Rofo 2022; 194(06): 652-659
DOI: 10.1055/a-1717-2542
Vessels

Dual-Layer Spectral CTA for TAVI Planning Using a Split-Phase Protocol and Low-keV Virtual Monoenergetic Images: Improved Image Quality in Comparison with Single-Phase Conventional CTA

Verbesserte Bildqualität der TAVI-CTA eines Dual-Layer Spektral-CTs unter Verwendung eines Zwei-Phasen-Protokolls und virtuell-monoenergetischer Bilder im Vergleich zu einem konventionellen CT
1   Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany
,
Janek Salatzki
2   Department of Internal Medicine III, University Hospital Heidelberg, Germany
,
Johannes Riffel
2   Department of Internal Medicine III, University Hospital Heidelberg, Germany
,
Hans-Ulrich Kauczor
1   Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany
,
Tim Frederik Weber
1   Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany
› Author Affiliations

Abstract

Purpose Adaptation of computed tomography protocols for transcatheter aortic valve implantation (TAVI) planning is required when a first-generation dual-layer spectral CT scanner (DLCT) is used. The purpose of this study was to evaluate the objective image quality of aortic CT angiography (CTA) for TAVI planning using a split-phase technique with reconstruction of 40 keV virtual monoenergetic images (40 keV-VMI) obtained with a DLCT scanner. CT angiography obtained with a single-phase protocol of a conventional single-detector CT (SLCT) was used for comparison.

Materials and Methods 75 CTA scans from DLCT were retrospectively compared to 75 CTA scans from SLCT. For DLCT, spiral CTA without ECG-synchronization was performed immediately after a retrospectively ECG-gated acquisition covering the heart and aortic arch. For SLCT, spiral CTA with retrospective ECG-gating was performed to capture the heart and the access route simultaneously in one scan. Objective image quality was compared at different levels of the arterial access route.

Results 40 keV virtual monoenergetic images of DLCT showed a significantly higher mean vessel attenuation, SNR, and CNR at all levels of the arterial access route. With 40 keV-VMI of DLCT, the overall mean aortic attenuation of all six measured regions was 589.6 ± 243 HU compared to 492.7 ± 209 HU of SLCT (p < 0.01). A similar trend could be observed for SNR (23.6 ± 18 vs. 18.6 ± 9; p < 0.01) and CNR (21.1 ± 18 vs. 16.4 ± 8; p < 0.01). No deterioration was observed for vascular noise (27.8 ± 9 HU vs. 28.1 ± 8 HU; p = 0.599).

Conclusion Using a DLCT scanner with a split-phase protocol and 40 keV-VMI for TAVI planning, higher objective image quality can be obtained compared to a single-phase protocol of a conventional CT scanner.

Key Points:

  • Adaption of TAVI planning CT protocols may be required when using a first-generation dual-layer CT scanner.

  • Reconstruction of virtual monoenergetic images at 40 keV improves image quality.

  • With a split-phase protocol, the radiation dose is lower compared to a single-phase ECG-gated CT acquisition.

Citation Format

  • Mangold D, Salatzki J, Riffel J et al. Dual-Layer Spectral CTA for TAVI Planning Using a Split-Phase Protocol and Low-keV Virtual Monoenergetic Images: Improved Image Quality in Comparison with Single-Phase Conventional CTA. Fortschr Röntgenstr 2022; 194: 652 – 659

Zusammenfassung

Ziel Die Anpassung der CT-Protokolle zur TAVI-Planung (Transkatheter-Aortenklappen-Implantation) ist erforderlich, wenn ein Dual-Layer Spektral-CT (DLCT) der ersten Generation verwendet wird. Ziel dieser Studie war es, die objektive Bildqualität der CT-Angiografie (CTA), die mit einem DLCT angefertigt wurden, zu bewerten. Untersucht wurden diesbezüglich virtuell monoenergetische Bilder bei 40 keV (40 keV-VMI) eines Zwei-Phasen-Protokolls. Zum Vergleich dienten CTA, die mit dem einphasigen Protokoll eines konventionellen CTs (SLCT) angefertigt wurden.

