikalischer Vorteile von neuartigen Technologien für Gammakameras und PET-Scanner sollte stets auch der konkrete Mehrwert für die Patientinnen und Patienten beachtet und überprüft werden. Dieser CME-Artikel bietet einen Überblick über mögliche klinische Konsequenzen und Vorteile dieser Technologien und insbesondere die bisherige klinische Evidenz.

Abstract

In the thorough examination of physical advantages of new technologies for gamma cameras and PET scanners, the concrete benefit for patients should be taken into account and validated. This CME article provides an overview of potential clinical consequences and advantages of these technologies with special emphasis on the current clinical evidence.

Kernaussagen
  • CZT-basierte Gammakameras eignen sich aufgrund der überlegenen Energieauflösung verglichen mit NaI-Kameras bevorzugt für simultane duale Isotopenuntersuchungen.

  • Sowohl die CZT-Detektoren für Gammakameras als auch die SiPM-Technologie für die PET-Bildgebung und neuartige BPL-Rekonstruktionsalgorithmen bieten das Potenzial einer reduzierten Aktivität oder Akquisitionszeit aufgrund einer verbesserten Sensitivität. Im Allgemeinen fehlen bislang jedoch etablierte Protokolle, um daraus konkreten klinischen Mehrwert zu gewinnen.

  • Das klinische Potenzial der CZT-Technologie kann in spezialisierten Kameradesigns wie den dedizierten Herzkameras und ringförmig konfigurierten SPECT-Kameras besonders ausgeschöpft werden. CZT-Herzkameras erreichen eine mindestens ebenso hohe diagnostische Genauigkeit wie NaI-Doppelkopfkameras für eine koronare Herzerkrankung bei erheblich kürzerer Akquisitionszeit. Ringförmige Kamerasysteme können trotz kürzerer Akquisitionszeit ebenfalls eine bessere Bildqualität und Bildschärfe erreichen.

  • Die nachweislich verbesserte Läsionsdetektion in der PET durch die SiPM-Technologie und BPL-Rekonstruktion kann Anpassungen in diagnostischen Schwellwerten erfordern, um vermehrte falsch-positive Befunde zu vermeiden. Studien, die eine diagnostische Überlegenheit gegenüber herkömmlichen Technologien anhand eines diagnostischen Goldstandards belegen, sind bislang rar.

  • Die erhebliche Steigerung der Sensitivität durch den Einsatz von Ganzkörper-PET-Scannern könnte grundlegende Fortschritte in der klinischen Anwendung der PET-Diagnostik implizieren, beispielsweise für pädiatrische Patientinnen und Patienten oder dynamische Ganzkörperuntersuchungen.



Publication History

Article published online:
16 August 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Desmonts C, Bouthiba MA, Enilorac B. et al. Evaluation of a new multipurpose whole-body CzT-based camera: comparison with a dual-head Anger camera and first clinical images. EJNMMI Phys 2020; 7: 18
  • 2 Kennedy J, Iosilevsky G, Przewloka K. et al. 3D Spatial resolution map, energy resolution, sensitivity, and count rate performance of a dedicated cardiac CZT SPECT camera. J Nucl Med 2011; 52: 437-437
  • 3 Ito T, Matsusaka Y, Onoguchi M. et al. Experimental evaluation of the GE NM/CT 870 CZT clinical SPECT system equipped with WEHR and MEHRS collimator. Journal of Applied Clinical Medical Physics 2021; 22: 165-177
  • 4 Niimi T, Nanasato M, Sugimoto M. et al. Comparative cardiac phantom study using Tc-99m/I-123 and Tl-201/I-123 tracers with cadmium-zinc-telluride detector-based single-photon emission computed tomography. Nucl Med Mol Imaging 2019; 53: 57-63
  • 5 Gimelli A, Liga R, Avogliero F. et al. Relationships between left ventricular sympathetic innervation and diastolic dysfunction: the role of myocardial innervation/perfusion mismatch. J Nucl Cardiol 2018; 25: 1101-1109
  • 6 Blaire T, Bailliez A, Ben Bouallegue F. et al. First assessment of simultaneous dual isotope ((123)I/(99m)Tc) cardiac SPECT on two different CZT cameras: A phantom study. J Nucl Cardiol 2018; 25: 1692-1704
  • 7 GE Healthcare. Discovery NM/CT 670 CZT. A DIGITAL SPECT/CT. Data Sheet. 2022 http://promed-sa.com/wp-content/uploads/2020/08/DOC1926734-REV3-Discovery-NMCT-670-CZT-Datasheet_20170620.pdf Stand: 20.01.2022
  • 8 GE Healthcare. Discovery NM/CT 670 Pro. Data sheet. https://hobbydocbox.com/Photography/86411476-Discovery-nm-ct-670-pro.html Stand: 20.01.2022
  • 9 Keidar Z, Raysberg I, Lugassi R. et al. Novel cadmium zinc telluride based detector general purpose gamma camera: initial evaluation and comparison with a standard camera. J Nucl Med 2016; 57: 259-259
  • 10 Bani Sadr A, Testart N, Tylski P. et al. Reduced scan time in 123I-FP-CIT SPECT imaging using a large-field cadmium-zinc-telluride camera. Clin Nucl Med 2019; 44: 568-569
  • 11 Yamane T, Kondo A, Takahashi M. et al. Ultrafast bone scintigraphy scan for detecting bone metastasis using a CZT whole-body gamma camera. Eur J Nucl Med Mol Imaging 2019; 46: 1672-1677
  • 12 Goshen E, Beilin L, Stern E. et al. Feasibility study of a novel general purpose CZT-based digital SPECT camera: initial clinical results. EJNMMI Phys 2018; 5: 6
  • 13 Zoccarato O, Lizio D, Savi A. et al. Comparative analysis of cadmium-zincum-telluride cameras dedicated to myocardial perfusion SPECT: A phantom study. J Nucl Cardiol 2016; 23: 885-893
  • 14 Sharir T, Ben-Haim S, Merzon K. et al. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc Imaging 2008; 1: 156-163
  • 15 Imbert L, Poussier S, Franken PR. et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med 2012; 53: 1897-1903
  • 16 Mouden M, Timmer JR, Ottervanger JP. et al. Impact of a new ultrafast CZT SPECT camera for myocardial perfusion imaging: fewer equivocal results and lower radiation dose. Eur J Nucl Med Mol Imaging 2012; 39: 1048-1055
  • 17 Baumgarten R, Cerci RJ, de Nadai Costa A. et al. Radiation exposure after myocardial perfusion imaging with Cadmium-Zinc-Telluride camera versus conventional camera. J Nucl Cardiol 2021; 28: 992-999
  • 18 Gimelli A, Liga R, Bertasi M. et al. Head-to-head comparison of a CZT-based all-purpose SPECT camera and a dedicated CZT cardiac device for myocardial perfusion and functional analysis. J Nucl Cardiol 2021; 28: 1323-1330