Material und Methoden 75 CTAs des DLCT wurden retrospektiv mit 75 CTAs eines konventionellen CTs verglichen. Mit dem DLCT wurde die CTA ohne EKG-Synchronisation unmittelbar nach einer retrospektiv EKG-gegateten Aufnahme des Herzens und des Aortenbogens durchgeführt. Mit dem SLCT wurde eine einphasige CTA durchgeführt, welche sowohl das Herz als auch die Zugangsgefäße in einem retrospektiv EKG-synchronisierten Scan erfasste. Die objektive Bildqualität wurde auf verschiedenen Ebenen des arteriellen Zugangsweges verglichen.

Ergebnisse Die virtuell monoenergetischen Bilder des DLCT bei 40 keV zeigten eine signifikant höhere absolute CT-Zahl, SNR und CNR auf allen Ebenen des arteriellen Zugangswegs. Bei den 40 keV-VMI der DLCT betrug das durchschnittliche aortale Gefäßsignal aller 6 gemessenen Regionen 589,6 ± 243 HU im Vergleich zu 492,7 ± 209 HU des SLCT (p < 0,01). Ein ähnlicher Trend konnte für SNR (23,6 ± 18 vs. 18,6 ± 9; p < 0,01) und CNR (21,1 ± 18 vs. 16,4 ± 8; p < 0,01) beobachtet werden. Für das Signalrauschen wurden keine signifikanten Unterschiede beobachtet (27,8 ± 9 HU vs. 28,1 ± 8 HU; p = 0,599).

Schlussfolgerung Bei der TAVI-Planung kann unter Verwendung eines DLCT mit einem Zwei-Phasen-Protokoll und 40 keV-VMI eine höhere objektive Bildqualität im Vergleich zu einem einphasigen Protokoll eines konventionellen CT-Scanners erzielt werden.

Kernaussagen:

  • Bei Verwendung eines Dual-Layer-CT der ersten Generation kann eine Anpassung der CT-Protokolle zur TAVI-Planung erforderlich sein.

  • Die Rekonstruktion virtuell-monoenergetischer Bilder bei 40 keV verbessert die Bildqualität.

  • Bei einem Zwei-Phasen-Protokoll ist die Strahlendosis geringer im Vergleich zu einer einphasigen EKG-gegateten CT-Akquisition.