  • 19 Morelle M, Bellevre D, Hossein-Foucher C. et al. First comparison of performances between the new whole-body cadmium-zinc-telluride SPECT-CT camera and a dedicated cardiac CZT camera for myocardial perfusion imaging: Analysis of phantom and patients. J Nucl Cardiol 2020; 27: 1261-1269
  • 20 Cantoni V, Green R, Acampa W. et al. Diagnostic performance of myocardial perfusion imaging with conventional and CZT single-photon emission computed tomography in detecting coronary artery disease: A meta-analysis. J Nucl Cardiol 2021; 28: 698-715
  • 21 Wu D, Zhang Z, Ma R. et al. Comparison of CZT SPECT and conventional SPECT for assessment of contractile function, mechanical synchrony and myocardial scar in patients with heart failure. J Nucl Cardiol 2019; 26: 443-452
  • 22 Ziadi MC, Dekemp RA, Williams KA. et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011; 58: 740-748
  • 23 Murthy VL, Naya M, Foster CR. et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011; 124: 2215-2224
  • 24 Agostini D, Roule V, Nganoa C. et al. First validation of myocardial flow reserve assessed by dynamic (99m)Tc-sestamibi CZT-SPECT camera: head to head comparison with (15)O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging 2018; 45: 1079-1090
  • 25 Otaki Y, Manabe O, Miller RJH. et al. Quantification of myocardial blood flow by CZT-SPECT with motion correction and comparison with (15)O-water PET. J Nucl Cardiol 2021; 28: 1477-1486
  • 26 Imbert L, Roch V, Merlin C. et al. Low-dose dual-isotope procedure planed for myocardial perfusion CZT-SPECT and assessed through a head-to-head comparison with a conventional single-isotope protocol. J Nucl Cardiol 2018; 25: 2016-2023
  • 27 Shiraishi S, Tsuda N, Sakamoto F. et al. Clinical usefulness of quantification of myocardial blood flow and flow reserve using CZT-SPECT for detecting coronary artery disease in patients with normal stress perfusion imaging. J Cardiol 2020; 75: 400-409
  • 28 Palmedo H, Marx C, Ebert A. et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging 2014; 41: 59-67
  • 29 Rager O, Nkoulou R, Exquis N. et al. Whole-body SPECT/CT versus planar bone scan with targeted SPECT/CT for metastatic workup. Biomed Res Int 2017; 2017: 7039406
  • 30 Even-Sapir E, Metser U, Mishani E. et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006; 47: 287-297
  • 31 Verger L, Gentet MC, Gerfault L. et al. Performance and perspectives of a CdZnTe-based gamma camera for medical imaging. IEEE Transactions on Nuclear Science 2004; 51: 3111-3117
  • 32 Le Rouzic G, Zananiri R. First performance measurements of a new multi-detector CZT-Based SPECT/CT system: GE StarGuide. J Nucl Med 2021; 62: 1125-1125
  • 33 Piatkova Y, Payoux P, Boursier C. et al. Prospective paired comparison of 123I-FP-CIT SPECT images obtained with a 360°-CZT and a conventional camera. Clin Nucl Med 2022; 47: 14-20
  • 34 Bordonne M, Chawki MB, Marie PY. et al. High-quality brain perfusion SPECT images may be achieved with a high-speed recording using 360° CZT camera. EJNMMI Phys 2020; 7: 65
  • 35 Melki S, Chawki MB, Marie PY. et al. Augmented planar bone scintigraphy obtained from a whole-body SPECT recording of less than 20 min with a high-sensitivity 360° CZT camera. Eur J Nucl Med Mol Imaging 2020; 47: 1329-1331
  • 36 Conti M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging 2011; 38: 1147-1157
  • 37 Cherry SR, Jones T, Karp JS. et al. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med 2018; 59: 3-12
  • 38 Surti S, Karp JS. Update on latest advances in time-of-flight PET. Phys Med 2020; 80: 251-258
  • 39 Sekine T, Delso G, Zeimpekis KG. et al. Reduction of 18F-FDG dose in clinical PET/MR imaging by using silicon photomultiplier detectors. Radiology 2017; 286: 249-259
  • 40 Jiang W, Chalich Y, Deen MJ. Sensors for positron emission tomography applications. Sensors (Basel) 2019; 19
  • 41 EANM Research Ltd. (EARL) publications and guidelines. https://earl.eanm.org/guidelines-and-publications/ Stand: 22.01.2022
  • 42 Fuentes-Ocampo F, López-Mora DA, Flotats A. et al. Digital vs. analog PET/CT: intra-subject comparison of the SUVmax in target lesions and reference regions. Eur J Nucl Med Mol Imaging 2019; 46: 1745-1750
  • 43 Hsu DFC, Ilan E, Peterson WT. et al. Studies of a next-generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med 2017; 58: 1511-1518
  • 44 Zhang J, Maniawski P, Knopp MV. Performance evaluation of the next generation solid-state digital photon counting PET/CT system. EJNMMI Res 2018; 8: 97
  • 45 Oddstig J, Brolin G, Trägårdh E. et al. Head-to-head comparison of a Si-photomultiplier-based and a conventional photomultiplier-based PET-CT system. EJNMMI Phys 2021; 8: 19
  • 46 López-Mora DA, Flotats A, Fuentes-Ocampo F. et al. Comparison of image quality and lesion detection between digital and analog PET/CT. Eur J Nucl Med Mol Imaging 2019; 46: 1383-1390
  • 47 Baratto L, Toriihara A, Hatami N. et al. Results of a prospective trial to compare (68)Ga-DOTA-TATE with SiPM-based PET/CT vs. conventional PET/CT in patients with neuroendocrine tumors. Diagnostics (Basel) 2021; 11
  • 48 Alberts I, Sachpekidis C, Prenosil G. et al. Digital PET/CT allows for shorter acquisition protocols or reduced radiopharmaceutical dose in [(18)F]-FDG PET/CT. Ann Nucl Med 2021; 35: 485-492
  • 49 Teoh EJ, McGowan DR, Macpherson RE. et al. Phantom and clinical evaluation of the Bayesian penalized likelihood reconstruction algorithm Q. Clear on an LYSO PET/CT System. . J Nucl Med 2015; 56: 1447-1452
  • 50 Messerli M, Stolzmann P, Egger-Sigg M. et al. Impact of a Bayesian penalized likelihood reconstruction algorithm on image quality in novel digital PET/CT: clinical implications for the assessment of lung tumors. EJNMMI Phys 2018; 5: 27
  • 51 Otani T, Hosono M, Kanagaki M. et al. Evaluation and optimization of a new PET reconstruction algorithm, Bayesian penalized likelihood reconstruction, for lung cancer assessment according to lesion size. AJR Am J Roentgenol 2019; 213: W50-W56
  • 52 Trägårdh E, Minarik D, Brolin G. et al. Optimization of [(18)F]PSMA-1007 PET-CT using regularized reconstruction in patients with prostate cancer. EJNMMI Phys 2020; 7: 31
  • 53 Guo B, Wu Z, Zhao B. et al. Quantification accuracy using Bayesian penalized likelihood based reconstruction on 68Ga PET-CT. Journal of Nuclear Medicine 2020; 61 (Suppl. 01) 162-162
  • 54 Lindström E, Velikyan I, Regula N. et al. Regularized reconstruction of digital time-of-flight (68)Ga-PSMA-11 PET/CT for the detection of recurrent disease in prostate cancer patients. Theranostics 2019; 9: 3476-3484
  • 55 Chicheportiche A, Goshen E, Godefroy J. et al. Can a penalized-likelihood estimation algorithm be used to reduce the injected dose or the acquisition time in (68)Ga-DOTATATE PET/CT studies?. EJNMMI Phys 2021; 8: 13
  • 56 Kurita Y, Ichikawa Y, Nakanishi T. et al. The value of Bayesian penalized likelihood reconstruction for improving lesion conspicuity of malignant lung tumors on (18)F-FDG PET/CT: comparison with ordered subset expectation maximization reconstruction incorporating time-of-flight model and point spread function correction. Ann Nucl Med 2020; 34: 272-279
  • 57 Teoh EJ, McGowan DR, Bradley KM. et al. Novel penalised likelihood reconstruction of PET in the assessment of histologically verified small pulmonary nodules. Eur Radiol 2016; 26: 576-584
  • 58 Schwyzer M, Martini K, Benz DC. et al. Artificial intelligence for detecting small FDG-positive lung nodules in digital PET/CT: impact of image reconstructions on diagnostic performance. Eur Radiol 2020; 30: 2031-2040