Publication History

Received: 03 August 2021

Accepted: 18 November 2021

Article published online:
28 December 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Fornaro J, Leschka S, Hibbeln D. et al. Dual- and multi-energy CT: approach to functional imaging. Insights Imaging 2011; 2: 149-159 DOI: 10.1007/s13244-010-0057-0.
  • 2 Johnson TR. Dual-energy CT: general principles. Am J Roentgenol 2012; 199: S3-S8 DOI: 10.2214/Am J Roentgenol.12.9116.
  • 3 Rassouli N, Etesami M, Dhanantwari A. et al. Detector-based spectral CT with a novel dual-layer technology: principles and applications. Insights into Imaging 2017; 8: 589-598 DOI: 10.1007/s13244-017-0571-4.
  • 4 McCollough CH, Leng S, Yu L. et al. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology 2015; 276: 637-653 DOI: 10.1148/radiol.2015142631.
  • 5 Abbara S, Blanke P, Maroules CD. et al. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: A report of the Society of Cardiovascular Computed Tomography Guidelines Committee. Journal of Cardiovascular Computed Tomography 2016; 10: 435-449 DOI: 10.1016/j.jcct.2016.10.002.
  • 6 Achenbach S, Delgado V, Hausleiter J. et al. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr 2012; 6: 366-380 DOI: 10.1016/j.jcct.2012.11.002.
  • 7 Blanke P, Schoepf UJ, Leipsic JA. CT in Transcatheter Aortic Valve Replacement. Radiology 2013; 269: 650-669 DOI: 10.1148/radiol.13120696.
  • 8 Blanke P, Weir-McCall JR, Achenbach S. et al. Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR): An expert consensus document of the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr 2019; 13: 1-20 DOI: 10.1016/j.jcct.2018.11.008.
  • 9 Shuman WP, O’Malley RB, Busey JM. et al. Prospective comparison of dual-energy CT aortography using 70% reduced iodine dose versus single-energy CT aortography using standard iodine dose in the same patient. Abdominal Radiology 2017; 42: 759-765 DOI: 10.1007/s00261-016-1041-z.
  • 10 Doerner J, Hauger M, Hickethier T. et al. Image quality evaluation of dual-layer spectral detector CT of the chest and comparison with conventional CT imaging. European Journal of Radiology 2017; 52-58 DOI: 10.1016/j.ejrad.2017.05.016.
  • 11 Hickethier T, Byrtus J, Hauger M. et al. Utilization of virtual mono-energetic images (MonoE) derived from a dual-layer spectral detector CT (SDCT) for the assessment of abdominal arteries in venous contrast phase scans. Eur J Radiol 2018; 99: 28-33 DOI: 10.1016/j.ejrad.2017.12.007.
  • 12 Chalian H, Kalisz K, Rassouli N. et al. Utility of virtual monoenergetic images derived from a dual-layer detector-based spectral CT in the assessment of aortic anatomy and pathology: A retrospective case control study. Clin Imaging 2018; 52: 292-301 DOI: 10.1016/j.clinimag.2018.08.007.
  • 13 Al-Baldawi Y, Große Hokamp N, Haneder S. et al. Virtual mono-energetic images and iterative image reconstruction: abdominal vessel imaging in the era of spectral detector CT. Clin Radiol 2020; 75: 641.e649-641.e618 DOI: 10.1016/j.crad.2020.03.036.
  • 14 Weiss J, Notohamiprodjo M, Bongers M. et al. Effect of Noise-Optimized Monoenergetic Postprocessing on Diagnostic Accuracy for Detecting Incidental Pulmonary Embolism in Portal-Venous Phase Dual-Energy Computed Tomography. Invest Radiol 2017; 52: 142-147 DOI: 10.1097/RLI.0000000000000319.
  • 15 Cavallo AU, Patterson AJ, Thomas R. et al. Low dose contrast CT for transcatheter aortic valve replacement assessment: Results from the prospective SPECTACULAR study (spectral CT assessment prior to TAVR). J Cardiovasc Comput Tomogr 2019; DOI: 10.1016/j.jcct.2019.06.015.
  • 16 Van Hamersvelt RW, Eijsvoogel NG, Mihl C. et al. Contrast agent concentration optimization in CTA using low tube voltage and dual-energy CT in multiple vendors: a phantom study. The International Journal of Cardiovascular Imaging 2018; 34: 1265-1275 DOI: 10.1007/s10554-018-1329-x.
  • 17 Koyanagi H, Tsutsumi Y, Tokuda Y. et al. Computed tomography imaging using split-bolus contrast injection with volume scan of aortic root and heart for preoperative evaluation of transcatheter aortic valve implantation. Heart Vessels 2021; DOI: 10.1007/s00380-021-01899-8.
  • 18 Shnayien S, Bressem KK, Beetz NL. et al. Radiation Dose Reduction in Preprocedural CT Imaging for TAVI/TAVR Using a Novel 3-Phase Protocol: A Single Institutionʼs Experience. Rofo 2020; 192: 1174-1182 DOI: 10.1055/a-1150-7646.
  • 19 Ippolito D, Riva L, Talei Franzesi C. et al. Computed Tomography Angiography Combined With Knowledge-Based Iterative Algorithm for Transcatheter Aortic Valve Implantation Planning: Image Quality and Radiation Dose Exposure With Low-kV and Low-Contrast-Medium Protocol. J Comput Assist Tomogr 2020; 44: 13-19 DOI: 10.1097/rct.0000000000000965.
  • 20 Laqmani A, Avanesov M, Butscheidt S. et al. Comparison of image quality and visibility of normal and abnormal findings at submillisievert chest CT using filtered back projection, iterative model reconstruction (IMR) and iDose(4)™. Eur J Radiol 2016; 85: 1971-1979 DOI: 10.1016/j.ejrad.2016.09.001.
  • 21 Park HJ, Lee JM, Park SB. et al. Comparison of Knowledge-based Iterative Model Reconstruction and Hybrid Reconstruction Techniques for Liver CT Evaluation of Hypervascular Hepatocellular Carcinoma. Journal of computer assisted tomography 2016; 40: 863-871 DOI: 10.1097/rct.0000000000000455.