  • 59 Ly J, Minarik D, Edenbrandt L. et al. The use of a proposed updated EARL harmonization of (18)F-FDG PET-CT in patients with lymphoma yields significant differences in Deauville score compared with current EARL recommendations. EJNMMI Res 2019; 9: 65
  • 60 Lindström E, Lindsjö L, Sundin A. et al. Evaluation of block-sequential regularized expectation maximization reconstruction of (68)Ga-DOTATOC, (18)F-fluoride, and (11)C-acetate whole-body examinations acquired on a digital time-of-flight PET/CT scanner. EJNMMI Phys 2020; 7: 40
  • 61 Lindström E, Sundin A, Trampal C. et al. Evaluation of penalized-likelihood estimation reconstruction on a digital time-of-flight PET/CT scanner for (18)F-FDG whole-body examinations. J Nucl Med 2018; 59: 1152-1158
  • 62 Rogasch JM, Suleiman S, Hofheinz F. et al. Reconstructed spatial resolution and contrast recovery with Bayesian penalized likelihood reconstruction (Q. Clear) for FDG-PET compared to time-of-flight (TOF) with point spread function (PSF). EJNMMI Phys 2020; 7: 2
  • 63 Seo Y, Khalighi MM, Wangerin KA. et al. Quantitative and qualitative improvement of low-count [(68)Ga]citrate and [(90)Y]microspheres PET image reconstructions using block sequential regularized expectation maximization algorithm. Molecular imaging and biology 2020; 22: 208-216
  • 64 Shkumat NA, Vali R, Shammas A. Clinical evaluation of reconstruction and acquisition time for pediatric (18)F-FDG brain PET using digital PET/CT. Pediatr Radiol 2020; 50: 966-972
  • 65 Howard BA, Morgan R, Thorpe MP. et al. Comparison of Bayesian penalized likelihood reconstruction versus OS-EM for characterization of small pulmonary nodules in oncologic PET/CT. Ann Nucl Med 2017; 31: 623-628
  • 66 Pan T, Einstein SA, Kappadath SC. et al. Performance evaluation of the 5-Ring GE Discovery MI PET/CT system using the national electrical manufacturers association NU 2–2012 Standard. Med Phys 2019; 46: 3025-3033
  • 67 Prenosil GA, Sari H, Fürstner M. et al. Performance characteristics of the Biograph Vision Quadra PET/CT system with long axial field of view using the NEMA NU 2–2018 Standard. J Nucl Med 2021;
  • 68 Karp JS, Viswanath V, Geagan MJ. et al. PennPET Explorer: design and preliminary performance of a whole-body imager. J Nucl Med 2020; 61: 136-143
  • 69 Badawi R, Liu W, Berg E. et al. Progress on the EXPLORER project: towards a total body PET scanner for human imaging. J Nucl Med 2018; 59: 223-223
  • 70 Badawi RD, Shi H, Hu P. et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med 2019; 60: 299-303
  • 71 Tiwari A, Merrick M, Graves SA. et al. Monte Carlo evaluation of hypothetical long axial field-of-view PET scanner using GE Discovery MI PET front-end architecture. Med Phys 2021;
  • 72 Spencer BA, Berg E, Schmall JP. et al. Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2–2018 with additional tests to characterize PET scanners with a long axial field of view. J Nucl Med 2021; 62: 861-870
  • 73 Alberts I, Hünermund JN, Prenosil G. et al. Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the Biograph Vision Quadra with the Biograph Vision PET/CT. Eur J Nucl Med Mol Imaging 2021; 48: 2395-2404
  • 74 Feng T, Zhao Y, Shi H. et al. Total-body quantitative parametric imaging of early kinetics of (18)F-FDG. J Nucl Med 2021; 62: 738-744
  • 75 Nadig V, Herrmann K, Mottaghy FM. et al. Hybrid total-body pet scanners-current status and future perspectives. Eur J Nucl Med Mol Imaging 2021;
  • 76 Teimoorisichani M, Panin V, Rothfuss H. et al. A CT-less approach to quantitative PET imaging using the LSO intrinsic radiation for long-axial FOV PET scanners. Med Phys 2022; 49: 309-323